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1 ABSTRACT

Mangroves are woody forests that exist at the confluence of the marine and 

terrestrial environments.  These forests are highly biologically productive and play a 

key role in supporting coastal food chains, and trapping and stabilizing coastal 

sediments.  Mangroves are also known to dissipate significant amounts of wave 

energy over relatively short distance, which has significance in the area of coastal

protection.  However, understanding the quantitative effects of mangrove vegetation 

in reducing surface wave energy has, until now, received very limited research

interest. This study presents a field and theoretical investigation of the attenuation of 

random, wind–induced surface wave energy in mangrove forests. Field observations

of wave processes in mangrove forests were undertaken at three study sites with 

different wave energy regimes. At each site, an array of wave gauges was placed

along a transect aligned with the dominant wave direction to measure changes in 

wave characteristics as waves propagated shoreward through the mangroves. Mean 

rates of attenuation of total wave energy and significant wave height observed at the 

three sites averaged 1.5% m-1, and 1.1 % m-1 respectively. Attenuation rates are

found to be frequency related, with preferred attenuation of shorter period waves. 

Field data also indicate an increase in the energy transmitted into the forest with

increased water depth.

Two theoretical approaches were developed to investigate and model the attenuation

of wave energy for waves propagating through mangrove forests: In the first 

theoretical approach, the water depth in the mangrove forest was assumed constant, 

and the wave motion was described by a set of amplification factors for individual 

spectral components. The second approach was developed for a mangrove forest 

with arbitrary bathymetry, and in this case the wave motion within the forest was

determined by solving the mild slope equation with dissipation. Both approaches 

investigate energy dissipation in the frequency domain by treating the mangrove

forest as a random media porous to wave energy, with certain characteristics 

determined using the geometry of mangrove vegetation. Also, both cases employ

modified drag co-efficient to introduce the dependence of the drag coefficient on the

spatial density of the vegetation.
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Theoretical results from the model with constant water depth show good qualitative

agreement with the key wave propagation features identified in the field data, with

predicted rates of wave energy attenuation controlled primarily by prescribed

vegetation characteristics. Results from the model with arbitrary bathymetry

demonstrate that the model was able to reproduce observed rates of wave energy 

attenuation. Wave energy attenuation was shown to depend strongly on the spatial

density of the mangrove vegetation and its structural arrangements, and on the 

spectral characteristics of the incident waves. Wave energy attenuation was also 

found to be a function of water depth, with increased energy transmitted into the 

forest with increased water depth, due to the non-uniform vertical structure typical

of mangrove vegetation. 

The results of this study demonstrate that it is possible to numerically model the 

dominant energy dissipation processes and thus predict attenuation of surface wave

height within mangrove forests. The ability to predict the attenuation of surface

wave energy due mangroves has relevance in the field of costal protection. A model

developed in this thesis is applied to assess the theoretical performance of a 

temporary coastal protection measure using bamboo, and evaluate its cost 

effectiveness compared to other accepted low-cost measures for attenuating wave 

energy. The proposed design of a bamboo wave attenuation structure is significantly 

cheaper than other published designs, for an equivalent level of energy attenuation. 
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