JCU ePrints

This file is part of the following reference:

Joseph, Hayley (2010) Lymphatic filariasis elimination: residual endemnicity, spatial clustering and future surveillance using the new Filariasis CELISA diagnostic assay. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/12000

LYMPHATIC FILARIASIS ELIMINATION: RESIDUAL ENDEMNICITY, SPATIAL CLUSTERING AND FUTURE SURVEILLANCE USING THE NEW FILARIASIS CELISA DIAGNOSTIC ASSAY

Thesis submitted by Hayley Melissa JOSEPH BMedLabSci (Hons) JCU in June, 2010

in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University of North Queensland, Australia

STATEMENT OF SOURCES DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Signature

Date

STATEMENT OF ACCESS

I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries.

All users consulting this thesis will have to sign the following statement:

In consulting this thesis, I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper public written acknowledgement for any assistance which I have obtained from it.

Beyond this, I do not wish to place any restriction on access to this thesis.

Signature

Date

PREFACE

The research was made possible by ongoing financial support from GlaxoSmithKline (GSK). By using the statistical software, SaTScan, I am obligated to note: "SaTScan[™] is a trademark of Martin Kulldorff. The SaTScan[™] software was developed under the joint auspices of (i) Martin Kulldorff, (ii) the National Cancer Institute, and (iii) Farzad Mostashari of the New York City Department of Health and Mental Hygiene".

The research undertaken as part of the thesis was a collaborative effort with the Pacific Programme for the Elimination of Lymphatic Filariasis (PacELF), based in Fiji, and the Centers for Disease Control and Prevention (CDC), based in USA. The bulk of the research from Samoa was a collaborative effort with the World Health Organization (Apia, Samoa) and the Ministry of Health in Samoa.

In general, editorial assistance was provided by my supervisors including advice on data interpretation. Advice on statistical analysis is described in detail below.

Base Shape Files for ArcGIS Version 9.0

Phil Bright (Secretariat to the Pacific Community (SPC), New Caledonia).

Finalisation of Maps (only Samoa)

Adella Edwards (Cartographer, James Cook University (JCU), Australia) Julian Lawn (JCU, Australia)

Spatial Statistics

Shannon McClintock (CDC, USA) James Moloney (JCU, Australia)

Categorical and Numerical Statistical Analysis

Petra Buttner (JCU, Australia) Alan Clough (JCU, Australia)

ACKNOWLEDGEMENTS

I would like to thank all of the people in the Pacific Islands who participated in this study. If it were not for these people my work would not have been possible.

PhDs are not successful without the guidance and support provided by the student's academic advisors. I was fortunate enough to be advised by Professor Richard Speare, Dr Patrick Lammie and Associate Professor Wayne Melrose. I would like to thank Rick for his guidance with the thesis writing. The man is a mountain of knowledge! I would like to thank Pat for his help with thesis writing, publications and as a sounding post for some of the crazy ideas I've come up with over the past few years. Pat helped me a lot with the spatial studies and I enjoyed "picking his brain" during my six week stay at the CDC, USA.

It is difficult to explain in words the impact my principal supervisor, Associate Professor Wayne Melrose, has had on me both professionally and personally. I am forever indebted to him for his invaluable supervision and advice over these years, which have been paramount in moulding the research scientist I am today. His unconventional approach to science and love of controversial findings has fuelled my interest and love of this topsyturvy world of research. Wayne is an exceptional supervisor. He always gave me "just enough rope" not to hang myself; he always gave me the space to learn, grow, and pushed me out of that comfort zone, but not too much where I would be left flailing! I will never forget organising my first field trip in the Pacific, where I would be team leader. Wayne was away and I was left to organise all supplies. I was nervous and "wet behind the ears" and didn't know what to expect. I certainly was not used to such isolated conditions. I recall emailing Wayne a series of questions and Wayne (who by this stage was well aware of my over-preparation and anal retentiveness) emailed me back. His email did not consist of answers to my questions, but rather a short and sweet email of: "STOP WORRYING! I am confident in your abilities and have no doubt you will sort out these problems when you're on

iii

the ground...... oh by the way, do not forget the emergency beacon on my desk – you may need it....." And believe me, there were times when I felt like flicking that switch! Running my own field teams in various countries across the Pacific has provided me with priceless life lessons and memories and I only have Wayne to thank for providing me with this opportunity.

I would like to thank the lovely administrative staff; Ari and Michelle. Especially for never deleting my emails that started with "I have a small favour to ask....." or ignoring me when I came in to work and began a sentence with "could you hold Chloe while I....." (Although I am suspicious they loved the second statement so they could get some cuddles! And Chloe, my baby, loved it too!). Furthermore, I would like to thank the Trisha for helping with those fiddly end stages of printing.

Of course I am saving "the best" until last. The constant support of my parents has been paramount and integral to my successes not only in the postgraduate stage of my career, but also my undergraduate study at JCU. The emotional and professional guidance provided by my parents has helped shape the individual I am today. During those times of hardship, which I am sure each PhD student has endured, the love and support of both my parents always saw me through. Furthermore, I will always be appreciative of the endless babysitting provided by my mum during the hours of thesis writing! Secondly, the hours of editing by my dad have greatly improved the readability of the thesis and to him I will always be grateful. Now, dad, as a grandad it's time to help Chloe with her years of schooling!

To my sister and brother-in-law, Rachel and Mat, you may never quite understand the point of my research, but you were always willing to listen to my rants and complaints when things went wrong and revelled in my jubilation when things succeeded. Furthermore, Rachel helped me with my "thesis-free" days to keep me sane and let our beautiful children play happily together.

PRESENTATIONS

Joseph, H., and Melrose, W. Laboratory Diagnosis of Lymphatic Filariasis. Australian Institute of Medical Scientists (AIMS), Cairns, Australia, June 2007

Joseph, H., Lymphatic Filariasis in Samoa; project proposal. Ministry of Health, Samoa, May 2008

Joseph, H., Lammie, P., McClintock, S., Maiava, F., and Melrose, W. Spatial Analysis of Lymphatic Filariasis in Samoa. American Society of Tropical Medicine and Hygiene (ASTMH) conference, New Orleans, USA, Dec 2008

Future Presentations:

Joseph, H., Lammie, P., McClintock, S., Maiava, F., and Melrose, W. First Evidence of Spatial Clustering of Lymphatic Filariasis in an *Aedes polynesiensis* Endemic Area. American Society of Tropical Medicine and Hygiene (ASTMH) conference, Atlanta, USA, Nov 2010

PUBLICATIONS

Joseph, H., and Melrose, W. D. (2010) Applicability of the filter paper technique for detection of antifilarial IgG₄ antibodies using the Bm14 Filariasis CELISA. *Journal of Parasitology Research* doi:10.1155/2010/594687: 6 pages

Weil, G.J., Curtis, K.C., Fischer, P.U., Won, K.Y., Lammie, P.J., Joseph, H.M., Melrose, W.D., and Brattig, N.W., (2010). A multi-centre evaluation of a new antibody test kit for lymphatic filariasis employing recombinant *Brugia malayi* antigen BM-14. *Acta Tropica* [Epub ahead of print]

Dos Santos, M., Armaral, S., Harmen, S., <u>Joseph, H.</u>, Fernandes, J. and Counahan, M. (2010). The prevalence of common skin infections in Timor-Leste: A cross sectional survey. *BMC Infectious Diseases* **10**: 61

Future Publications

Joseph, H., Maiava, F., Lammie, P. and Melrose, W. Evaluation of continuing transmission and clustering of residual infection of lymphatic filariasis in Samoa. Part I: epidemiological assessment *In Submission Acta Tropica*

Joseph, H., Moloney, J., Maiava, F., McClintock, S., Lammie, P. and Melrose, W. Evaluation of continuing transmission and clustering of residual infection of lymphatic filariasis in Samoa. Part II: spatial clustering *In Submission Acta Tropica*

Joseph, H., Clough, A., Maiava, F and Melrose, W. Exploratory Study Investigating Factors Influencing Mass Drug Administration (MDA) Compliance for Lymphatic Filariasis in Samoa, *Manuscript in preparation*

Joseph, H., Moloney, J., Maiava, F., Taleo, F., 'Ake, M., Capuano, C. and Melrose, W. Application of the Filariasis CELISA anti-filarial IgG₄ antibody assay in LF surveillance in the South Pacific. *Manuscript in preparation*

ABSTRACT

Lymphatic Filariasis (LF) is a mosquito-transmitted parasitic disease caused by the filarial nematodes *Wuchereria bancrofti, Brugia malayi* and *Brugia timori.* In 1997, the 50th World Health Assembly approved a resolution calling for the elimination of LF as a public health problem (WHA50.29). This was deemed achievable with a regime of annual Mass Drug Administrations (MDAs) and, where appropriate, vector control for a minimum of four to six years. The Pacific counterpart was named the Pacific Programme to Eliminate Lymphatic Filariasis (PacELF). In the Pacific, countries which have reached the threshold of < 0.1% circulating filarial antigen (CFA) prevalence in children entered surveillance mode until 2012, whereas countries with persistent transmission planned further MDAs. Successful elimination of LF requires:

- Accurate identification of residual foci of transmission (in countries with persistent transmission);
- Comprehensive surveillance strategies to detect and combat potential resurgence (in countries entering surveillance mode); and,
- Culturally appropriate education campaigns to encourage MDA compliance, as systematic non-compliers become reservoirs of infection.

It is crucial to apply sensitive diagnostic tools which are capable of identifying these areas of residual endemnicity or resurgence early. This phase of low prevalence poses particular challenges: "hot spots" may be scattered and illdefined and the diagnostic tools measuring microfilaraemia (Mf) and CFA that were successful in the earlier phase of the programme may no longer be adequate because of issues with sensitivity, the requirement for larger sampling sizes, and lag phases before Mf or CFA are detectable in newly infected persons. The addition of antibody serology as a complementary diagnostic tool would provide an earlier warning system, since children born after the interruption of transmission would be antibody negative.

In order to incorporate serology into the LF programme, use of a standardised commercial assay must be used, such as the Filariasis Cellabs Enzyme-Linked Immunosorbent Assay (CELISA). Although the Filariasis CELISA has been manufactured since 2006, it is yet to be investigated for its potential use in large scale sampling. It was the aim of this research to determine:

- 1) The efficacy of the Filariasis CELISA antibody assay;
- Its usefulness as a potential diagnostic tool for the inclusion into the LF programme; and,
- 3) Its role in future surveillance work.

This was achieved by validating the Filariasis CELISA for field applicability, assessing its efficacy for identifying areas of residual endemnicity, and investigating the spatial relationships between exposed and infected individuals. In addition, during the progression of the thesis, data became available concerning MDA compliance in Samoa. MDA compliance is also crucial for successful elimination of LF since systematic non-compliers remain as potential reservoirs of infection.

ix

The Filariasis CELISA was easily applicable for field work using whole blood dried onto filter paper. Filter paper sampling had a sensitivity of 92% and a specificity of 77%, when compared to plasma samples. Five thousand four hundred and ninety-eight filter paper samples were assayed from four LF endemic South Pacific countries (Tuvalu, Tonga, Vanuatu, and Samoa). Antibody prevalence rates correlated with cessation of LF transmission in Tonga and Vanuatu, both of which have entered surveillance mode, and ongoing transmission in Samoa and Tuvalu. Most importantly, use of CFA prevalence in children alone, the current World Health Organization (WHO) recommendation, missed vital residual areas of endemic foci in Samoa, as observed by high antibody prevalence in children and Mf positive individuals. This observation required further investigation with an in-depth epidemiological study.

In Samoa, five villages were chosen for prevalence surveys, including Siufaga, which was originally believed to be LF-free. Results showed that the reservoir of infection was the older males and that there was a correlation between transmission (Mf/CFA positivity) and exposure in children. Crucially, ongoing transmission was occurring in Siufaga, as demonstrated by an overall CFA prevalence exceeding 1% and high antibody prevalence in children. CFA testing of children alone would not have identified Siufaga as an area of residual endemnicity.

Accurate identification of residual foci of transmission is challenging in areas where *Aedes polynesiensis* is endemic, such as Samoa, since no

Х

geographical clustering of infection has been demonstrated. Results from the aforementioned epidemiological study were spatially linked to household of residence (community based analyses) and/or primary school (school based analyses) of attendance. "Community based" analyses revealed significant spatial clusters of households with infected individuals and a relationship to antibody positive children when they were included in the spatial analysis. Similar results were observed for "school based" analyses. These promising findings are the first evidence of spatial clustering of LF in a day-biting *Ae. polynesiensis* endemic area. In addition, these results are the first evidence of dual clustering of Mf/CFA individuals with exposed children.

In Samoa, MDA non-compliance of infected individuals may contribute to persistent transmission. Exploring why these individuals are non-compliant is of paramount importance to the LF programme. Individuals testing positive for LF and children aged 7 – 10 years were asked to participate in a questionnaire designed to ascertain: 1) level of LF knowledge, (2) compliance, and (3) a number of risk factors. For the infected individuals, there was a significant association between MDA compliance and knowledge of LF and, for the children, this association also extended to use of mosquito protection. This exploratory study highlights the need for restructuring current educational campaigns, and their deliverance, to appropriately target children and the systematically non-compliant infected individuals. In addition, the study highlights the necessity to instigate qualitative studies to explore cultural and religious beliefs; a strong driver of compliance.

xi

The overall findings fill critical gaps in knowledge for the elimination of LF namely:

- 1) Incorporation of antibody serology should be a priority because:
 - a. Certain areas of residual transmission will not be detected using Mf or CFA diagnostic testing alone; and,
 - b. Surveillance requires a diagnostic test capable of detecting resurgence early so that action can be timely.
- 2) In Samoa:
 - a. Identification of spatial clustering has a significant impact on the LF programme in terms of targeted treatment, re-introduction of vector control campaigns and aiding health personnel to locate potential Mf positive cases;
 - b. Previously declared "LF-free" villages may have residual transmission; and,
 - c. New health education campaigns are a necessity for targeting non-compliant individuals.

The addition of antibody serology into the repertoire of LF diagnostic tools holds huge promise for identifying areas of residual endemnicity and in future surveillance and control of LF.

ABS	TRACT	vi	iii
LIST		BLESx	xi
LIST	OF FIG	SURES xxi	iii
LIST	OF AB	BREVIATIONSxxvi	iii
СНА	PTER 1	: GENERAL INTRODUCTION	.1
СНА	PTER 2	2: LITERATURE REVIEW	. 8
2.1	AETIC	OLOGY AND EPIDEMIOLOGY	. 8
	2.1.1	Aetiology in the South Pacific1	2
	2.1.2	Lifecycle of Wuchereria bancrofti1	4
	2.1.3	Elimination of Lymphatic Filariasis as a Public	
		Health Problem in the South Pacific1	17
2.2	CLINI	CAL PRESENTATION 1	9
	2.2.1	Introduction1	9
	2.2.2	Asymptomatic Lymphatic Filariasis2	20
		2.2.2.1 Endemic normals2	21
		2.2.2.2 Asymptomatic microfilaraemics	22
	2.2.3	Symptomatic Lymphatic Filariasis2	23
		2.2.3.1 Acute filarial disease2	23
		2.2.3.2 Chronic filarial disease	25
		2.2.3.3 Tropical eosinophilia2	29
	2.2.4	Drug Regimes2	29
2.3	FILAF	RIAL IMMUNITY	35
	2.3.1	Introduction	35
	2.3.2	Innate Immune Response3	36
	2.3.3	Adaptive Immune Response	37
		2.3.3.1 Introduction	37

TABLE OF CONTENTS

		2.3.3.2	Humoral i	mmunity	39
			2.3.3.2.1	lgG₁	40
			2.3.3.2.2	IgG ₂	41
			2.3.3.2.3	IgG ₃	42
			2.3.3.2.4	IgG ₄	43
			2.3.3.2.5	IgE	45
			2.3.3.2.6	IgA	46
	2.3.4	Pre-nat	al Sensitisa	tion	47
	2.3.5	Co-infe	ction and Va	accine Efficacy	47
2.4	LABC	RATOR	Y DIAGNOS	SIS AND APPLICABILITY	
	IN TH	IE FIELD			50
	2.4.1	Introduc	ction		50
	2.4.2	Circulat	ing Filarial .	Antigen (CFA) Assays	52
		2.4.2.1	NOW [®] fila	riasis immunochromatographic	
			test (ICT)		53
		2.4.2.2	Og4C3 as	say	54
	2.4.3	Microfila	arial (Mf) As	ssays	55
	2.4.4	Anti-fila	rial Antibod	y Assays	57
		2.4.4.1	Introductio	on	57
		2.4.4.2	Recombin	ant antigen assays	58
2.5	NEW	LABORA	TORY TES	ST: FILARIASIS CELISA	62
	2.5.1	Introduc	ction		62
	2.5.2	Cross F	Reactivity ar	nd Inter-Laboratory Variation	63
2.6	POST	Г-MDA: D	ETERMINI	NG IF COUNTRIES ARE	
	FILAF	RIASIS F	REE		64
	2.6.1	Introduc	ction		64
	2.6.2	Resurge	ence of Lyn	nphatic Filariasis Following	
		Elimina	tion: an His	torical Perspective	71
	2.6.3	PCR ar	nd Mosquito	Dissection Tools for	
		Monitor	ing Lympha	tic Filariasis Transmission	73
	2.6.4	Choosir	ng the Right	t Diagnostic Tools for Surveillance	75
		2.6.4.1	Filariasis (CELISA anti-filarial antibody	
			assay as f	he answer	76

2.7	USE OF GPS MAPPING WITH DIAGNOSTIC TOOLS TO	
	ASSESS THE EXTENT OF LYMPHATIC FILARIASIS	
	TRANSMISSION	78
2.8	SUMMARY	79

CHAPTER 3: GENERAL MATERIALS AND METHODS81

3.1	STUD	Y SITES		81
3.2	LABO	RATORY	DIAGNOSIS OF LYMPHATIC FILARIASIS.	
	3.2.1	Reagen	ts and Consumables	
	3.2.2	Blood C	ollection and Storage	
	3.2.3	Elution	of Filter Paper	
		3.2.3.1	Filariasis CELISA	
		3.2.3.2	The Og4C3 antigen assay	
	3.2.4	Microfila	arial (Mf) Detection	
	3.2.5	Antigen	Detection	
		3.2.5.1	NOW [®] filariasis immunochromatographic	
			test (ICT)	
		3.2.5.2	The Og4C3 assay	
	3.2.6	Antibod	y Detection	
3.3	STAT	ISTICAL	ANALYSIS	90
	3.3.1	Normali	sation of Data for SPSS Statistical Software	
		Version	17.0	
3.4	ETHIC	CS APPR	OVAL	91

СНА	PTER 4		ALIDITY OF THE FILARIASIS CELISA	
			JSE AS A LYMPHATIC FILARIASIS	
		DIAG	NOSTIC ASSAY	92
4.1	INTR		ON	92
4.2			(
4.3			ND METHODS	
4.5			Reactivity of the Filariasis CELISA	50
	4.5.1		her Parasites	90
		4.3.1.1	Multicentre evaluation	
		-	Cross reactivity with	50
		1.0.1.2	Strongyloides sp. sera	99
	4.3.2	Optimis	ation of Serum Sample Dilution10	
	4.3.3	•	ation of Filter Paper Sampling for the	
		•	is CELISA	01
		4.3.3.1	Negative control10	01
		4.3.3.2	Reducing background signal to noise ratio	
			4.3.3.2.1 Blocking buffer	03
			4.3.3.2.2 Hydrogen peroxide	03
	4.3.4	Sensitiv	ity and Specificity of Filter Paper Sampling	04
	4.3.5	Kit Dura	ability Following Delayed Transportation	05
	4.3.6	Effect o	f Storage Temperature on Reactivity of	
		Filter Pa	aper Samples10	06
4.4	RESU	JLTS		07
	4.4.1	Cross F	Reactivity of the Filariasis CELISA	
		With Ot	her Parasites10	07
		4.4.1.1	Multicentre evaluation10	07
		4.4.1.2	Cross reactivity with	
			Strongyloides sp. sera10	07
	4.4.2	Optimis	ation of Serum Sample Dilution10	08
	4.4.3	Optimis	ation of Filter Paper Sampling for the	
		Filariasi	s CELISA1	12
		4.4.3.1	Negative control1	12
		4.4.3.2	Reducing background signal to noise ratio1	13

	4.4.3.2.1 Blocking buffer	. 113
	4.4.3.2.2 Hydrogen peroxide	. 114
	4.4.4 Sensitivity and Specificity of Filter Paper Sampling	. 115
	4.4.5 Kit Durability Following Delayed Transportation	. 117
	4.4.6 Effect of Storage Temperature on Reactivity of	
	Filter Paper Samples	. 118
4.5	DISCUSSION	. 121
CHA	PTER 5: POST MASS DRUG ADMINISTRATION SURVEYS IN	
	FOUR SOUTH PACIFIC COUNTRIES: DEFINING	
	CESSATION OF LYMPHATIC FILARIASIS	
	TRANSMISSION	. 135
5.1	INTRODUCTION	. 135
5.2	AIMS	. 143
5.3	MATERIALS AND METHODS	. 143
	5.3.1 Study Population	. 143
	5.3.1.1 Samoa	. 144
	5.3.1.2 Tonga	. 144
	5.3.1.3 Tuvalu	. 145
	5.3.1.4 Vanuatu	. 146
	5.3.2 Statistical Analysis and Seroprevalence Mapping	. 146
5.4	RESULTS	. 147
	5.4.1 Study Population	. 147
	5.4.1.1 Samoa	. 148
	5.4.1.2 Tonga	. 156
	5.4.1.3 Tuvalu	. 159
	5.4.1.4 Vanuatu	162
5.5	DISCUSSION	164

6.1	INTRODUCTION	
6.2	AIMS	174
6.3	MATERIALS AND METHODS	174
	6.3.1 Study Area	174
	6.3.2 Study Population	176
	6.3.3 Statistical Analysis	178
6.4	RESULTS	179
	6.4.1 Prevalence	179
6.5	DISCUSSION	

7.1	INTRO	DDUCTION	
7.2	AIMS.		
7.3	MATE	RIALS AND METHODS	
	7.3.1	Study Area and Population	
	7.3.2	Diagnostic Testing	
	7.3.3	Spatial Data Collection	
	7.3.4	Statistical Analysis	
7.4	RESU	LTS	
	7.4.1	Spatial Clustering	
		7.4.1.1 "Community based" scenario	
		7.4.1.2 "School based" scenario	
7.5	DISCL	JSSION	210
	7.5.1	Future Directions and Conclusions	216

8.1	INTRO	DUCTION
8.2	AIMS.	
8.3	MATE	RIALS AND METHODS 223
	8.3.1	Study Population
	8.3.2	Defining MDA Compliance225
	8.3.3	Questionnaire
	8.3.4	Statistical Analysis
8.4	RESU	LTS
	8.4.1	CFA Positive Group228
		8.4.1.1 Uni-variable analyses
		8.4.1.2 Multi-variable analyses
	8.4.2	Children Aged 7 to 10 Years231
		8.4.2.1 Uni-variable analyses
		8.4.2.2 Multi-variable analyses
8.5	DISCL	JSSION
CHAF	PTER 9	: GENERAL DISCUSSION254
9.1	DISCL	JSSION
9.2	FUTU	RE DIRECTIONS AND CONCLUSIONS
REFE	RENC	ES
APPE		1: PRODUCT INSERT: THE FILARIASIS CELISA
APPE		2: PRODUCT INSERT: THE OG4C3 ELISA
APPE		B: HUMAN ETHICS APPROVAL H1423

APPENDIX 4:	HUMAN ETHICS APPROVAL H2816	332
APPENDIX 5:	TITRATION OF PNG SERA SAMPLES	334

LIST OF TABLES

CHAPTER 2

Table 2.1	Recombinant antigen based antibody assays	60-61
	Recombinant antigen based antibody assays	.00-01

CHAPTER 4

Table 4.1	Demographic information of samples derived from
	the PNG Serum Bank101
Table 4.2	Cross-tabulation results for detection of anti-filarial IgG_4
	comparing the new commercial Filariasis CELISA with
	previous research-based D. immitis ELISA 110
Table 4.3	Cross-tabulation results for the Filariasis CELISA
	comparing paired plasma and filter paper samples 116
Table 4.4	Cross-tabulation results for the Filariasis CELISA
	comparing reactivity from paired filter paper samples
	following 10 months storage at -20°C120

CHAPTER 5

Table 5.1	Data collected from the post-MDA 2007 national survey	
	in Samoa15	50

Table 6.1	Data collected from the post-MDA 2007 national survey	
	in Samoa	175
Table 6.2	Demographics of the individuals residing in the	
	five villages chosen for the study	177
Table 6.3	Prevalence of Mf, CFA and antibodies (Ab) in each	
	of the five villages (%) including 95%-CI	182

Table 7.1	Summary spatial dat	a of the five villages examined	205
-----------	---------------------	---------------------------------	-----

Table 8.1a	Demographics of CFA positive individuals
	participating in the questionnaire (n = 153)233
Table 8.1b	Demographics of children 7 to 10 years
	participating in the questionnaire (n = 309)233
Table 8.2	Odds ratios (ORs) and 95%-CI for factors compared
	with MDA compliance in 153 CFA positive individuals
	in five Samoan villages as determined with
	uni-variable regression modelling234
Table 8.3	Odds ratios (ORs) and 95%-CI for factors compared
	with MDA compliance in 153 CFA positive individuals
	in five Samoan villages as determined with
	multivariable logistic regression modelling235
Table 8.4	Odds ratios (ORs) and 95%-CI for factors compared
	with MDA compliance in 309 children
	(aged 7 to 10 years) in five Samoan villages as
	determined with uni-variable regression modelling235
Table 8.5	Odds ratios (ORs) and 95%-CI for factors compared
	with MDA compliance in 309 children
	(aged 7 to 10 years) in five Samoan villages as
	determined with multivariable logistic
	regression modelling236

LIST OF FIGURES

CHAPTER 2

Figure 2.1	The geographical distribution of LF	9
Figure 2.2	The lifecycle of W. bancrofti 1	5

CHAPTER 3

Figure 3.1	Map of the South Pacific	81
Figure 3.2	Preparation and drying of filter paper samples	83
Figure 3.3	Elution of filter paper samples in preparation for the	
	Filariasis CELISA	84
Figure 3.4	Puncturing the tube container to allow free flow of	
	water for the boiling step in the Og4C3 assay	85
Figure 3.5	The thick blood smear for Mf detection	86
Figure 3.6	The ICT	88
Figure 3.7	Shape of the histogram after the frequency of	
	the data points were plotted using SPSS 17.0	91

Figure 4.1	LF field survey: Vanuatu 200897
Figure 4.2	OD absorbance values for 20 sera obtained from
	individuals positive for anti-Strongyloides sp. antibodies
	as measured using the Filariasis CELISA 108
Figure 4.3	OD absorbance values for 12 out of the 96 sera
	from individuals residing in PNG as measured
	using the Filariasis CELISA 109
Figure 4.4	Antibody (Ab) positivity amongst individuals from PNG
	where there is high intensity of LF transmission
Figure 4.5	Negative cut-off values of eluates from filter paper
	samples as measured using the Filariasis CELISA 113

Figure 4.6	The difference in OD absorbance values of Tongan	
	samples assayed by the Filariasis CELISA; comparing	
	the standard protocol with the addition of a	
	blocking step	.114
Figure 4.7	The difference in OD absorbance values of Tongan	
	samples assayed by the Filariasis CELISA; comparing	
	the standard protocol with the addition of incubation	
	with H ₂ O ₂	.115
Figure 4.8	Comparison between two batches of kits received by	
	different methods of transport; using titration of the	
	positive control	. 117
Figure 4.9	Scatter plot demonstrating the agreement relationship	
	between the two batches of kits; one delivered by	
	road (five days) and one by air (two days)	. 118

Figure 5.1	Post-MDA survey in Tonga145
Figure 5.2	Prevalence rates of the diagnostic parameters:
	Mf, CFA and antibody (Ab)148
Figure 5.3	Mf and CFA prevalence in children \leq 10 years
	and the rest of the population tested as part of the
	post-MDA survey in 2007 in Samoa150
Figure 5.4	Mf, CFA and antibody (Ab) prevalence across the
	health districts in Samoa151
Figure 5.5	Serological mapping for Mf, CFA and antibody
	prevalence across Samoa152
Figure 5.6	Mf, CFA and antibody (Ab) prevalence in
	children \leq 10 years only across the
	health districts in Samoa153
Figure 5.7	Correlation between the prevalence of Mf and CFA
	positive adults and children in Samoa154
Figure 5.8	Correlation between CFA prevalence and antibody
	prevalence in children in Samoa155

Figure 5.9	Correlation between Mf prevalence and antibody	
	prevalence in children in Samoa	156
Figure 5.10	Mf, CFA and antibody (Ab) prevalence rates in	
	children residing in Tonga	157
Figure 5.11	Seroprevalence map: antibody prevalence of children	
	residing in villages in Tonga	158
Figure 5.12	Mf, CFA and antibody (Ab) prevalence rates in	
	children residing in Tuvalu	160
Figure 5.13	Serological mapping for CFA and antibody prevalence	
	in children residing in villages in Tuvalu	161
Figure 5.14	Seroprevalence map: antibody prevalence of children	
	residing in villages in Vanuatu	163

Figure 6.1	Location of the five study villages in Samoa175
Figure 6.2	Blood was collected by fingerprick following
	registration of participants179
Figure 6.3	Age specific prevalence of Mf, CFA and total antibody
	(Ab) prevalence for each of the five villages
	A) Puapua, B) Tafua, C) Siufaga, D) Falefa
	and E) Fasitoo-Tai183-185
Figure 6.4	Gender specific prevalence of Mf, CFA and
	antibodies (Ab) for the total population and children 185
Figure 6.5	Correlation between CFA prevalence and (a) total
	antibody prevalence, and (b) antibody prevalence in
	children186
Figure 6.6	Mean OD absorbance values obtained from the
	Filariasis CELISA for the three groups of individuals:
	CFA negative, CFA positive and amicrofilaraemic, and,
	lastly, both CFA and Mf positive187

Figure 7.1	The "community based" scenario highlighting the	
	spatial clusters of LF exposure and/or infection in	
	each of the five villages: (a) Fasitoo-Tai,	
	(b) Fasitoo-Tai, (c) Siufaga, (d) Puapua, (e) Falefa,	
	and (f) Tafua	208
Figure 7.2	The "school based" scenario highlighting the	
	spatial clusters of LF exposure and/or infection in	
	each of the five villages: (a) Fasitoo-Tai,	
	(b) Fasitoo-Tai, (c) Siufaga, (d) Puapua, (e) Falefa,	
	and (f) Tafua	209

APPENDIX 6

Figure A6.1	OD absorbance values for 11 out of the 90 sera from	
	individuals residing in PNG as measured using the	
	Filariasis CELISA	. 334
Figure A6.2	OD absorbance values for 11 out of the 90 sera from	
	individuals residing in PNG as measured using the	
	Filariasis CELISA	. 334
Figure A6.3	OD absorbance values for 11 out of the 90 sera from	
	individuals residing in PNG as measured using the	
	Filariasis CELISA	. 335
Figure A6.4	OD absorbance values for 11 out of the 90 sera from	
	individuals residing in PNG as measured using the	
	Filariasis CELISA	. 335
Figure A6.5	OD absorbance values for 11 out of the 90 sera from	
	individuals residing in PNG as measured using the	
	Filariasis CELISA	. 336
Figure A6.6	OD absorbance values for 11 out of the 90 sera from	
	individuals residing in PNG as measured using the	
	Filariasis CELISA	. 336

Figure A6.7	OD absorbance values for 12 out of the 90 sera from	
	individuals residing in PNG as measured using the	
	Filariasis CELISA	337
Figure A6.8	OD absorbance values for 12 out of the 90 sera from	
	individuals residing in PNG as measured using the	
	Filariasis CELISA	337

LIST OF ABBREVIATIONS

Ab	antibody
ADCC	antibody dependent cellular cytotoxicity
ADL	adenolymphangitis
ADLA	acute dermatolymphangioadenitis
AFL	acute filarial lymphangitis
APCs	antigen presenting cells
Bm	Brugia malayi
Bm14	Brugia malayi 14
BmR1	Brugia malayi recombinant antigen 1
X ²	Chi-squared
С	control
CDC	Centers for Disease Control and Prevention
CELISA	Cellabs enzyme linked immunosorbent assay
CFA	circulating filarial antigen
CI	confidence intervals
COMBI	Communication for Behavioural Impact
CTS	child transmission survey
DEC	diethylcarbamazine citrate
DNA	deoxyribonucleic acid
°C	degrees Celsius
df	degrees of freedom
DOT	directly observed therapy
EDTA	ethylenediaminetetra-acetic acid
ELISA	enzyme linked immunosorbent assay
g	gravitational force
GIS	geographic information system
GMP	good manufacturing practice
GPELF	Global Programme for the Elimination of Lymphatic Filariasis
GPS	global positioning system
GSK	GlaxoSmithKline
HH	household
HIV	human immunodeficiency virus

H_2O_2	hydrogen peroxide
ICT	immunochromatographic test
IEC	information, education and communication
IFNg	interferon gamma
lg	immunoglobulin
IL	interleukin
iL3	infective larvae stage three
IU	implementation unit
JCU	James Cook University
KAP	Knowledge, Attitudes and Practices
kDa	kilodalton
kg	kilogram
km	kilometre
LF	lymphatic filariasis
LPS	lipopolysaccharide
LQAS	lot quality assurance sampling
m	metres
MDA	mass drug administration
μg	microgram
mg	milligram
μL	microlitre
mL	millilitre
Mf	microfilariae
n	number of participants
N/A	not applicable
ND	not done
NSW	New South Wales
NK	natural killer
nm	nanometres
NMEA	National Marine Electronics Association
NO	nitric oxide
NPV	negative predictive value
NTD	neglected tropical disease
OCP	onchocerciasis control programme

OD	optical density
Og4C3	Onchocerca gibsoni 4C3
OPD	o-phenylenediamine
OR	odds ratio
PacCARE	PacELF Coordination and Review Group
PacELF	Pacific Programme for the Elimination of Lymphatic Filariasis
PAR	participatory action research
PBS	phosphate buffered saline
PC	phosphorylcholine
PCR	polymerase chain reaction
PICT	Pacific Islands Countries and Territories
PNG	Papua New Guinea
PPV	positive predictive value
QC	quality control
Rad	radius
RMS	root mean square
RNA	ribonucleic acid
RR	relative risk
RTPCR	reverse transcriptase polymerase chain reaction
SD	standard deviation
SPC	Secretariat to the Pacific Community
Х	times
Т	test
Th	T helper cell
TMB	3,3',5,5'-tetramethylbenzidine
TNFα	tumour necrosis factor alpha
TV	television
VIC	Victoria
VS	versus
Wb	Wuchereria bancrofti
WHA	World Health Assembly
WHO	World Health Organization