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ABSTRACT 
 

The Sybella Batholith is an A-type composite granitoid complex that was emplaced as a 
series of distinct phases.  The first phase began with the intrusion of tholeiitic doleritic 
(Mosses Tank Dolerite, 45-55 wt% SiO2) and dioritic hybrid magmas (Mafic Hybrid 
Complex, 58.2 - 65 wt % SiO2).  The second phase involved intrusion of a minor suite 
of rapakivi hybrid (63-69 wt % SiO2).  Subsequent phases included the volumetrically 
largest part of the batholith, the high-K, Fe-enriched K-feldspar megacrystic 
syenogranites (known as ‘Main Phase’, approximately 70 wt % SiO2), associated 
porphyritic and aplitic dykes, and a phase of microgranites (75-77 wt % SiO2). Intruded 
during an extensional phase during the development of the Mount Isa Basin, the Sybella 
Batholith is ideal for the assessment of petrogenetic processes (including magma mixing 
and mingling) that gave rise to a composite batholith, and also the effect of syn- to post-
magmatic deformation during emplacement (~1670 Ma) and subsequent metamorphism 
and deformation during the Isan Orogeny (1590-1500 Ma).    
 
Mixing and mingling were significant processes in the evolution of the batholith.  In the 
mafic rocks in both the Easter Egg and Guns Knob regions, hybridization was found to 
have taken place to some extent at a deeper level before the magmas were emplaced as 
distinct intrusions to form the Mafic Hybrid Complex.  Within the Mafic Hybrid 
Complex there is a lack of mafic rocks that show no contamination with felsic magmas.  
Minor hybridization also occurred locally at emplacement level.  The Main Phase 
granite, although relatively homogeneous, displays features indicative of hybridization 
at depth (rapakivi textures) and of interaction with the Mafic Hybrid Complex at 
emplacement level with true hybrid rocks at the contacts.  In the northern Kitty Plains 
region, fractionation was probably the dominant process in the evolution of the mafic 
rocks of the Mosses Tank Dolerite (MTD), with hybridization limited to the contacts 
with intruded sheets of microgranite.  Along the eastern margin of the pluton, large 
areas of MTD were brecciated by the intruding microgranite as rheological contrast 
between felsic and mafic magmas inhibited voluminous mixing.  However, behaviour of 
the dolerite transitional between solid and liquid was observed along many of the 
intrusive contacts and within magmatic shear zones (dated at ~1673 Ma) with partially 
solidified mafic enclaves being mechanically broken-up during high strain forming 
schlieren and hybrids. 
 
Few methods for determining the intensive parameters (T, P, ƒO2, ƒH2O) of granitic 
magmas are applicable to rapakivi A-type magmas, the main difficulty being that the 
granites consists of disequilibrium mineral assemblages (different generations and order 
of mafic/silicic minerals etc) and the high Fe-content of minerals.  However, calculated 
temperatures of 850-900°C at approximately 4 kbars for the Main Phase granite are 
similar to other A-type granites.  The absence of source rock restites is also indicative of 
high magma temperatures.  The composition of minerals in the Main Phase granite is 
indicative of relatively low ƒO2 for granites; however it was still higher than the initially 
low ƒO2 in the Mafic Hybrid Complex.  Oxidation of the mafic magmas during mixing 
resulted in abundant magnetite and other mineralogical changes.  The occurrence of 
large biotite flakes ± late amphibole in the mafic units, and the apparent late 
crystallization of mafic minerals in the granites indicates H2O undersaturated magmas.  
The low water fugacities and high-temperature of the melts enabled the magmas to 
intrude into the upper crust at relatively shallow depths.   
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The Main Phase of the Sybella Batholith contains 64.32 ppm Nd and 11.40 ppm Sm, 
and has a εNd of –3.86.  A T2 model source age of 2419 Ma was calculated using the 
emplacement age of ~1670 Ma.  The Nd and Sm contents of the main phase hybrids 
have a positive correlation with the SiO2, which is not consistent with fractionation 
(fractionation of amphibole would partition Nd and Sm from the melt), but rather 
mixing between the mafic and felsic end member magmas.  No mafic end member was 
analysed; however a mafic enclave from within the Main Phase granite (with similar 
geochemical properties to the dolerites) had the lowest εNd of –6.15 and a T2 model 
source age of 2587 Ma.  The older model source age for the mafic rocks indicates that 
the melt from the mantle source region (dolerite) was probably contaminated with 
radiogenically older crustal material (Archaen crust).  This is also consistent with the 
intrusion’s enriched LREE, K and Rb contents.  The microgranite contains 41.46 ppm 
Nd and 6.96 ppm Sm, has a εNd of –2.24 and a T2 model source age of 2300 Ma.  These 
values are outside the range determined for the Main Phase granites and are likely to 
represent a different source.  The Mosses Tank Dolerite has a εNd of –2.27 and a T2 
model source age of 2303 Ma suggesting the dolerite was also contaminated with 
radiogenically older crustal material.   
 
The shallow origin of A-type granites is a result of tectonic extension that is associated 
with crustal thinning and mantle upwelling possibly in a back-arc setting (Giles et al. 
2002).  Fluid absent partial melting of metaluminous protoliths (metamorphosed 
igneous rocks in the lower crust) heated by underplated or intraplated mafic magma 
produced the potassic incompatible and radiogenic element-rich high-temperature 
character of the Sybella Batholith.  However, in the Sybella Batholith, the mafic rocks 
are iron-enriched resulting from fractionation of minerals at depth rather than direct 
emplacement from the mantle.   
 
The Sybella Batholith was emplaced into strongly deformed country rocks of mafic and 
felsic gneisses and amphibolites of the May Downs Gneiss and Eastern Creek Volcanics 
of the Haslingden Group, Cover Sequence 2.  At the time of the emplacement of the 
Sybella Batholith, the Mount Isa Inlier experienced large magnitude extension (O’Dea 
et al. 1997) and a suite of sedimentary basins developed in areas of extension (i.e Cover 
Sequence 3). In the Sybella Batholith, three stages of development for the fabric were 
determined: (1) magmatic flow; (2) submagmatic/high-temperature solid-state flow; (3) 
moderate-high temperature solid-state flow, marked by plastic deformation with 
temperature above 600°C.  Deformation was heterogeneous with the first and second 
processes dominant within the northern regions at Kitty Plain and Guns Knob and 
occurring locally within the Easter Egg region.  The second and third processes 
predominate within the Easter Egg Region.  The third process may have related to either 
deformation during emplacement or overprinting regional metamorphism and 
deformation during the Isan Orogeny.  The later deformation has also obscured earlier 
primary magmatic features or high-temperature fabrics by recrystallization and 
reactivation. 
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