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ABSTRACT

Few fungi are highly virulent to terrestrial vertebrates.  Yet the disease chytridiomycosis,

caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is one of the causes

of global amphibian declines.  How a superficial skin fungus can cause catastrophic

extirpations is perplexing.  To date most investigations have focused on ecological

aspects of the host-pathogen dynamic: understanding the seasonal dynamics of the

disease, mapping the distribution of the pathogen and determining its impact on

amphibian populations.  Relatively few studies have considered the importance of

differential virulence, and evolution of virulence, of Bd.  Additionally, the mechanisms of

pathogenesis in chytridiomycosis remain largely unresolved.  I examined the growth and

developmental response of Bd to different biotic and abiotic conditions over multiple

generations with an underlying objective of understanding Bd virulence.  I also used

pathophysiological techniques to determine the cause of mortality in frogs with severe

chytridiomycosis.

In some susceptible amphibian species severe disease is closely associated with high

burdens of Bd.  Therefore, rate of zoospore production is likely to be an important

determinant of Bd virulence.  I quantified zoospore densities in multiple isolates and

examined growth and development of Bd in different nutrient and temperature conditions

over multiple generations.  In short term experiments Bd responds to different

temperature and nutrient conditions by adjusting its life history.  I found that, after

multiple passages, Bd is phenotypically plastic in its response to low nutrient

concentrations, but may have an adaptive response to long-term maintenance in low

temperatures.  Cultures that were originally derived from a single cryo-archived isolate

and passaged in 0.2% tryptone TGhL (tryptone/gelatin hydrolysate/lactose media) for 24

passages had higher zoospore densities when inoculated into 1.6% tryptone TGhL,

suggesting that Bd is phenotypically plastic in its response to nutrient conditions after 24

passages.  In a reciprocol transplant experiment, cultures maintained in 4ºC for 20

passages released zoospores earlier and had a longer period of high zoospore densities
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than cultures of the same isolate and passage history, but that were maintained at 23ºC.

This pattern of early zoospore release was consistent for cultures maintained in low

temperatures at 4ºC and at 23ºC, suggesting an adaptive response to lower temperatures.

The effects of serial passage on growth of Bd cultures were also examined.  Two cultures

that were originally derived from the same cryo-archived isolate, but had higher and

lower passage histories, had different zoospore densities in in vitro experiments; after 50

passages cultures had significantly higher zoospore densities than cultures with a passage

history of 10.  These patterns of zoospore densities in vitro corresponded with differences

in prevalence and intensities of infection in experimentally exposed Litoria caerulea.

However, the differences in these response variables (prevalence and intensities of

infection) were not significant and no mortality occurred in any experimental group.

These results suggest that variation can exist within a single Bd isolate and that certain

environmental conditions may exert selective pressures on Bd, which could influence the

host-pathogen dynamic in important ways.  For example, adaptive adjustments to low

temperatures could enhance transmission and substantially alter the impact of the disease

in amphibian populations.  The practical applications of these results are that Bd may be

evolving in particular ways due to long-term culturing practices, which should be a

consideration for laboratory experiments aimed at understanding chytridiomycosis.

The pathophysiological changes associated with chytridiomycosis were investigated by

tracking Bd infection in experimentally exposed L. caerulea and measuring a wide range

of biochemical and physiological parameters.  Infected L. caerulea that developed

clinical signs of severe chytridiomycosis had the highest burdens of Bd.  Ussing chamber

tests which measure transepithelial current and resistance demonstrated that skin samples

from experimentally infected L. caerulea had inhibited electrolyte (sodium and chloride)

transport across the skin surface.  Plasma electrolyte concentrations, including potassium,

sodium, magnesium and chloride, were reduced in the terminal stages of disease.

Surgically implanted biotransmitters that were continuously recording cardiac

electrograms revealed that asystolic cardiac arrest (which can be triggered by shifts in

electrolytes) was the terminal event in L. caerulea with severe chytridiomycosis.
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Diseased frogs that received an electrolyte supplement became more active and lived

longer than diseased frogs that received no treatment.  Because I found no significant

changes in haematocrit, albumin, total protein or body mass, it appears that the reductions

in electrolyte concentrations were due to depletion from circulation rather than water

uptake.  It is the disproportionate loss of electrolytes compared with water that signifies

an imbalance in osmotic homeostasis.  Loss of electrolytes could occur via the skin or the

kidney.  Histological analysis of the kidney samples was inconclusive but the skin was

severely damaged when assessed with histology and electrolyte transport (Ussing

chamber) tests, suggesting that the skin is the primary organ involved in the extensive

electrolyte shifts that lead to mortality.  Amphibians can tolerate greater electrolyte

fluctuations than other terrestrial vertebrates, but my results support the epidermal

dysfunction hypothesis, which suggests that the disruption to cutaneous functioning, and

the extent of electrolyte imbalance that occurs in severe chytridiomycosis, produce a life-

compromising pathophysiology.

The unique importance of the skin in maintaining amphibian homeostasis and the ability

of Bd to disrupt epidermal functioning are two key factors that help explain how

mortality can occur in a wide range of amphibian species.  Additionally, the ability of Bd

to respond to a wide range of environmental conditions (temperatures and nutrient

conditions) in ways that potentially alter the virulence and impact of chytridiomycosis,

makes Bd a formidable pathogen.  These disease characteristics, combined with the

ability to spread rapidly and persist at low host densities, create a lethal suite of

concomitant variables that, taken separately, might not be so devastating, but together are

threatening amphibians worldwide.
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PREFACE

The amphibian disease chytridiomycosis, caused by the fungal pathogen

Batrachochytrium dendrobatidis (Bd), was first described in 1998 and rapidly became a

disease of interest for scientists and the general public alike.  It is, perhaps, one of the

better-known wildlife diseases due to pervasive media coverage.  My personal interest in

the plight of amphibians was piqued before I began my master’s research at the

University of Colorado.  At the time, I was working on a series of amphibian projects in

the Republic of Panama when an outbreak of chytridiomycosis extirpated the frogs and

salamanders from the streams and ponds of El Parque Nacional de Omar Torrijos (Omar

Torrijos National Park).  The subsequent silence made a lasting impression on me.

Without the normal orchestra of calling frogs, the quiet of the rainforest seemed eerie and

abnormal.

Witnessing the disappearance of species, while devastating at a personal level, provided

the motivation to understand the “why” and the “how”… or in other words, the

mechanisms responsible for the little understood processes surrounding these losses of

biodiversity.  Disease is an important, although sometimes under-estimated, driver in

biological systems and chytridiomycosis has brought considerable attention to the

importance of emerging diseases and their potential threat to many organisms.  The

dramatic loss of amphibian biodiversity due to chytridiomycosis is accurately described

by media clips as “catastrophic” and “tragic”.  However, it also provides the opportunity

to study and better understand the underpinnings of biological processes that impact

diversity and evolution of all species.  These are the reasons why I focused on this

research topic.

The research experiments described in this thesis were accomplished with consultation

and collaboration with individuals from different scientific backgrounds.  In many cases,

their expertise made these multidisciplinary projects possible.  Many of those who

offered assistance were thanked, albeit too briefly, in the acknowledgements.  Here I
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summarize the scientific and technical contributions of collaborators in each of the
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have input from all co-authors.

CHAPTER SIX
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CHAPTER SEVEN

This chapter consists of multiple linked experiments aimed at understanding the

pathophysiology of chytridiomycosis.  It was a large undertaking and as such, it required

considerable effort from many individuals.  I was the primary person responsible for the

experimental design, logistics, organization, animal husbandry, collection and analysis of

the data and writing the manuscript.  Rebecca Webb and Sara Bell assisted with animal

husbandry.  Lee Berger assisted with blood sample collections.  Sam Young analysed the
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