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General Abstract 

Since the early eighties, when non-equilibrium dynamics became accepted as 

an intrinsic part of ecological systems, considerable research effort has been invested 

towards understanding the effects of disturbance on community dynamics. Coral reefs, 

being one of the most diverse environments on the planet and subject to many varied 

disturbances are a particularly appropriate system for investigating disturbance effects. 

Current models of community dynamics incorporate emergent properties of 

ecosystems, with smaller-scale, non-equilibrium dynamics fitting into a larger 

framework of hierarchical patch dynamics, metapopulation dynamics, landscape 

ecology and macroecology. To more fully understand how meta-communities function 

however, requires a combination of empirical and theoretical studies that bridge the 

gap between smaller scale field experiments and larger scale phenomena that are 

presently explored mostly by theory. The need to fill the knowledge gaps at these “in-

between” scales was highlighted by the extent of the circum-global bleaching in 1998. 

A renewed focus on landscape scale dynamics is required to try and understand how, 

and ultimately whether, entire reef systems are likely to survive such large scale 

disturbances. This thesis is one of the first examples to use such an approach on coral 

reefs. 

 

Using a consistent protocol I monitored fixed sites annually, for a period of 10 

years, on three reef systems that were fundamentally different from each other in size, 

location and structure. What these systems did have in common however, was that 

they all suffered an extreme disturbance event at some time during their monitoring. 

Reefs in the Capricorn Bunker Sector of the southern Great Barrier Reef suffered 

extreme storm damage to their north-east flanks which effectively removed the benthic 

communities back to bedrock. Scott Reef off the north-west shelf of Australia suffered 

catastrophic levels of coral mortality from the bleaching event of 1998; while Coral Bay, 
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part of a fringing reef system on the mid-west coast of Australia, suffered severe 

mortality of many organisms as a result of coral spawn induced anoxia. 

 

The coral and fish assemblages of the Capricorn Bunkers recovered to their 

pre-impact levels after a period of approximately 10 years. Their recovery was coherent 

among numerous reefs spread over 80 km, providing evidence of stability at large 

scales of space and time. This result was one of the first empirical tests of the 

resilience of meta-reef systems to natural disturbance. In comparison, given its relative 

isolation it was predicted that the Scott Reef system would struggle to recover from the 

bleaching event of 1998. It has however, displayed a similar level of resilience to 

catastrophic disturbance as the reefs in the southern GBR. These results are some of 

the first to provide evidence of the efficacy of the metapopulation model to explain 

dynamics on isolated reef systems. Moreover, these results also provide a 

comprehensive set of baseline conditions with which to compare other such isolated 

reef systems in the future. In contrast to the other two systems the recovery at Coral 

Bay has been somewhat slower with the coral and fish assemblages remaining 

considerably changed from their pre-impact structure some 13 years after the 

disturbance.  

 

The resilience displayed by reefs in the southern GBR and Scott Reef off the 

northwest coast was underpinned by the availability of healthy coral and fish 

assemblages adjacent to the disturbed areas. The availability of these healthy areas 

was a consequence of firstly, the inherent patchiness of disturbance effects and 

secondly, the presence of significant reef areas below those depths usually subject to 

disturbance. This contrasts strongly with other reef systems like the Seychelles which 

lack significant reef areas at depth and have not recovered from the 1998 bleaching 

event. On the other hand, the coral reef community at Coral Bay had not recovered 

over the same time frame despite the availability of healthy reef communities in 
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adjacent areas. This delayed recovery was the result of a recruitment bottleneck to the 

affected areas which is, in turn, the result of a raised ridge of live and dead coral 

running across the middle of the bay which impedes water flow.  

 

The lack of recovery in Coral Bay highlights the significance of ‘local’ conditions 

in the population dynamics of coral reef communities. These local conditions are 

prevalent at all reef systems and are not just confined to physical differences in the 

shape and structure of reefs but may also include differences in the population 

dynamics of individual species. Localised upwelling effects at Scott Reef played a 

significant part in conferring resilience to the 1998 bleaching, allowing cooler water to 

moderate the effects of the warm water mass sitting over the reef. There were also a 

number of species that responded to the bleaching in the opposite direction to what 

had been recorded from other reef systems. For example, the territorial, herbivorous 

damselfish Plectroglyphidodon lacrymatus responded positively to the bleaching at 

Scott Reef whereas it was found to have declined across numerous other similarly 

disturbed systems. While the reasons for these differences are not clear they 

nevertheless highlight the fact that there is no single set of predictions applicable to the 

response of coral reef communities to disturbance with species-, reef-, region- and 

ocean-specific patterns prevalent. In the search for general principles of coral reef 

dynamics this can often be overlooked. 

 

 The work contained within this thesis reinforces the role of monitoring programs 

as an essential tool for gathering the long-term and large-scale datasets required to 

validate current models of community dynamics. Such programs provide a level of 

detail that periodic assessments can not and in doing so offer considerable insights into 

the processes driving the observed patterns. The 1998 bleaching event and the scale 

of predicted disturbance scenarios have highlighted the significant knowledge gaps that 

exist at intermediate scales. These gaps need to be filled to enable more rigorous 
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testing and validation of metapopulation models. Such models will be vital for 

troubleshooting and understanding future climate change effects on entire reef systems  
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