
Appendix A FLAC formulation

Leonardo Feltrin A-1

APPENDIX A

Appendix A FLAC formulation

Leonardo Feltrin A-2

A.1. Nodal formulation

Even though the mathematical approach based on the solution of stress/strain

relationships, equations of motion and equilibrium, and constitutive laws was set in

Chapter 2; it is necessary to reduce the equations from an integral or differential form to

a finite-difference form as illustrated in earlier examples on exponential growth. In

other words the FLAC models will be discretised in a nodal formulation. Therefore

finite-difference approximation is needed both in time and space to allow computer

simulation in FLAC. The time is commonly discretised by subdivision in small constant

calculation steps, whereas the use of discretised grids of nodes represents an

approximation of the spatial continuum. A final important constraint imposed in FLAC

is that the material derivation of the nodal velocities has to be reduced to zero to obtain

a condition of static equilibrium. This is reasonable if it is imagined a natural example

such as an earthquake. Earth motion in this case is due to accumulation of stresses due

to plate tectonics abruptly released and converted into strain energy until an equilibrium

state is reached. FLAC aims at equilibrium to simulate such natural tendency to

minimise energy.

Reduction to a nodal form of classes of equations introduced (e.g. translational (ξi j) and

rotational (ωi j) strain-rates) is firstly obtained reducing the laws at the tetrahedron scale.

A deforming tetrahedron can be thought as a velocity field. In analogy to other

conservative fields using the Gauss or divergence theorem:

Appendix A FLAC formulation

Leonardo Feltrin A-3

 Z Z Z
V

vi , j dV = F
S

v i n j dS (A.1)

it can be demonstrated that the flux escaping from an element of volume (V) containing

a source of constant intensity (e.g. a stationary fluid) is equivalent to the sum of the

fluxes exiting from a closed surface surrounding the volume independent of the surface

area interested by the flux. The symmetry of the problem lead then to a reduction to a

finite summation of fluxes escaping from multiple surfaces of the FLAC tetrahedron,

allowing a linear approximation of the nodal velocity as follows:

 v i j =@ 1
3V
ffffffffffX

l = 1

4

v i
l n

j
l
` a

S l
` a

 (A.2)

The (A.2) is essentially a finite summation over the indexes (l) that represent the four

nodes of each tetrahedron. The superscript (l) indicates a nodal property that is

considering the sum of the contributions of all adjacent tetrahedrons acting on a certain

node. (S) is the area of each face.

 Substitution into (2.66 – Chapter2) and (2.67) leads to a nodal formulation of

translational and rotational strain rates (σi j ,ξi j):

Appendix A FLAC formulation

Leonardo Feltrin A-4

 ξ i j =@ 1
6V
ffffffffffX

l = 1

4

v i
l n

j
l
` a

+ v j
l n

i
l
` a

d e
S l
` a

 (A.3)

ωi j =@ 1
6V
ffffffffffX

l = 1

4

v i
l n

j
l
` a
@ v j

l n
i
l
` a

d e
S l
` a

 (A.4)

The (A.3) and (A.4) shows that nodal velocities can be used to represent forces applied

to the whole tetrahedral grid and the relative strains and their rates resulting from the

application of such stresses in time. In this regard seems to be clearer the meaning of a

Lagrangian representation that look at the kinematic behaviour of individual nodes. In

contrast, the required generalisation is brought by the nodal formulation of the laws of

motion.

A.2. Theorem of the virtual work

The principle of virtual work is a convenient way to treat the laws of motion and

it is used here to derive a nodal formulation for the Cauchy’s equations. It is based on

the concept of kinetic energy in the form of thermodynamic work internal and external

(W i ,W e) although unnecessary as the two represent the same measurement of strain in

the considered model, the separation is however instructive. Taking the Gauss theorem

as an analogy: the work performed on a generic surface would be equivalent to a flux of

energy transferred from the environment into the system incrementing its energy

Appendix A FLAC formulation

Leonardo Feltrin A-5

although such energy rather than be stored is taken up by deformation and released

internally producing work that corresponds to the rearrangement of the nodes of the

tetrahedrons. The two are therefore the same quantity although described from a

different frame of reference:

 W i =Z Z Z
V

v i , j dV (A.5)

 W e =F
S

v i n j dS (A.6)

Comparing with the (A.1) it can be defined:

 W i = W e (A.7)

After these considerations the (2.68) can be expressed as representing We in the form:

 W e =X
n = 1

4

δv i
n f i

n +Z
V

δv i Bi dV (A.8)

the two terms on the left side of (A.8) represent respectively the contribution of contact

forces (fi) and body forces here considered coupled with the material derivative of the

velocity (Bi), in this case note that rather than calculating the work for a tetrahedron in

term of virtual displacement, it is considered the nodal virtual velocity (δv i
n)

representing therefore a rate of external virtual work (We). On the other hand, the

Cauchy’s relationships for the theorem of virtual work (A.7) have to be equated to the

nodal formulation of the internal rate of displacement (Wi). It is in this case convenient

to recall the (A.72) replacing strain with internal stresses as follows:

Appendix A FLAC formulation

Leonardo Feltrin A-6

 W i =@ 1
6
fffX

l = 1

4

δv i
l σ i j n

j
l
` a

+ δv j
l σ i j n

i
l
` a

d e
S l
` a

 (A.9)

Such relationship can be further simplified in light of the symmetrical character of the

stress tensor regrouping in the (A.10), where (Ti) is the stress vector:

 T i
l = σ i j n

j
l
` a

S l
` a

 (A.10)

Wi becomes:

 W i =@ 1
3
fffX

n = 1

4

δv i
l T i

l (A.11)

With further rearranging and combining the (A.8) with the (A.11) a relationship that

provides a value for the nodal force (fi):

 @ f i
n = T i

n

3
fffffffff+ ρbi V

4
ffffffffffffffffff@m n dv i

dt
fffffffffff gn

 (A.12)

where the first term on the right side represents the internal work component whereas

the other two terms account respectively for the body forces here considered function of

the material derivative of the nodal velocity:

Appendix A FLAC formulation

Leonardo Feltrin A-7

 bi =
Bi

ρ
fffffff+ dv i

dt
fffffffffff g

 (A.13)

and the contact forces obtained considering fictitious nodal masses (m) that are adjusted

in FLAC to stabilise the solution. The (A.12) can be further generalised to the whole

body considering the sum of the contributions of all nodes (nn) and relative inertial

terms (Pi):

 F i
< l > = M < l > T i

3
fffffff+ ρbi V

4
fffffffffffffffffff g< l >

+ P i
< l > < l > = 1, …nn (A.14)

To reach a static condition, after a perturbation has been imposed to the body, as seen

from definition (A.7) the sum of all forces should progressively tend to zero. F i
< l >Q 0

during reorganisation resulting in stress accumulation and release of strain in time.

From the outlined relationships it is concluded that the spatial approximation is

soundly based on the concepts of discretization and minimization of energy of the

modelled body. Similarly to the forme discretization is adopted in FLAC to reduce the

continuity of time to finite intervals. FLAC computes nodal velocities on the basis of a

central finite difference approximation in which each time step is half of the ∆t used to

compute the forces and displacements of the nodes. The approach can be demonstrated

to give a second order approximation error of time derivatives the velocity

Appendix A FLAC formulation

Leonardo Feltrin A-8

approximation is given as an example; it can be expressed in finite difference form after

integration of the second law of Newton as follows:

 v i
< l > t + ∆t

2
ffffffff g

= v i
< l > t@

∆t
2
ffffffff g

+ ∆t
M < l >
fffffffffffffffffF< l > (A.15)

 here the term M refers to the sum of all the contributions (m) of the tetrahedrons

surrounding the node of interest < l >.

A.3. The Mohr-Coulomb constitutive model and its

relationship to the motion equations

The constitutive models work conceptually in a similar way, they try to differentiate

between the plastic and the elastic component of the strain tensor. The distinction is

possible thanks to the experimental mechanics models available. The simulated

materials will be deforming in a variable manner for an applied stress accordingly to

their relative properties (e.g. cohesion, the friction angle, the elastic/shear modulus,

etc.). The objective is to describe the co-rotational stress increments in time (co-

rotational is a convention in which the stress rates are measured by an observer rotating

at the same angular velocity of the particle considered – here the suffix on top of the co-

rotational stress (σ%) is omitted because all stresses are co-rotational). Note that in a

plastic deformation the co-rotational stress increments represent only the elastic part of

Appendix A FLAC formulation

Leonardo Feltrin A-9

the deformation. To make a distinction between a plastic and elastic response of a

material, a yield function is therefore assigned to the model (e.g. Fig. A.1):

 f σ i j

b c
= 0 (A.16)

The (A.16) is equal to zero when the material fails for a certain combination of

compressive or tensile stresses. For the Mohr-Coulomb material the (A.16) is

represented by two functions (Fig. A.2) becoming:

 f s = σ1@σ3 N Φ + 2c N Φqwww (A.17)

which is the Mohr-Coulomb criteria, and also for a tensile failure the criteria becomes:

 f t = σ3@σ t (A.18)

in such examples of yield functions it is outlined the dependency of the point of yield

from mechanical terms other than confining stresses, i.e., the cohesion (c), a function of

the friction angle (N Φ) (A.17), and the tensile strength (σ t) in the (A.18). Usually a

generic Mohr-Coulomb material subject to an applied stress reacts firstly in an elastic

manner until it yields and subsequently deform plastically.

Appendix A FLAC formulation

Leonardo Feltrin A-10

Fig. A. 1 Example of yield surface function in stress space respectively for: (a) Drucker-Prager and Von
Mises yield (conical) surfaces in principal stress space; (b) Mohr-Coulomb and Tresca failure envelops
(irregular hexagonal). Adapted from (Itasca, 2003).

Appendix A FLAC formulation

Leonardo Feltrin A-11

Fig. A. 2 Composite Mohr-Coulomb criterion with tension cut-off. represented in planar space (σ1 ,σ 3).

Compressive stress considered negative withσ1 ≤ σ 2 ≤ σ 3 . The failure envelope f σ1 ,σ 3

b c
= 0 is

defined within the interval A-B following Mohr-Coulomb type behaviour, whereas the curve in section

B-C is characterised by a tensile failure criterion in which σ3 ≤ c
tan Φ
` affffffffffffffffffffff with cohesion (c) and friction

angle (Φ). The yield function for shear/tensile failure (fs, ft) are violated where (σ1 ,σ 3) fall above the
lines corresponding to higher deviatoric stresses (σ1 ,σ 3) or when the tensile strength (σ t) is exceeded
(Itasca, 2003).

 The total strain increment (∆ε i) is therefore defined by:

 ∆ε i j = ∆ε i j
e + ∆ε

i j
p (A.19)

both strain increments can be used to calculate the stress increments that generated

them. Usually the elastic component responds to a linear law such as Hook’s law

whereas non-linearity may result from the plastic component of strain that is

represented by:

Appendix A FLAC formulation

Leonardo Feltrin A-12

 ∆ε
i j
p = λ ∂g

∂σ i j

fffffffffffffh
j

i
k (A.20)

This relationship based on the flow rule outlines that the direction of the plastic strain

increment vector is normal to the potential surfaces of (g) with λ representing a

constant. When the function (g) is equal to the yield function (f) the material is

considered associative. The spatial association of the two tensorial fields (stress-rate

and strain rate) is linear as in the elastic case. Non-associative materials however are the

most common in natural examples as they commonly dilate during deformation (e.g.

Vermeer and de Borst, 1984; Ord, 1991; McLellan, 2004). Non-associative materials

have f σ i j

b c
≠ g ε

i j
p

b c
; therefore, there are conditions in which the material may deform

plastically before reaching a yield condition based for instance on the Mohr-Coulomb

criterion.

An iterative approach is used to guess a possible value for the state of stress

after a certain stress increment has occurred; the new stress (N) would be defined by:

 σ i j
N = σ i j + ∆σ i j (A.21)

Appendix A FLAC formulation

Leonardo Feltrin A-13

If it is considered that the stress increment, as seen, is reduced by the plastic component

of the strain rate tensor then a possible way to make a definitive distinction between the

two components of deformation is to formulate what is defined as an elastic guess in

which it is assumed that the material is non-plastic or perfectly elastic and then using an

iterative method the stress increment values are recomputed until they meet the yield

function for the chosen constitutive relationship. It is then given the following:

 σ i j
N = σ i j

I @ λS i

∂g
∂σ i j

fffffffffffffh
j

i
k (A.22)

in which the new stress state is obtained, as discussed, subtracting the linear term Si(.)

from the elastic guess (σ i j
I). Once the co-rotational stress increment is defined it can be

used in conjunction with the equations of motion to derive more realistic nodal

velocities in the FLAC models.

A.4. Effect of fluid flow in a deforming porous media

 One of the advantages of FLAC is the availability of a fluid flow module that

can be coupled to the deformation module. This is represented by a set of equations

with a general organisation similar to the mechanical module. In this regard the

equations of motion are replaced by the Biot and Darcy’s laws that defines the variation

Appendix A FLAC formulation

Leonardo Feltrin A-14

of fluid flow, a quantity that can be characterised with a fluid intensity field such as the

one described by fluid discharge vectors (qi) in 3D, or in alternative a scalar function

that is represented by the spatial variation of pore pressure (p) to understand the

distribution of equipotentials in the fluid flow field. This latter representation is

particularly useful as seen in chapter 4 and chapter 5 to evaluate possible fluid pathways

during deformation. In this context FLAC has the advantage that it can capture the

effect of deformation on fluid flow or alternatively the effect of fluid pressure in

dissipating the confining pressure (Terzaghi, 1945). In particular, FLAC makes use of

the Biot coefficient (α) to couple mechanical calculations with transient fluid flow. In

addition to this the software allows also to consider the effect on temperature on the

volume variation of modelled materials using a linear thermal expansion coefficient

(α t), and in undrained conditions adopting a thermal coefficient (β).

Here it is given a brief description of the fluid-flow equations and their

interaction with the constitutive functions introduced in the mechanical part of this

review. The linear quasi-static theory of Biot is used in this context to couple

deformation and diffusion processes in Darcy’s type flow. It is considered a porous

material as a media that can transfer and store fluids. However, such properties can vary

accordingly to a series of parameters that can be defined internal if they depend upon

the system subjected to flow (e.g. permeability) or external if they are controlled by the

environment. An example is given providing the equation that serves to calculate the

coefficient of diffusivity (c):

Appendix A FLAC formulation

Leonardo Feltrin A-15

 c = k
1
M
fffffffff+ α2

α1

fffffffffffffffffffffffffffffff (A.23)

where k is the permeability, M represents the Biot modulus, α is the Biot coefficient,

α1 is a function of the bulk and shear modulus. An external parameter could be for

instance exemplified by temperature variations or the control of hydraulic gradient. To

mathematically constrain these components a mass-balance equation is formulated

below. This relationship opportunely combined with the fluid constitutive relation

provides a differential equation in terms of pore pressure that can be solvable for certain

conditions providing a means for the fluid flow. For small deformations the equation is

given by:

 @ qi , i + qv = ∂ζ
∂t
ffffffff (A.24)

the (A.23) can be interpreted similarly to the divergence theorem presented above in the

(A.1) because it uses the same principle of conservation of mass. In other words the

intensity of the flow is a measure of the divergence of the flow field, which is here in

(A.24) represented by the partial derivative in time on the right side. On the left side of

the same equation qi , i is the spatial variation of the discharging vectors (outflow)

whereas qv represents the volumetric fluid source intensity. The shape of potential

surfaces is then controlled by fluid sources, leaks or other morphological boundaries

Appendix A FLAC formulation

Leonardo Feltrin A-16

that directly defines the fluid flow directions within a confined reservoir. However,

other more intrinsic parameters need to be considered, as seen, to fully describe the

problem of modelling fluid migration within saturated porous media. According to this

the fluid flow intensity gradients are also governed directly by the storage capacity of a

reservoir. Volumetric variation is the prominent controlling factor, but this in turn is

function of strain distributions, temperature and pore pressure variations. This lead to a

different formulation of the (A.24) that incorporates these variables:

∂ζ
∂t
ffffffff= 1

M
ffffffff∂p

∂t
fffffffff g

+ α ∂ε
∂t
ffffffff@ β ∂T

∂t
ffffffffff (A.25)

here pore pressure gradients (p), strain-rate (ε) and temperature gradients (T) are all

linearly related to the variation of fluid content per unit volume of porous material (ζ).

Combining the (A.24) with the (A.25) and rearranging it follows:

 @ qi , i + qv
B = 1

M
ffffffff∂p

∂t
fffffffff g

 (A.26)

where

 qv
B = qv@α ∂ε

∂t
ffffffff+ β ∂T

∂t
ffffffffff (A.27)

Appendix A FLAC formulation

Leonardo Feltrin A-17

the (A.26) is used to calculate the pore pressure (p) variation in time knowing the

parameters condensed in (A.27) and also calculating qi using the Darcy’s law that for

an homogeneous isotropic solid is given by:

 qi =@ k
η
ffffp , i (A.28).

This equation, by definition, relates the discharge vector intensity (flow velocity) to the

intrinsic permeability coefficient (k), and the gradient of the pore pressure (p) in space.

If the velocity of the fluids percolating a porous media is controlled by the spatial

variability of the scalar field of pore pressure distributions; in turn, the pore pressure

itself may vary accordingly to the (A.26) and (A.27), depending on the parameters (e.g.

material properties). Mechanical constitutive laws in this regard are accordingly

modified to account for such variations. Recalling the general form of the constitutive

equations (2.69) an updated incremental expression of the co-rotational stress increment

is given by:

 ∆ σ%
B C

i j
+ α ∆pδ i j = H i j

B σ i j ,∆ε i, j@∆ε i, j
T

b c
 (A.29)

the thermal-mechanical coupling is defined as:

Appendix A FLAC formulation

Leonardo Feltrin A-18

 ∆ε i j
T = α t ∆Tδ i j (A.30)

fluid flow correction terms are present on both sides of the constitutive equation (A.29).

In particular, the additional term on the left side outlines the influence of the pore

pressure increment in reducing (similarly to the effective stress concept) the co-

rotational stress component. The stress correction term comprehend also the Biot

coefficient (α) and the Kronecker Delta (unitary tensor (δ i j), used to convert to

tensorial form the scalar field of pore pressure). On the right side of (A.29) as also in

(A.30) the strain increment is influenced by the effect of temperature increments that

may for instance increase the volume of the porous media expanding its matrix. The

(A.29) also shows the interconnection existing among the mechanical and fluid flow

modules. Correction terms in the constitutive equation, for example, could lower the co-

rotational stress increment causing a reduction of nodal velocities.

 Outlined equations are solved in FLAC using a finite different approach. The

numerical scheme rests on a nodal formulation of the mass balance equation. This

approach is not reviewed here because it is equivalent to the mechanical formulation

presented above, which leads to the nodal form of the Newton’s law. This simply

involves the substitution of pore pressure, specific discharge vector and pore pressure

gradient for velocity vector, stress and the strain-rate tensors, respectively. Nonetheless

the solution of ordinary differential equation is obtained using two distinct

discretization models in time (implicit/explicit formulation) in the fluid flow module.

Appendix A FLAC formulation

Leonardo Feltrin A-19

However, the scope of this section on FLAC was primarily focused on the

understanding of the concept of discretization and the general organisation of the

software, for a deeper understanding the reader is referred to the FLAC documentation

(Itasca, 2003).

Appendix B Weights of Evidence

Leonardo Feltrin B-1

APPENDIX B

Appendix B Weights of Evidence

Leonardo Feltrin B-2

B.1. Weights of Evidence formulation

The Weights of Evidence method and relative algorithms are briefly discussed here

(adapted from Bonham-Carter, 1994 and Carranza, 2004).

The Weights of Evidence method is a way to express the likelihood of finding a

mineral deposit based on a certain representation of knowledge, which is a conditional

probability function P(x). The knowledge itself is mathematically expressed as Weights

of Evidence, numerical scores derived from a measure of the spatial association

between known deposits (D) and a considered pattern (Bn) . The spatial association

represents a conditional probability expressed as follows:

P D | Bn

b c
= P DTBn

b c
/ P Bn

b c
 (B.1)

where P D(Bn

b c
 is the conditional probability of finding D overlapping with a

pattern Bn which is proportional to the area of D and Bn and inversely proportional to

N(T) as P(Bn) = N(Bn)/N(T). It is also possible to express the conditional probability of

finding a pattern (Bn) overlapping with (D). P(D � Bn) is equal to P(Bn � D); however

the conditional probability is different because the same area of intersection is divided

by diverse prior probabilities as follows:

Appendix B Weights of Evidence

Leonardo Feltrin B-3

P Bn | D
b c

= P Bn TD
b c

/ P D
` a

 (B.2).

Equations (10 and 11) can be combined to obtain the following representation of

posterior probability (equivalent to conditional probability):

P D | Bn

b c
= P Bn | D
b c

P D
` a

/ P Bn

b c
 (B.3)

A similar expression can be derived as a measure of correlation of D with the

absence of a pattern (Bn) from known deposits (D):

P D | Bn

ffffffffb c
= P Bn

ffffffff
| D

b c
P D
` a

/ P Bn

ffffffffb c
 (B.4)

These conditional probabilities are expressed for convenience as odds and also are

converted in a logarithmic form to obtain the Weights of Evidence values. Odds can be

defined as:

O = P
1@P
fffffffffffffffff= P

P
fffffffffff= P D | Bn

b c
/ P D

fffff
| Bn

b c
 (B.5)

 From equations (B.3, B.4) conditional probabilities can be substituted to obtain, for

instance, the conditional odd of deposits given the presence of Bn:

Appendix B Weights of Evidence

Leonardo Feltrin B-4

O D | Bn

b c
= O D
` a
AP Bn | D
b c

/ P Bn | D
fffffb c

 (B.6)

In logarithmic form, both the presence or absence of Bn are expressed for

convenience as follows, where Wn is the weight depending on the pixel considered, as

this may fall within either an area where Bn occurs or is missing:

postlogit D | Bn

b c
= prilogit D

` a
+ W n

+ (B.7)

postlogit D | Bn

ffffffffb c
= prilogit D

` a
+ W n

@ (B.8)

Rearranging these equations (B.7, B.8) the Weights of Evidence can be calculated

as follows:

W n
+ = ln P Bn | D

b c
/ P Bn | D

fffffb cD E
 (B.9)

W n
@ = ln P Bn

ffffffff
| D

b c
/ P Bn

ffffffff
| D
fffffb cD E

 (B.10)

Equations (B.7, B.8, B.9, B.10) can be combined in a single algorithm, representing

the Bayes rule of combination, where the k coefficient defines if the pattern is present or

absent as a function of the pixel (n) considered:

Appendix B Weights of Evidence

Leonardo Feltrin B-5

postlogit D | Bn
k n
` ab c

= prilogit D
` a

+X
n = 1

n

W n
k n
` a

 (B.11)

A posterior probability value that represents the sum of all the evidential layers is

computed from equation (B.11) back-calculating its value as follows:

PPost = e
X
n = 1

n
W n

k n
` a

+ lnO D
` a

1 + e
X
n = 1

n
W n

k n
` a

+ lnO D
` ad eff

h
llllj

i
mmmmk (B.12)

An estimate of the error involved with the calculation of the Weights of Evidence

can be expressed using the asymptotic assumption of Bishop et al. (1975). These

represent the variances of the Weights of Evidence as a function of the total area of

study expressed as total number of pixels (unit cells) N(T). The mathematical

relationships are also function of the area of known occurrences N(D). The equations

are:

s2 W n
+

b c
= 1

N BTD
b cffffffffffffffffffffffffffffffffh

j
i
k+ 1

N BTD
fffffb cfffffffffffffffffffffffffffffffffh

j
i
k (B.13)

s2 W n
+

b c
= 1

N B
ffffTD
b cfffffffffffffffffffffffffffffffffh

j
i
k+ 1

N B
ffffTD

fffffb cfffffffffffffffffffffffffffffffffh
j

i
k (B.14)

Appendix B Weights of Evidence

Leonardo Feltrin B-6

These values were used to compute either the studentised value of the Contrast (C)

and also for the calculation of the error involved in the estimation of posterior

probabilities (Ppost). This is derived from a multiple combination of layers that form

multiple classes (k) of pixel column combinations:

s2 PPost

b c
= 1

N D
` affffffffffffffffff+X

n = 1

n

s2 W n
k n
` ab cd eF G

APPost
2 (B.15)

The available estimate of the variance of the posterior probability is used to

compute the error involved in the estimation of the number of predicted mineral

deposits in a certain region:

s N D
` a

Pred

b c
= X

n = 1

n

N k
` ab c2

Bs2 PPost

b cF G
vuut
www

 (B.16)

This latter equation can be used to increase the statistical robustness of the NOT test

(Chapter 3).

Appendix C Source code

Leonardo Feltrin C-1

APPENDIX C

Appendix C Source code

Leonardo Feltrin C-2

C.1. Wofe Modeler

Compiled in VB 2005 (Express Edition)

Software used to compute Byesian probability in WofE (Chapter 3)

Region " Software developed by Feltrin Leonardo - James Cook
University"

Imports System.IO
Imports System.Text
Imports System
Imports System.Drawing
Imports System.Drawing.Printing
Imports System.Collections
Imports System.ComponentModel
Imports System.Windows.Forms
Imports System.Data
Imports Rebuild_wofe.Form5

'these instructions are initialising "libraries" to open and write txt
files- see line and drawing
Public Class Form1

 Inherits System.Windows.Forms.Form
 'variable used in case of multi selection of bool geology
 Dim BoolM() As String

 'variables inserted to allow bitmap functionalities
 Private bmpImage As System.Drawing.Bitmap
 Private bayesmap As System.Drawing.Bitmap
 Private curZoom As Double = 1.0
 Private curRect As Rectangle
 Private originalSize As New Size(0, 0)
 Private mouseDownPt As New Point(0, 0)
 Private mouseUpPt As New Point(0, 0)
 Private zoomMode As Boolean = False
 Private imagesize As System.Drawing.Bitmap
 Private myfile() As Byte
 Private cellsz As Double

 'Variables that are used by missing evidence functionalities
 Dim d() As Byte
 Dim PkD() As Single
 Dim PDx() As Single
 ' Dim Px() As Single
 Dim SigmaSQm() As Double
 Dim s2Pk() As Double
 Dim s2Pkf As Double
 Dim s2Pkf_miss As Double

Appendix C Source code

Leonardo Feltrin C-3

 Dim Dep As Integer
 Dim SigmaSQ_missingev() As Double

 Public Property Image_size()
 Get
 Return imagesize
 End Get
 Set(ByVal value)
 imagesize = value
 End Set
 End Property

 'variables for wofe
 Dim FileNames() As String
 Private Shared bmpsizepub As Integer
 Private Shared AD_w, AI_w, AG_w, AT_w As Double 'shared variables
expressing areas as cell numbers; they work in all sub routines
 Private Shared SumArray() As Byte
 Private Shared SumArray2() As Byte
 Private Shared WplusARR(), WminusARR(), ContrastARR(),
Stud_CwARR(), sqvar_WplusARR(), sqvar_WminusARR(), _
 stdv_ContrastARR(), stdv_WplusARR(), stdv_WminusARR() As Double
 Private Shared ar() As String

 'it is left to test 2bmp under process might be some inconsistency
of overlap of data as
 'exporting we lose precision
 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button1.Click
 Dim cellsz = TextBox9.Text
 If TextBox9.Text = Nothing Then
 MsgBox("Please insert the required cell size in square
kilometres")
 Exit Sub
 End If

 'we delete all files with old data

 If RadioButton2.Checked = True Then

 Try

Appendix C Source code

Leonardo Feltrin C-4

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\Wplus.t
xt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\Wminus.
txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\Contras
t.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\sqvar_W
plus.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\stdv_Wp
lus.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\sqvar_W
minus.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\stdv_Wm
inus.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\stdv_Co
ntrast.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\Stud_Cw
.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\ArrayCu
mAI.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\ArrayCu
mAG.txt")

 Catch : MsgBox("no files to delete")
 End Try

 Dim myarray2() As Byte

 'we have to import the string header of multilayer info
(multiple binari files 1 0 maps)
 'to do that we need a list with the names of the files we
need to load and then we use for to create

 'Dim header As String = Nothing

 Dim a As String
 a = TextBox1.Text

 'header = My.Computer.FileSystem.ReadAllText(a)
 'MsgBox(header & "Check and delete any final space
character")
 'MsgBox("Check and delete any final space character")

Appendix C Source code

Leonardo Feltrin C-5

 Dim myarray() As String = BoolM

 'Dim c As Integer
 'For c = 0 To myarray.Length - 1
 ' myarray(c) = "c:\wofe\bmp_geol\" & myarray(c)
 'Next

 'now we need a for loop to load the files if multiple
layers are chosen
 Dim s As Integer
 For s = 0 To myarray.Length - 1

 myarray2 =
My.Computer.FileSystem.ReadAllBytes(myarray(s).ToString)

 'this convert one file.bmp to a myarray
 ' Dim binary(myarray2.Length - 1) As Byte

 'we jump on the cleaning algo each time to clean up
the bitmap

 Dim r As Integer
 'Here we need some code that cleans up the bitmaps for
us, we declare 2 new myarrays that will be locally storing
 'the original BMP in binary format. Then we get the
data out of them and feed SumArray and SumArray2
 Dim OriginalAD() As Byte =
My.Computer.FileSystem.ReadAllBytes(TextBox8.Text) 'we use the deposit
layer
 Dim OriginalAG(myarray2.Length - 1) As Byte

 OriginalAG = myarray2

 Try
 r = (ComboBox3.Text * ComboBox4.Text) ' the number
of cells needed to get the number of good data pixels
 Catch : MsgBox("provide rows and columns numbers")
 Exit Sub
 End Try

 'MsgBox("Numeber of Cells " & r)
 'Dim po As New Integer
 'Dim ps As Integer
 'Dim pq As Integer
 Dim SumArray(r - 1) As Byte
 Dim SumArray2(r - 1) As Byte
 'tronca arrays con remove command

Appendix C Source code

Leonardo Feltrin C-6

 Array.Reverse(OriginalAD)
 Array.Resize(OriginalAD, r)
 Array.Reverse(OriginalAD)

 SumArray = OriginalAD

 Array.Reverse(OriginalAG)
 Array.Resize(OriginalAG, r)
 Array.Reverse(OriginalAG)

 SumArray2 = OriginalAG

 ''For cycles to load arrays (SumArray...
 'For po = (OriginalAD.Length) - r To OriginalAD.Length
- 1
 ' ps = (po - ((OriginalAD.Length) - r))
 ' SumArray.SetValue(OriginalAD(po), ps) ' SumArray
-> AD
 ''Next
 'For po = (OriginalAG.Length) - r To OriginalAG.Length
- 1
 ' pq = (po - ((OriginalAG.Length) - r))
 ' SumArray2.SetValue(OriginalAG(po), pq) '
SumArray2 -> AG
 'Next

 'MsgBox(SumArray2.GetValue(r - 1))
 'MsgBox(OriginalAG(OriginalAG.Length - 1))

 Dim b As Integer = 0
 Dim Sum As Double = 0
 Dim Sum2 As Double = 0
 'Dim SumCounter As Integer
 'Dim Counter(255) As Integer
 'Dim CounterTwo(255) As Integer

 'These following are two constants AD and AT Area of
deposits and Total Study area

 ' algebric sum of array (AD) we get just 1s not 0
counted, therfore the area of deposits cells
 For b = 0 To SumArray.Length - 1
 Sum = Sum + SumArray(b) '-1 is inserted as the
array starts from 0
 Next b
 Label9.Text = Sum.ToString() 'Output AD
 Dim AD As Double = Sum
 'assign shared variable for w calc
 AD_w = Sum * cellsz

Appendix C Source code

Leonardo Feltrin C-7

 ''
 'here we add the conversion to deposit number
 Label35.Text = Sum * cellsz & "pixels"
 ''
 'Sum of all cells to get total area expressed as cell
units (AT)
 Dim AT As Double = SumArray.Length
 Label8.Text = AT.ToString() 'Output AT
 AT_w = r * cellsz

 'This part is inserted to calculate the weights

 Dim a2 As Integer = SumArray2.Length 'array limit for
cycle
 Dim b2 As Integer

 'The following code has to be run in case of binary 0
1 classes of files
 ' algebric sum of array (AG) we get just 1's not 0
counted, therfore the area of geology or other things
 For b2 = 0 To SumArray2.Length - 1

 Sum2 = Sum2 + SumArray2(b2) '-1 is inserted as the
array starts from 0
 Next
 Label10.Text = Sum2.ToString() 'Output AG

 Dim AG As Double = Sum2
 AG_w = AG * cellsz ' see above

 'we want to add each element of an array with an
element of a second array with same index
 'firstly we declare the 2 arrays, first geo second
deposit
 'If geo is multiclass this code cannot handle it
therefore it has to run only in case of 0,1 image
 'To make it work with the multiclass it has to cycle
with AG variation, we need a new array {AI}
 'we want also store the result in a third array
 'define the lenght as Array have specific lenght

 'we declare the boolean array
 Dim third(SumArray.Length - 1) As Byte
 Dim q As Integer
 'here we create the for loop, which makes a
multiplication of pixels (= to boolean intersection)
 For q = 0 To SumArray.Length - 1
 'third is an array that stores the value AI for
each pixel
 third(q) = (SumArray(q) * SumArray2(q))
 Next

Appendix C Source code

Leonardo Feltrin C-8

 Dim AI As Double
 For q = 0 To SumArray.Length - 1
 AI = AI + third(q)
 Next

'My.Computer.FileSystem.WriteAllBytes("c:\wofe\pmh_final.rst", third,
False)
 Label11.Text = AI.ToString 'Output AI
 AI_w = AI * cellsz ' see above

 'Here we get the weight using previous variables
WEIGHT MODULE

 Dim Wplus As Double
 Dim Wminus As Double
 Dim Contrast As Double
 Dim Stud_Cw As Double
 Dim sqvar_Wplus As Double
 Dim sqvar_Wminus As Double
 Dim stdv_Contrast As Double
 Dim stdv_Wplus As Double
 Dim stdv_Wminus As Double

 Try

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\Array
CumAI.txt", AI_w.ToString & " ", True)
 Catch ex As Exception

My.Computer.FileSystem.CreateDirectory("c:\wofe\weights_calc_output\")

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\Array
CumAI.txt", AI_w.ToString & " ", True)

 End Try

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\Array
CumAG.txt", AG_w.ToString & " ", True)

 'Equation for W+

 Wplus = Math.Log(((AI_w / AD_w) * ((AT_w - AD_w) /
(AG_w - AI_w))))
 Label19.Text = Wplus.ToString

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\Wplus
.txt", Wplus.ToString & " ", True)

Appendix C Source code

Leonardo Feltrin C-9

 'Equation for W-

 Wminus = Math.Log(((AD_w - AI_w) / AD_w) * ((AT_w -
AD_w) / (AT_w - AD_w - AG_w + AI_w)))
 Label20.Text = Wminus.ToString

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\Wminu
s.txt", Wminus.ToString & " ", True)

 'Equation for Cw

 Contrast = Wplus - Wminus '21
 Label21.Text = Contrast.ToString

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\Contr
ast.txt", Contrast.ToString & " ", True)

 'Equation for v(W+)

 sqvar_Wplus = (1 / AI_w) + (1 / (AG_w - AI_w))

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\sqvar
_Wplus.txt", sqvar_Wplus.ToString & " ", True)

 'Equation for s(W+)
 stdv_Wplus = Math.Sqrt(sqvar_Wplus) '23
 Label23.Text = stdv_Wplus.ToString

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\stdv_
Wplus.txt", stdv_Wplus.ToString & " ", True)

 'Equation for v(W-)

 sqvar_Wminus = (1 / (AD_w - AI_w)) + (1 / (AT_w - AG_w
- AD_w + AI_w))

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\sqvar
_Wminus.txt", sqvar_Wminus.ToString & " ", True)

 'Equation for s(W-)
 stdv_Wminus = Math.Sqrt(sqvar_Wminus) '24
 Label24.Text = stdv_Wminus.ToString

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\stdv_
Wminus.txt", stdv_Wminus.ToString & " ", True)

Appendix C Source code

Leonardo Feltrin C-10

 'Equation for s(Cw)
 stdv_Contrast = Math.Sqrt(sqvar_Wplus + sqvar_Wminus)
'25
 Label25.Text = stdv_Contrast.ToString

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\stdv_
Contrast.txt", stdv_Contrast.ToString & " ", True)

 'Equation for the studentized value of Cw '22
 Dim Stud_CwARR(255) As Double
 Stud_Cw = Contrast / stdv_Contrast
 Label22.Text = Stud_Cw.ToString

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\Stud_
Cw.txt", Stud_Cw.ToString & " ", True)

 'output lines relative to each value we get a number
of array

 AI = Nothing
 AG = Nothing
 AI_w = Nothing
 AG_w = Nothing
 Wplus = Nothing
 Wminus = Nothing
 Contrast = Nothing
 Stud_Cw = Nothing
 sqvar_Wplus = Nothing
 sqvar_Wminus = Nothing
 stdv_Contrast = Nothing
 stdv_Wplus = Nothing
 stdv_Wminus = Nothing
 'WplusARR(255) = Nothing
 'WminusARR(255) = Nothing
 'sqvar_WplusARR(255) = Nothing
 'stdv_WplusARR(255) = Nothing
 'sqvar_WminusARR(255) = Nothing
 'stdv_WminusARR(255) = Nothing
 'stdv_ContrastARR(255) = Nothing
 'ContrastARR(255) = Nothing
 SumArray = Nothing
 SumArray2 = Nothing

 Next
 MsgBox("Well done leo!")
 Exit Sub

 Else

Appendix C Source code

Leonardo Feltrin C-11

 Try

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\Wplus.t
xt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\Wminus.
txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\Contras
t.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\sqvar_W
plus.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\stdv_Wp
lus.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\sqvar_W
minus.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\stdv_Wm
inus.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\stdv_Co
ntrast.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\Stud_Cw
.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\ArrayCu
mAI.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\AIhisto
.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\AGhisto
.txt")

My.Computer.FileSystem.DeleteFile("c:\wofe\weights_calc_output\ArrayCu
mAG.txt")
 Catch : MsgBox("no files to delete")
 End Try

 'Here we need some code that cleans up the bitmaps for us,
we declare 2 new arrays that will be locally storing
 'the original BMP in binary format. Then we get the data
out of them and feed SumArray and SumArray2
 Dim OriginalAD() As Byte =
My.Computer.FileSystem.ReadAllBytes(TextBox8.Text) 'we use the deposit
layer

Appendix C Source code

Leonardo Feltrin C-12

 Dim OriginalAG() As Byte =
My.Computer.FileSystem.ReadAllBytes(TextBox7.Text) 'we use the geo

 Dim r As Integer = (ComboBox3.Text * ComboBox4.Text)
 'MsgBox("Numeber of Cells " & r)
 Dim po As Integer
 Dim ps As Integer
 Dim pq As Integer
 Dim SumArray(r - 1) As Byte
 Dim SumArray2(r - 1) As Byte

 'For cycles to load arrays (SumArray...
 For po = (OriginalAD.Length) - r To OriginalAD.Length - 1
 ps = (po - ((OriginalAD.Length) - r))
 SumArray.SetValue(OriginalAD(po), ps)
 Next
 po = 0
 For po = (OriginalAG.Length) - r To OriginalAG.Length - 1
 pq = (po - ((OriginalAG.Length) - r))
 SumArray2.SetValue(OriginalAG(po), pq)
 Next

 'MsgBox(SumArray2.GetValue(r - 1))
 'MsgBox(OriginalAG(OriginalAG.Length - 1))

 Dim b As Integer = 0
 Dim Sum As Double = 0
 Dim Sum2 As Double = 0
 Dim SumCounter As Integer
 Dim Counter(255) As Integer
 Dim CounterTwo(255) As Integer

 'These following are two constants AD and AT Area of
deposits and Total Study area

 ' algebric sum of array (AD) we get just 1s not 0 counted,
therfore the area of deposits cells
 Dim a As Integer = SumArray.Length - 1
 For b = 1 To a
 Sum = Sum + SumArray(b - 1) '-1 is inserted as the
array starts from 0
 Next b
 Label9.Text = Sum.ToString() 'Output AD
 Dim AD As Double = Sum
 'assign shared variable for w calc
 AD_w = Sum * cellsz
 ''
 'here we add the conversion to deposit number
 Label35.Text = Sum * cellsz & " km^2"
 ''
 'Sum of all cells to get total area expressed as cell
units (AT)
 Dim AT As Double = SumArray.Length

Appendix C Source code

Leonardo Feltrin C-13

 Label8.Text = AT.ToString() 'Output AT
 AT_w = r * cellsz ' input by user

 'This code creates an histogram array (counter)used to
detect the type of evidence image used
 'works anlysing the third element of Counter() if the sum
of all the values except the first two of Counter() is equal to
 '0, then we deal with a binary 0 1 file
 'Compute the sum of all elements of Counter() except the
first two (0,1) why?
 'Counter for a 0 1 type file will give a final sum = to 0.
This is true as we
 'we are using cleaned arrays (SumArray see up stripping)
 'Conter refers to AG array
 For a = 0 To SumArray2.Length - 1 'histo for AG class

 Counter(SumArray2(a)) += 1
 ' MsgBox(Counter(a))

 Next a
 Try

 For b = 0 To Counter.Length - 1

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\AGhis
to.txt", Counter(b).ToString & " ", True)
 Next

 Catch ex As Exception

My.Computer.FileSystem.CreateDirectory("c:\wofe\weights_calc_output\")

 For b = 0 To Counter.Length - 1

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\AGhis
to.txt", Counter(b).ToString & " ", True)
 Next

 End Try

 'Checking the type of data....
 For a = 2 To Counter.Length - 1
 SumCounter = SumCounter + Counter(a)
 Next a

 'we need a second histo for AI not sure if I have to
insert it below

Appendix C Source code

Leonardo Feltrin C-14

 'now we write on a file txt or compile a database.....

 'Dim objStreamWriter As StreamWriter

 ''Open the file. The software runs and save each time on
hist, therefore we might need to solve the issue of
 ''copying above the same file (problem can be solved with
user imput or using a delete opion instruction)
 'objStreamWriter = New StreamWriter("c:\wofe\histoAG.txt",
True, _
 ' Encoding.Unicode)

 ''Write out the numbers on the same line.

 'Dim c As Integer
 'For c = 0 To 255
 ' objStreamWriter.Write(Counter(c) & " ")
 'Next c
 ''Closes the file.
 'objStreamWriter.Close()

 'If the sum is 0 then the image is binary therefore use
the following code to caculate AG
 If SumCounter = 0 Then
 MsgBox("Binary file [0,1]")

 Dim a2 As Integer = SumArray2.Length 'array limit for
cycle
 Dim b2 As Integer
 'The following code has to be run in case of binary 0
1 classes of files
 ' algebric sum of array (AG) we get just 1's not 0
counted, therfore the area of geology or other things
 For b2 = 1 To a2

 Sum2 = Sum2 + SumArray2(b2 - 1) '-1 is inserted as
the array starts from 0
 Next b2
 Label10.Text = Sum2.ToString() 'Output AG
 Dim AG As Double = Sum2
 AG_w = AG * cellsz ' see above

 'we want to add each element of an array with an
element of a second array with same index
 'firstly we declare the 2 arrays, first geo second
deposit
 'If geo is multiclass this code cannot handle it
therefore it has to run only in case of 0,1 image

Appendix C Source code

Leonardo Feltrin C-15

 'To make it work with the multiclass it has to cycle
with AG variation, we need a new array {AI}
 'we want also store the result in a third array

 'define the lenght as Array have specific lenght
 b = SumArray.Length
 Dim third(b) As Byte

 'here we create the for cycle, which makes a
multiplication of pixels (= to boolean intersection)
 For a = 1 To b
 'third is an array that stores the value AI for
each pixel
 third.SetValue(SumArray(a - 1) * SumArray2(a - 1),
a - 1)
 Next a
 Dim AI As Double = 0
 For a = 1 To b
 AI = AI + third(a - 1)
 Next a

'My.Computer.FileSystem.WriteAllBytes("c:\wofe\pmh_final.rst", third,
False)
 Label11.Text = AI.ToString 'Output AI
 AI_w = AI * cellsz ' see above

 'Here we get the weight using previous variables
WEIGHT MODULE

 Dim Wplus As Double
 Dim Wminus As Double
 Dim Contrast As Double
 Dim Stud_Cw As Double
 Dim sqvar_Wplus As Double
 Dim sqvar_Wminus As Double
 Dim stdv_Contrast As Double
 Dim stdv_Wplus As Double
 Dim stdv_Wminus As Double

 'Equation for W+
 Wplus = Math.Log(((AI_w / AD_w) * ((AT_w - AD_w) /
(AG_w - AI_w))))
 Label19.Text = Wplus.ToString
 'Equation for W-
 Wminus = Math.Log(((AD_w - AI_w) / AD_w) * ((AT_w -
AD_w) / (AT_w - AD_w - AG_w + AI_w)))
 Label20.Text = Wminus.ToString
 'Equation for Cw
 Contrast = Wplus - Wminus '21
 Label21.Text = Contrast.ToString
 'Equation for v(W+)
 sqvar_Wplus = (1 / AI_w) + (1 / (AG_w - AI_w))

Appendix C Source code

Leonardo Feltrin C-16

 'Equation for s(W+)
 stdv_Wplus = Math.Sqrt(sqvar_Wplus) '23
 Label23.Text = stdv_Wplus.ToString
 'Equation for v(W-)
 sqvar_Wminus = (1 / (AD_w - AI_w)) + (1 / (AT_w - AG_w
- AD_w + AI_w))

 'Equation for s(W-)
 stdv_Wminus = Math.Sqrt(sqvar_Wminus) '24
 Label24.Text = stdv_Wminus.ToString
 'Equation for s(Cw)
 stdv_Contrast = Math.Sqrt(sqvar_Wplus + sqvar_Wminus)
'25
 Label25.Text = stdv_Contrast.ToString
 'Equation for the studentized value of Cw '22
 Stud_Cw = Contrast / stdv_Contrast
 Label22.Text = Stud_Cw.ToString

 AI = Nothing
 AG = Nothing
 AI_w = Nothing
 AG_w = Nothing
 Wplus = Nothing
 Wminus = Nothing
 Contrast = Nothing
 Stud_Cw = Nothing
 sqvar_Wplus = Nothing
 sqvar_Wminus = Nothing
 stdv_Contrast = Nothing
 stdv_Wplus = Nothing
 stdv_Wminus = Nothing
 WplusARR(255) = Nothing
 WminusARR(255) = Nothing
 sqvar_WplusARR(255) = Nothing
 stdv_WplusARR(255) = Nothing
 sqvar_WminusARR(255) = Nothing
 stdv_WminusARR(255) = Nothing
 stdv_ContrastARR(255) = Nothing
 ContrastARR(255) = Nothing

 SumArray = Nothing
 SumArray2 = Nothing

 '---
--

 Else

Appendix C Source code

Leonardo Feltrin C-17

 'we want to add each element of an array with an
element of a second array with same index
 'firstly we declare the 2 arrays, first geo second
deposit
 'If geo is multiclass this code cannot handle it
therefore it has to run only in case of 0,1 image
 'To make it work with the multiclass it has to cycle
with AG variation, we need a new array {AI}
 'we want also store the result in a third array
 'Counter() is a list of all AG in order from 0 to 255,
we need to feed the AG to produce the AI array
 'Looping through Counter we pick each value and
perform the computation of AI and W

 'this code works for a single AG array calculation

 'define the lenght as Array have specific lenght

 Dim third(SumArray.Length - 1) As Byte

 'here we create the for cycle, which makes a
multiplication of pixels (= to boolean intersection)
 For a = 1 To SumArray.Length
 'third is an array that stores the value AI for
each pixel
 third.SetValue(SumArray(a - 1) * SumArray2(a - 1),
a - 1) 'SumArray2 is a single array of AG
 Next a
 'We get third() which represents the array
intersection
 'Now we run HISTO on third()
 'CounterTwo refers to AD array
 For a = 0 To third.Length - 1 'histo for AG class

 CounterTwo(third(a)) += 1
 Next a
 For b = 0 To Counter.Length - 1

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\AIhis
to.txt", CounterTwo(b).ToString & " ", True)
 Next
 ' MsgBox(Counter(a))

 'In both cases AG and AI has to be estimated as
cumulative proportions, therefore we need to progressively sum up
 ' the different elements of the two arrays to obtain 2
new arrays with cumulative growth of areas

Appendix C Source code

Leonardo Feltrin C-18

 Dim n As Integer
 'Dim s As Integer
 'Dim p As Integer
 Dim ArrayCumAG(Counter.Length - 1) As Double
 ArrayCumAG(0) = Counter(0)
 For n = 1 To Counter.Length - 1
 ArrayCumAG(n) = ((Counter(n)) + ArrayCumAG(n - 1))

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\Array
CumAG.txt", ArrayCumAG(n).ToString & " ", True)

 'This code requires too much resources
 'For n = 0 To SumArray2.Length - 1

 ' For s = 0 To n
 ' p = p + SumArray2(s)
 ' Next s
 ' ArrayCumAG(n) = p
 ' p = 0

 'ArrayCum is the array that contains cumulative AI
proportions
 Next n
 'we correct the first value for (0) derived by non
intersection during bool
 CounterTwo(0) = (CounterTwo(0) - (r - Sum))
 'AI cumulative prop...Changed we keep same values as
CounterTWO

 Dim ArrayCumAI(CounterTwo.Length - 1) As Double
 'For b = 0 To 255
 ' ArrayCumAI(b) = CounterTwo(b)

 'Next

 'cumulative of AI increasing with distance analysis
 ArrayCumAI(0) = CounterTwo(0)
 For n = 1 To CounterTwo.Length - 1
 ArrayCumAI(n) = ((CounterTwo(n)) + ArrayCumAI(n -
1))

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\Array
CumAI.txt", ArrayCumAI(n).ToString & " ", True)
 Next n

 'After evaluation of multiclass layers we obtain two
final arrays (ArrayCumAI(); ArrayCumAG())

 'In this case the module WEIGHT is integrated and
modified to run with two arrays of AG and AI values that run in
parallel

Appendix C Source code

Leonardo Feltrin C-19

 'Here we get the weight using previous variables
WEIGHT MODULE

 Dim Wplus As Double
 Dim Wminus As Double
 Dim Contrast As Double
 Dim Stud_Cw As Double
 Dim sqvar_Wplus As Double
 Dim sqvar_Wminus As Double
 Dim stdv_Contrast As Double
 Dim stdv_Wplus As Double
 Dim stdv_Wminus As Double
 Dim WplusARR(255) As Double
 Dim WminusARR(255) As Double
 Dim sqvar_WplusARR(255) As Double
 Dim stdv_WplusARR(255) As Double
 Dim sqvar_WminusARR(255) As Double
 Dim stdv_WminusARR(255) As Double
 Dim stdv_ContrastARR(255) As Double
 Dim ContrastARR(255) As Double
 'delete all files in data folder

 For a = 0 To Counter.Length - 1
 'Equation for W+
 AI_w = ArrayCumAI(a) * cellsz 'we convert in area
of deposits km2

 AG_w = ArrayCumAG(a) * cellsz 'we convert the area
in km^2 from cells

 Wplus = Math.Log(((AI_w / AD_w) * ((AT_w - AD_w) /
(AG_w - AI_w))))
 Label19.Text = Wplus.ToString
 WplusARR.SetValue(Wplus, a)

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\Wplus
.txt", WplusARR(a).ToString & " ", True)

 'Equation for W-

 Wminus = Math.Log(((AD_w - AI_w) / AD_w) * ((AT_w
- AD_w) / (AT_w - AD_w - AG_w + AI_w)))
 Label20.Text = Wminus.ToString
 WminusARR.SetValue(Wminus, a)

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\Wminu
s.txt", WminusARR(a).ToString & " ", True)

Appendix C Source code

Leonardo Feltrin C-20

 'Equation for Cw

 Contrast = WplusARR(a) - WminusARR(a) '21
 Label21.Text = Contrast.ToString
 ContrastARR.SetValue(Contrast, a)

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\Contr
ast.txt", ContrastARR(a).ToString & " ", True)

 'Equation for v(W+)

 sqvar_Wplus = (1 / AI_w) + (1 / (AG_w - AI_w))
 sqvar_WplusARR.SetValue(sqvar_Wplus, a)

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\sqvar
_Wplus.txt", sqvar_WplusARR(a).ToString & " ", True)

 'Equation for s(W+)
 stdv_Wplus = Math.Sqrt(sqvar_WplusARR(a)) '23
 Label23.Text = stdv_Wplus.ToString
 stdv_WplusARR.SetValue(stdv_Wplus, a)

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\stdv_
Wplus.txt", stdv_WplusARR(a).ToString & " ", True)

 'Equation for v(W-)

 sqvar_Wminus = (1 / (AD_w - AI_w)) + (1 / (AT_w -
AG_w - AD_w + AI_w))
 sqvar_WminusARR.SetValue(sqvar_Wminus, a)

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\sqvar
_Wminus.txt", sqvar_WminusARR(a).ToString & " ", True)

 'Equation for s(W-)
 stdv_Wminus = Math.Sqrt(sqvar_WminusARR(a)) '24
 Label24.Text = stdv_Wminus.ToString
 stdv_WminusARR.SetValue(stdv_Wminus, a)

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\stdv_
Wminus.txt", stdv_WminusARR(a).ToString & " ", True)
 'Equation for s(Cw)
 stdv_Contrast = Math.Sqrt(sqvar_WplusARR(a) +
sqvar_WminusARR(a)) '25
 Label25.Text = stdv_Contrast.ToString
 stdv_ContrastARR.SetValue(stdv_Contrast, a)

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\stdv_
Contrast.txt", stdv_ContrastARR(a).ToString & " ", True)

Appendix C Source code

Leonardo Feltrin C-21

 'Equation for the studentized value of Cw '22
 Dim Stud_CwARR(255) As Double
 Stud_Cw = ContrastARR(a) / stdv_ContrastARR(a)
 Label22.Text = Stud_Cw.ToString
 Stud_CwARR.SetValue(Stud_Cw, a)

My.Computer.FileSystem.WriteAllText("c:\wofe\weights_calc_output\Stud_
Cw.txt", Stud_CwARR(a).ToString & " ", True)

 Next a

 'output lines relative to each value we get a number
of arrays

 'AI = Nothing
 'AG = Nothing
 AI_w = Nothing
 AG_w = Nothing
 Wplus = Nothing
 Wminus = Nothing
 Contrast = Nothing
 Stud_Cw = Nothing
 sqvar_Wplus = Nothing
 sqvar_Wminus = Nothing
 stdv_Contrast = Nothing
 stdv_Wplus = Nothing
 stdv_Wminus = Nothing
 WplusARR(255) = Nothing
 WminusARR(255) = Nothing
 sqvar_WplusARR(255) = Nothing
 stdv_WplusARR(255) = Nothing
 sqvar_WminusARR(255) = Nothing
 stdv_WminusARR(255) = Nothing
 stdv_ContrastARR(255) = Nothing
 ContrastARR(255) = Nothing
 SumArray = Nothing
 SumArray2 = Nothing

 MsgBox("Weighting Completed!")

 End If

 'Make sure the 2 images have same size and resolution
before u start intersecting and weighting

 End If

Appendix C Source code

Leonardo Feltrin C-22

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button2.Click
 My.Forms.Form2.Show()
 End Sub

 Private Sub Button3_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button3.Click
 'Dim myStream As Stream
 Dim selectFileDialog1 As New OpenFileDialog()

 selectFileDialog1.InitialDirectory = "c:\"
 selectFileDialog1.Filter = "bmp files (*.bmp)|*.bmp|All files
(*.*)|*.*"
 selectFileDialog1.FilterIndex = 2
 selectFileDialog1.RestoreDirectory = True

 If selectFileDialog1.ShowDialog() = DialogResult.OK Then

 TextBox7.Text = selectFileDialog1.FileName

 'myStream = selectFileDialog1.OpenFile()
 'If Not (myStream Is Nothing) Then
 ' Insert code to read the stream here.
 'myStream.Close()
 'End If
 End If
 End Sub

 Private Sub Button4_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button4.Click
 'Dim myStream As Stream
 Dim selectFileDialog1 As New OpenFileDialog()

 selectFileDialog1.InitialDirectory = "c:\"
 selectFileDialog1.Filter = "bmp files (*.bmp)|*.bmp|All files
(*.*)|*.*"
 selectFileDialog1.FilterIndex = 2
 selectFileDialog1.RestoreDirectory = True

 If selectFileDialog1.ShowDialog() = DialogResult.OK Then

 TextBox8.Text = selectFileDialog1.FileName

 'myStream = selectFileDialog1.OpenFile()
 'If Not (myStream Is Nothing) Then
 ' Insert code to read the stream here.
 'myStream.Close()

Appendix C Source code

Leonardo Feltrin C-23

 'End If
 End If
 End Sub

 Private Sub Button5_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button5.Click
 'multiselect option
 'Dim myStream As Stream
 Dim selectFileDialog1 As New OpenFileDialog()

 selectFileDialog1.InitialDirectory = "c:\"
 selectFileDialog1.Filter = "bitmap file (*.bmp)| *.bmp"
 selectFileDialog1.FilterIndex = 1
 selectFileDialog1.RestoreDirectory = True
 selectFileDialog1.Multiselect = True

 If selectFileDialog1.ShowDialog() = DialogResult.OK Then
 'ar() can be used to process the data for calculation of
weights
 Dim ar() As String = selectFileDialog1.FileNames
 Dim a As String = Join(ar, "")
 TextBox1.Text = a

 'myStream = selectFileDialog1.OpenFile()
 'If Not (myStream Is Nothing) Then
 ' Insert code to read the stream here.
 'myStream.Close()
 'End If
 BoolM = ar
 End If
 End Sub

 Public Function BinaryConv(ByVal bound As Byte, ByVal myarray() As
Byte, ByVal bmpSize As Integer, ByVal FileName As String) As Double

 'we need to strip the header and store it somewhere
 Dim headerLength As Integer
 headerLength = (myarray.Length) - bmpSize
 'Dim ab As Integer
 Dim stripArray() As Byte
 stripArray = myarray
 Array.Resize(stripArray, headerLength)
 Array.Reverse(myarray)
 Array.Resize(myarray, bmpSize)
 Array.Reverse(myarray)

 'For ab = 0 To headerLength
 ' stripArray(ab) = myarray(ab)
 'Next
 'My.Computer.FileSystem.WriteAllBytes("c:\wofe\hearer.bmp",
stripArray, False)

Appendix C Source code

Leonardo Feltrin C-24

 'we need to perform a bit conversion to get a 0,1 binary type
 Dim a As Integer
 Dim value As Byte
 For a = 0 To myarray.Length - 1

 value = myarray(a)

 If value >= bound Then
 myarray(a) = 0
 Else
 If value < bound Then
 myarray(a) = 255
 End If

 End If

 Next

 'problem is that final...(2) give an array with length 3, with
3 elements not 2, therefore use -1
 Dim finalarray((stripArray.Length + myarray.Length) - 1) As
Byte
 Dim ac As Integer
 For ac = 0 To stripArray.Length - 1
 finalarray(ac) = stripArray(ac)
 Next
 For ac = stripArray.Length To finalarray.Length - 1
 finalarray(ac) = myarray(ac - stripArray.Length)
 Next
 'we need to create a folder where we can store the evidential
boolean layers

 My.Computer.FileSystem.WriteAllBytes("c:\wofe\image.bmp",
finalarray, False)
 Form4.Show()

 End Function

 Private Sub Button6_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button6.Click
 'Dim myStream As Stream
 Dim selectFileDialog1 As New OpenFileDialog()

 selectFileDialog1.InitialDirectory = "c:\wofe\"
 selectFileDialog1.Filter = "bmp files (*.bmp)|*.bmp|All files
(*.*)|*.*"
 selectFileDialog1.FilterIndex = 2
 selectFileDialog1.RestoreDirectory = True

 If selectFileDialog1.ShowDialog() = DialogResult.OK Then

Appendix C Source code

Leonardo Feltrin C-25

 TextBox2.Text = selectFileDialog1.FileName

 'myStream = selectFileDialog1.OpenFile()
 'If Not (myStream Is Nothing) Then
 ' Insert code to read the stream here.
 'myStream.Close()
 'End If
 End If
 End Sub

 Private Sub Button7_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button7.Click

 Dim myarray() As Byte =
My.Computer.FileSystem.ReadAllBytes(TextBox2.Text)
 Dim bound As Integer
 Dim bmpsize As Integer
 bound = Byte.Parse(TextBox3.Text)
 bmpsize = Integer.Parse(TextBox4.Text)
 bmpsizepub = bmpsize
 Me.BinaryConv(bound, myarray, bmpsize, TextBox2.Text)

 End Sub

 Private Sub Button9_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button9.Click
 Dim a As Integer
 'Dim b As Integer

 Dim FileName(Bayes_Data_Source_ModelDataGridView.Rows.Count)
As String
 Dim Wplus(Bayes_Data_Source_ModelDataGridView.Rows.Count) As
Single
 Dim Wminus(Bayes_Data_Source_ModelDataGridView.Rows.Count) As
Single

 For a = 0 To Bayes_Data_Source_ModelDataGridView.Rows.Count
 Try

 FileName(a) =
Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(6).Value
 Wplus(a) =
Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(1).Value
 Wminus(a) =
Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(2).Value

 Catch : Exit For

Appendix C Source code

Leonardo Feltrin C-26

 End Try
 Next

 Bayes(FileName, Wplus, Wminus)

 End Sub

 Public Function Bayes(ByVal FileName() As String, ByVal Wplus() As
Single, ByVal Wminus() As Single) As Byte

 ' I need to firslty select the bitmaps created with convert,
then store the strings in the first column
 'manually we type in the weights and ask for that with a msg
box
 'all is set and ready for the calculation
 'we need to select each row and use the loop to convert the
pixels to an array of weights
 'we need to sum up the images to the prior probability image
 Dim Form5Inst As New Form5
 Dim Dep As Integer
 Dep = Form5Inst.AD(TextBox8.Text)

 imagesize = Bitmap.FromFile("imagesize.bmp")

 Dim postlogit((imagesize.Height * imagesize.Width) - 1) As
Single 'four
 Dim weightedArray((imagesize.Height * imagesize.Width) - 1) As
Single 'six necessary to weight step
 Dim rescale((imagesize.Height * imagesize.Width) - 1) As
Single 'seven

 Dim ab As Integer
 For ab = 0 To FileName.Length - 1

 ' imagesize = Bitmap.FromFile(FileName(ab))
 If FileName(ab) = Nothing Then
 Exit For
 End If
 Dim evidence As Bitmap =
Bitmap.FromFile(FileName(ab).ToString)

 Dim myfile((evidence.Width * evidence.Height) - 1) As Byte
 Dim color As System.Drawing.Color
 Dim county As Integer
 Dim countx As Integer
 Dim s As Integer
 For county = 0 To evidence.Height - 1

Appendix C Source code

Leonardo Feltrin C-27

 For countx = 0 To evidence.Width - 1
 color = evidence.GetPixel(countx, county)

 If CInt(color.B) <> 0 And CInt(color.G) <> 0 And
CInt(color.R) <> 0 Then
 myfile(s) = 1
 Else
 myfile(s) = 0
 End If

 s = s + 1
 Next
 Next
 s = 0
 Dim value As Byte
 Dim ard As Integer

 If FileName(ab) Is Nothing Then
 Exit For
 Else

 'here we convert the image in evdence layer using the
weights
 For ard = 0 To myfile.Length - 1

 value = myfile(ard)

 If value = 0 Then
 weightedArray(ard) = Wminus(ab)
 Else
 weightedArray(ard) = Wplus(ab)
 End If
 Next

 End If

 'modified''''''''''''''''''''to exclude textbox6
input'''
'''''''''''
 'now we need to add the evidence layer created to the
prior probability
 'prilogit should be calculated as the ratio D/T the
conversion in ODDS and
 'ln function gives prilogit value
 'I need the deposit layer and the tot number of pixels

 ' Dim Dep_conv As Single = Dep * 0.000269
 Dim priprob As Single = (Dep / (imagesize.Height *
imagesize.Width))
 Dim priOdd As Single = priprob / (1 - priprob)
 Dim con As Single

Appendix C Source code

Leonardo Feltrin C-28

 con = Math.Log(priOdd)

 Dim ac As Integer
 Dim priorlogit((imagesize.Height * imagesize.Width) - 1)
As Single 'five

 ' con = Single.Parse(TextBox6.Text)
 For ac = 0 To ((imagesize.Height * imagesize.Width) - 1)
 priorlogit(ac) = con
 Next

 For ac = 0 To postlogit.Length - 1
 If ab = 0 Then
 postlogit(ac) = postlogit(ac) + priorlogit(ac) +
weightedArray(ac)
 Else
 postlogit(ac) = postlogit(ac) + weightedArray(ac)
 End If
 Next

 Next

 'now we need to rescale the double in a way that we can
generate a byte array

 Dim ad As Integer
 Dim aq As Integer
 Dim postodds(postlogit.Length - 1) As Single
 Dim postprob(postlogit.Length - 1) As Single
 Dim postprobByte(postlogit.Length - 1) As Byte
 For aq = 0 To postlogit.Length - 1
 'we convert to probability

 postodds(aq) = Math.Exp(postlogit(aq))

 postprob(aq) = postodds(aq) / (1 + postodds(aq))

 Next
 Array.Copy(postprob, rescale, postlogit.Length)
 Array.Sort(rescale)

 Dim min As Single = rescale(0)
 Dim max As Single = rescale(rescale.Length - 1)
 My.Computer.FileSystem.WriteAllText("c:\wofe\scale.txt",
min.ToString, False)
 My.Computer.FileSystem.WriteAllText("c:\wofe\scale.txt",
max.ToString, True)

Appendix C Source code

Leonardo Feltrin C-29

 For ad = 0 To postprob.Length - 1

 ' we shift or translate the scale to get a minimum of 0
 'min must become firslty equal to 1 so if min*x=1
 Try
 Dim alfa As Single = (1 / min)
 postprob(ad) = postprob(ad) * alfa
 postprob(ad) = (postprob(ad) - (min * alfa))
 postprob(ad) = (postprob(ad) * 255) / ((max * alfa) -
(min * alfa))
 postprobByte(ad) = CByte((postprob(ad)))
 postprob(ad) = (postprob(ad) * ((max * alfa) - (min *
alfa))) / 255
 postprob(ad) = (postprob(ad) + (min * alfa))
 postprob(ad) = postprob(ad) / alfa

 Catch ex As Exception
 MsgBox("something wrong with the input?")
 Exit Function
 End Try

 Next

My.Computer.FileSystem.WriteAllBytes("c:\wofe\postprobebyte.bin",
postprobByte, False)

 MsgBox("Pprob Completed!")

 End Function

 Private Sub Button8_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button8.Click

 'Dim myStream As Stream
 Dim selectFileDialog1 As New OpenFileDialog()

 selectFileDialog1.InitialDirectory = "c:\"
 selectFileDialog1.Filter = "bitmap file (*.bmp)| *.bmp"
 selectFileDialog1.FilterIndex = 1
 selectFileDialog1.RestoreDirectory = True
 selectFileDialog1.Multiselect = True

 If selectFileDialog1.ShowDialog() = DialogResult.OK Then

 bindingNavigatorAddNewItem.PerformClick()
 Dim ar() As String = selectFileDialog1.FileNames

 ' Dim a As String = Join(ar, " ")

Appendix C Source code

Leonardo Feltrin C-30

 Dim a As Integer
 Dim b As String
 Dim c As String
 FileNames = ar
 For a = 0 To ar.Length - 1

 b = ar(a)
 c = ar(a)
 b = b.Substring(b.LastIndexOf("\") + 1)

 Try

Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(0).Value = b

Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(6).Value = c
 Catch ex As Exception

 bindingNavigatorAddNewItem.PerformClick()

Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(0).Value = b

Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(6).Value = c

 End Try

 Next
 ' bindingNavigatorDeleteItem.PerformClick()
 ' MsgBox("Insert relative weights")

 'myStream = selectFileDialog1.OpenFile()
 'If Not (myStream Is Nothing) Then
 ' Insert code to read the stream here.
 'myStream.Close()
 'End If

 End If
 End Sub

 'Public Function ArrayMax(ByVal math() As Double) As Double

 ' Dim a As Integer
 ' Dim av As Double
 ' Dim b As Double
 ' Dim c As Integer
 ' Dim d As Integer
 ' For a = 0 To math.Length - 1

 ' b = b + math(a)

 ' Next
 ' av = b / math.Length

Appendix C Source code

Leonardo Feltrin C-31

 ' Dim newmath(math.Length - 1) As Double
 ' For c = 0 To math.Length - 1
 ' If math(c) >= av Then
 ' newmath(c) = math(c)
 ' End If

 ' Next

 'End Function

 Public Function ArrayAn(ByVal ar() As Single) As Integer

 Dim a As Integer

 Dim c As Integer

 Dim counter(10) As Single

 c = 0
 Try
 For a = 0 To ar.Length - 1
 If ar(a) <> ar(a + 1) Then
 counter(c) = ar(a)
 counter(c + 1) = ar(a + 1)
 c = c + 2
 End If
 Next
 Catch : Exit Try
 End Try
 Dim d As Integer
 For d = 0 To counter.Length - 1

My.Computer.FileSystem.WriteAllText("c:\wofe\arrayanalysis.txt",
counter(d), True, System.Text.Encoding.Unicode)

 Next
 ' Return MsgBox("ok")

 End Function

 Private Sub Button10_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button10.Click
 If TextBox9.Text = "" Then
 MsgBox("Please insert a valid cell size value")
 Exit Sub
 End If
 My.Forms.Form5.Show()
 End Sub

 Public Function imagesizefunc() As Integer

 Dim a As Integer

Appendix C Source code

Leonardo Feltrin C-32

 imagesize = Bitmap.FromFile("imagesize.bmp")

 a = (imagesize.Width * imagesize.Height)
 Return a
 End Function

 Private Sub Button13_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button13.Click
 'start new ot ot

 Try
 cell = Me.TextBox9.Text
 Catch ex As Exception
 MsgBox("Please provide cell size")
 Exit Sub
 End Try

 d = Nothing
 PkD = Nothing
 PDx = Nothing

 SigmaSQm = Nothing
 s2Pk = Nothing
 s2Pkf = Nothing
 s2Pkf_miss = Nothing
 Dep = Nothing
 bmpsizepub = Nothing
 AD_w = Nothing
 AI_w = Nothing
 AG_w = Nothing
 AT_w = Nothing 'shared variables expressing areas as cell
numbers; they work in all sub routines

 Dim a As Integer
 'Dim b As Integer

 Dim FileName(Bayes_Data_Source_ModelDataGridView.Rows.Count)
As String
 Dim Wplus(Bayes_Data_Source_ModelDataGridView.Rows.Count) As
Single
 Dim Wminus(Bayes_Data_Source_ModelDataGridView.Rows.Count) As
Single
 Dim sWplus(Bayes_Data_Source_ModelDataGridView.Rows.Count) As
Single
 Dim sWminus(Bayes_Data_Source_ModelDataGridView.Rows.Count) As
Single

 For a = 0 To Bayes_Data_Source_ModelDataGridView.Rows.Count
 Try

Appendix C Source code

Leonardo Feltrin C-33

 FileName(a) =
Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(6).Value
 Wplus(a) =
Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(1).Value
 Wminus(a) =
Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(2).Value
 sWplus(a) =
Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(4).Value
 sWminus(a) =
Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(5).Value
 Catch : Exit For
 End Try
 Next

 missing_evidence_Pk(FileName, Wplus, Wminus)
 'missing_evidence_PDx(FileName, Wplus, Wminus)
 'SigmaSQ_missing_evidence()
 SigmaSQ(FileName, sWplus, sWminus)
 OminbusTest_NewOminibus()

 End Sub

 Private Function missing_evidence_Pk(ByVal FileName() As String,
ByVal Wplus() As Single, ByVal Wminus() As Single) As Integer

 'looks fine
 'here we use the first part of bayes to get the value of
posterior probability
 'we have to use the postlogit array as prior probability when
we calculate P(d:x)
 'and P(d)
 'weights are automatically picked from the data grid view, but
the arrays with final summation of weights
 'has to be stripped of values that are not included within
deposits and missing evidence ???
 'we need to input a layer representing the area of missing
evidence = bmp indexed image then perform a boolean with
 'deposit and this layer to get only values useful for the
calculation, we consider only missing evidence as we are
 'using it to calculate the posterior probability resulting
when missing evidence is intersected
 'therefore a cumulative area obtained combining all the
missing evidence on a single layer positively defines
 'the pixel where this calculation is meaningfull
 'in any case we cannot calculate sigma^2(p) for missing
eveidence if there is no missing evidence
 Dim Form5Inst As New Form5

 Dep = Form5Inst.AD(TextBox8.Text)
 imagesize = Bitmap.FromFile(FileName(0))

 'Static header() As Byte 'on

Appendix C Source code

Leonardo Feltrin C-34

 Dim postlogit((imagesize.Height * imagesize.Width) - 1) As
Single
 Dim postlogit_miss((imagesize.Height * imagesize.Width) - 1)
As Single
 'four
 Dim weightedArray((imagesize.Height * imagesize.Width) - 1) As
Single 'six necessary to weight step
 ' Static rescale((imagesize.Height * imagesize.Width) - 1) As
Single 'seven

 Dim ab As Integer
 For ab = 0 To FileName.Length - 1

 If FileName(ab) = Nothing Then
 Exit For
 End If
 Dim evidence As Bitmap =
Bitmap.FromFile(FileName(ab).ToString)

 Dim myfile((evidence.Width * evidence.Height) - 1) As Byte
 Dim color As System.Drawing.Color
 Dim county As Integer
 Dim countx As Integer
 Dim s As Integer
 For county = 0 To evidence.Height - 1
 For countx = 0 To evidence.Width - 1
 color = evidence.GetPixel(countx, county)

 If CInt(color.B) <> 0 And CInt(color.G) <> 0 And
CInt(color.R) <> 0 Then
 myfile(s) = 1
 Else
 myfile(s) = 0
 End If

 s = s + 1
 Next
 Next
 s = 0
 Dim value As Byte
 Dim ard As Integer

 If FileName(ab) Is Nothing Then 'solves issue of final (0)
 Exit For
 Else

 'here we convert the image in evdence layer using the
weights
 For ard = 0 To myfile.Length - 1

 value = myfile(ard)

Appendix C Source code

Leonardo Feltrin C-35

 If value = 0 Then
 weightedArray(ard) = Wminus(ab)
 Else
 weightedArray(ard) = Wplus(ab)
 End If
 Next

 'For y = 0 To imagesize.Height - 1
 ' For x = 0 To imagesize.Width - 1
 ' 'value = imagesize(a)

 ' If imagesize.GetPixel(x, y) =
Color.FromArgb(0, 0, 0) Then
 ' weightedArray(x * y) = Wminus(ab)
 ' Else
 ' weightedArray(x * y) = Wplus(ab)
 ' End If

 ' Next
 'Next

 End If

 'now we need to add the evidence layer created to the
prior probability
 'prilogit should be calculated as the ratio D/T the
conversion in ODDS and
 'ln function gives prilogit value
 'I need the deposit layer and the tot number of pixels

 ' Dep = Form5Inst.AD(TextBox8.Text)
 ' Dim Dep_conv As Single = Dep * 0.000269
 Dim priprob As Single = (Dep / (imagesize.Height *
imagesize.Width))
 Dim priOdd As Single = priprob / (1 - priprob)
 Dim con As Single
 con = Math.Log(Double.Parse(priOdd))

 Dim ac As Integer
 Dim priorlogit((imagesize.Height * imagesize.Width) - 1)
As Single 'five

 ' con = Single.Parse(TextBox6.Text)
 For ac = 0 To ((imagesize.Height * imagesize.Width) - 1)
 priorlogit(ac) = con
 Next

Appendix C Source code

Leonardo Feltrin C-36

 For ac = 0 To postlogit.Length - 1
 If ab = 0 Then
 postlogit(ac) = postlogit(ac) + priorlogit(ac) +
weightedArray(ac)
 Else
 postlogit(ac) = postlogit(ac) + weightedArray(ac)
 End If
 'we get a postlogit value that is the sum of all
images- as postlogit is declared
 'outside the For "ab" loop, each cycle updates its
value

 Next

''
''
 'From this point we introduce new code that considers the
missing eveidence
 'the code loads the missing eveidence layer a boolean
image
 'where pixel columns contain missing information the
weights are turned to (0)

 Dim MissingEv As String
 Dim MEArray() As Byte
 Dim test As String =
Bayes_Data_Source_ModelDataGridView.Rows(ab).Cells(3).Value.ToString

 If Not
Bayes_Data_Source_ModelDataGridView.Rows(ab).Cells(3).Value.ToString =
"" Then

 MissingEv =
Bayes_Data_Source_ModelDataGridView.Rows(ab).Cells(3).Value
 MEArray =
My.Computer.FileSystem.ReadAllBytes(MissingEv)
 Array.Reverse(MEArray)
 Array.Resize(MEArray, imagesize.Height *
imagesize.Width)
 'Array.Reverse(MEArray) changed as all others were not
reversed to original like bayes to display purpose

 Dim a As Integer
 For a = 0 To MEArray.Length - 1
 If Not MEArray(a) = 0 Then
 'seems that here we turn to 0 all the pixels
that has at least one layer with missing evidence in it
 'the weightedArray is computed multiple times
for each j layer so we put 0 in each layer with missing
 'evidence
 weightedArray(a) = 0

Appendix C Source code

Leonardo Feltrin C-37

 End If
 Next

 End If

''
'''''''''''''''''''''''''''''''''''''''
 For ac = 0 To postlogit.Length - 1
 If ab = 0 Then
 postlogit_miss(ac) = postlogit_miss(ac) +
priorlogit(ac) + weightedArray(ac)
 Else
 postlogit_miss(ac) = postlogit_miss(ac) +
weightedArray(ac)
 End If
 'we get a postlogit value that is the sum of all
images- as postlogit is declared
 'outside the For "ab" loop, each cycle updates its
value

 Next
 Next

 ' I think that here we can insert some code to filter out the
postlogit that are needed for the missing ev.
 ' postlogit will be used as p(d:x)

 'MsgBox(postlogit(postlogit.Length - 1).ToString)
 'Dim am As Integer
 'For am = 0 To postlogit.Length - 1

 ' 'we need to convert to integer
 ' 'Dim MyDouble As Double = 42.72
 ' 'Dim MyInt As Integer = CType(MyDouble, Integer)
 ' '' MyInt has the value of 43.

 'Next

 'For am = 0 To postlogit.Length - 1
 ' My.Computer.FileSystem.WriteAllText("c:\wofe\test",
postlogit(am), True)
 'Next

Appendix C Source code

Leonardo Feltrin C-38

 'now we need to rescale the double in a way that we can
generate a byte array

 'Dim ad As Integer
 Dim aq As Integer

 Dim postprob(postlogit.Length - 1) As Single
 Dim postprob_miss(postlogit.Length - 1) As Single
 ' Dim postprobByte(postlogit.Length - 1) As Byte
 For aq = 0 To postlogit.Length - 1
 'we convert to probability
 'postodds= exp(postlogit)
 'postprob= postodds/(1+postodds)

 'this post prob is Pk of Carranza 2004
 postprob(aq) = Math.Exp(postlogit(aq)) / (1 +
Math.Exp(postlogit(aq)))
 postprob_miss(aq) = Math.Exp(postlogit_miss(aq)) / (1 +
Math.Exp(postlogit_miss(aq)))

 'we recover the alghorithm need to be modified the input
as we have to filter out the areas without the
 'missing evidence
 'note that we need just the pixels intersecting a deposit
 'therefore we have to perform the summation of weights
only overlapping with pixel 1 of deposit layer
 'an if statement should work
 'we consider only the weights of layers holding the
missing evidence as the other weights were previously
 'updated, therfore we introduce an updated prior
probability that already considers the weight of layers
 'without missing evidence
 Next

 'These below are two arrays with values of Posterior prob in
case of non-missing or missing evidence
 'We can save these arrays as binary files but this will need
to convert them in a scale of 255 bytes
 PkD = postprob_miss
 PDx = postprob

 If CheckBox1.Checked Then

 BinArcon(PkD)

Appendix C Source code

Leonardo Feltrin C-39

 Try

My.Computer.FileSystem.RenameFile("c:\wofe\arraybin.bin",
"PkD_miss.bin")
 Catch ex As Exception
 File.Delete("c:\wofe\PkD_miss.bin")

My.Computer.FileSystem.RenameFile("c:\wofe\arraybin.bin",
"PkD_miss.bin")
 End Try
 Else
 PkD = PDx
 File.Delete("c:\wofe\PkD_miss.bin")
 End If

 BinArcon(PDx)
 Try
 My.Computer.FileSystem.RenameFile("c:\wofe\arraybin.bin",
"PDx.bin")
 Catch ex As Exception
 File.Delete("c:\wofe\PDx.bin")
 My.Computer.FileSystem.RenameFile("c:\wofe\arraybin.bin",
"PDx.bin")
 End Try

 'Dim acd As Integer
 'Dim counter As Integer
 'Dim d() As Byte =
My.Computer.FileSystem.ReadAllBytes("d.bin")
 'For acd = 0 To postprob.Length - 1
 ' If d(acd) > 0 Then
 ' PkD(counter) = postprob(acd)
 ' counter = counter + 1
 ' End If
 'Next

 'My.Computer.FileSystem.OpenTextFileWriter("Pk.txt", False,
System.Text.Encoding.Unicode)
 End Function

 Private Sub Button12_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button12.Click
 My.Forms.Form6WofeViewer.Close()
 My.Forms.Form6WofeViewer.Show()
 End Sub

Appendix C Source code

Leonardo Feltrin C-40

 Private Function SigmaSQ(ByVal FileName() As String, ByVal
sWplus() As Single, ByVal sWminus() As Single) As Integer

 ' I need to firslty select the bitmaps created with convert,
then store the strings in the first column
 'manually we type in the weights and ask for that with a msg
box
 'all is set and ready for the calculation
 'we need to select each row and use the loop to convert the
pixels to an array of weights
 'we need to sum up the images to the prior probability image

 Dim s2SumWeights((imagesize.Height * imagesize.Width) - 1) As
Single

 Dim s2SumWeights_miss((imagesize.Height * imagesize.Width) -
1) As Single

 Dim ab As Integer

 For ab = 0 To FileName.Length - 1
 Dim weightedArray((imagesize.Height * imagesize.Width) -
1) As Single 'six necessary to weight step
 ''''''new code from here
 If FileName(ab) = Nothing Then
 Exit For
 End If
 Dim evidence As Bitmap =
Bitmap.FromFile(FileName(ab).ToString)

 Dim myfile((evidence.Width * evidence.Height) - 1) As Byte
 Dim color As System.Drawing.Color
 Dim county As Integer
 Dim countx As Integer
 Dim s As Integer
 For county = 0 To evidence.Height - 1
 For countx = 0 To evidence.Width - 1
 color = evidence.GetPixel(countx, county)

 If CInt(color.B) <> 0 And CInt(color.G) <> 0 And
CInt(color.R) <> 0 Then
 myfile(s) = 1
 Else
 myfile(s) = 0
 End If

 s = s + 1

Appendix C Source code

Leonardo Feltrin C-41

 Next
 Next
 s = 0
 ''''''''''''''to here
 'here we start looping the different layers
 Dim value As Byte
 Dim ard As Integer

 If FileName(ab) Is Nothing Then
 Exit For
 Else

 'here we convert the image in evdence layer using the
weights
 For ard = 0 To myfile.Length - 1

 value = myfile(ard)

 If value = 0 Then
 weightedArray(ard) = Math.Pow(sWminus(ab), 2)
' here we get the variance from the previously calculated standard dev
 Else
 weightedArray(ard) = Math.Pow(sWplus(ab), 2)
 End If
 Next

 End If
 Dim ac As Integer

 'progressively the weights grow
 For ac = 0 To s2SumWeights.Length - 1
 'this result works if no missing evidence is
considered
 s2SumWeights(ac) = s2SumWeights(ac) +
weightedArray(ac)

 Next

 'From this point we introduce new code that considers the
missing eveidence
 'the code loads the missing eveidence layer a boolean
image
 'where pixel columns contain missing information the
weights are turned to (0)

 Dim MissingEv As String
 Dim MEArray() As Byte
 Dim test As String =
Bayes_Data_Source_ModelDataGridView.Rows(ab).Cells(3).Value.ToString

Appendix C Source code

Leonardo Feltrin C-42

 If Not
Bayes_Data_Source_ModelDataGridView.Rows(ab).Cells(3).Value.ToString =
"" Then

 MissingEv =
Bayes_Data_Source_ModelDataGridView.Rows(ab).Cells(3).Value
 MEArray =
My.Computer.FileSystem.ReadAllBytes(MissingEv)
 Array.Reverse(MEArray)
 Array.Resize(MEArray, imagesize.Height *
imagesize.Width)
 'Array.Reverse(MEArray) changed as all others were not
reversed to original like bayes to display purpose

 Dim a As Integer
 For a = 0 To MEArray.Length - 1
 If Not MEArray(a) = 0 Then
 weightedArray(a) = 0
 End If
 Next

 End If

 'progressively the weights grow
 For ac = 0 To s2SumWeights.Length - 1
 'this result works if missing evidence is considered
 'note that s2SumWeights_miss is different
 s2SumWeights_miss(ac) = s2SumWeights_miss(ac) +
weightedArray(ac)

 Next
 Next

 Dim cellsz = TextBox9.Text
 Dim s2Pk(PkD.Length - 1) As Single
 Dim arl As Integer
 Dim s2Pk_tot(PkD.Length - 1) As Single
 Dim s2PDx(PDx.Length - 1) As Single
 For arl = 0 To s2SumWeights.Length - 1

 'here we consider missing evidence as not really missing
so we use either positive or negative s2(weights)
 s2PDx(arl) = (((1 / (Dep * cellsz)) + s2SumWeights(arl)) *
Math.Pow(PDx(arl), 2))

 'here we consider the missing evidence as 0 so the s(W)
become 0 when the evidence is missing, this is equivalent to
 'summing up only patterns that have weights on them
 If CheckBox1.Checked Then
 s2Pk(arl) = (((1 / (Dep * cellsz)) +
s2SumWeights_miss(arl)) * Math.Pow(PkD(arl), 2))

Appendix C Source code

Leonardo Feltrin C-43

 End If
 'here we get the total s(Pk) adding the re-estimated
influence of missing evidence due to its uncertainty
 'this should improve our error estimate
 'here I want a message box that split the calculation

 If CheckBox1.Checked Then
 s2Pk_tot(arl) = s2Pk(arl) + SigmaSQ_missingev(arl)
 End If

 Next
 'out of this we get 2 matrix one is s2pk and the other is
s2Pk_tot, we have already created the function that
 'converts probability arrays to maps so we just need to
provide the files to that function
 'For uncertainty maps we just then want s2pk and s2Pk_tot
 If CheckBox1.Checked Then
 s2Pkf_miss = Spk_sum(s2Pk_tot)
 BinArcon(s2Pk_tot)
 Try

My.Computer.FileSystem.RenameFile("c:\wofe\arraybin.bin",
"s2Pk_tot_miss.bin")
 Catch ex As Exception
 File.Delete("c:\wofe\s2Pk_tot_miss.bin")

My.Computer.FileSystem.RenameFile("c:\wofe\arraybin.bin",
"s2Pk_tot_miss.bin")
 End Try

 End If
 s2Pkf = Spk_sum(s2PDx)
 BinArcon(s2PDx)
 Try
 My.Computer.FileSystem.RenameFile("c:\wofe\arraybin.bin",
"s2PDx.bin")
 Catch ex As Exception
 File.Delete("c:\wofe\s2PDx.bin")
 My.Computer.FileSystem.RenameFile("c:\wofe\arraybin.bin",
"s2PDx.bin")

 End Try
 'This function provides the final s^2(Pk)results considering
the two cases of missing or non missing evidence,
 ' these also represent the s^2(N{D}pred)
 'remains to estimate the values of N{D} and N{Dpred}, we have
to be careful
 ' as there is a change of variables also during the estimation
of N{D}pred
 'if we consider the missing evidence

 End Function

Appendix C Source code

Leonardo Feltrin C-44

 'Public Sub SigmaSQ_missing_evidence()

 ' Dim a As Integer
 ' Dim b(PkD.Length - 1) As Double

 ' For a = 0 To PkD.Length - 1
 ' If PDx(a) - PkD(a) = 0 Then
 ' b(a) = 0
 ' Else
 ' b(a) = Math.Pow((PDx(a) - PkD(a)), 2) '* 'frequency
of occurrence for class deltaPpost(k)(1 / (imagesize.Width *
imagesize.Height) * cellsz)
 ' End If
 ' Next
 ' SigmaSQm = b
 'End Sub

 Private Function Spk_sum(ByVal Input() As Single) As Single
 cellsz = TextBox9.Text

 Dim arr1(Input.Length - 1) As Single
 Input.CopyTo(arr1, 0) 'e.g. s2Pk
 Dim arr2(arr1.Length - 1) As Single
 Dim arr3(arr2.Length - 1) As Single

 Dim b As Integer = 0
 Dim spk As Double = 0
 Array.Sort(arr1)
 Dim a As Integer = Nothing
 'This cycle loop through the array s2Pk and define its classes
that are summarised in arr2
 For a = 0 To arr1.Length - 2
 If Not arr1(a) = arr1(a + 1) Then
 Array.ConstrainedCopy(arr1, a, arr2, b, 1)
 b = b + 1
 arr2(b) = arr1(a + 1) 'classes

 End If
 Next

 Array.Resize(arr2, Array.IndexOf(arr2, Nothing))
 'This cycle counts the number of elements within s2Pk for each
defined class
 For a = 0 To arr2.Length - 1
 For b = 0 To arr1.Length - 1
 If arr2(a) = arr1(b) Then
 arr3(a) = arr3(a) + 1 'counter
 End If
 Next
 Next
 Array.Resize(arr3, Array.IndexOf(arr3, Nothing))
 Dim arr4(arr2.Length - 1) As Single

Appendix C Source code

Leonardo Feltrin C-45

 'This cycle creates an array that computes the square value of
the area of each class mutiplied for its value then finally
 'all the cumulative classes of spk are summed up to get the
total value (this number when is big it means that there might be
overestimation)
 For a = 0 To arr2.Length - 1
 arr4(a) = Math.Pow((arr3(a) * cellsz), 2) * arr2(a)
 spk = spk + arr4(a)
 Next
 'MsgBox((spk), MsgBoxStyle.OKOnly)
 Return spk

 End Function
 Private Sub OminbusTest_NewOminibus()

 'we need to compute the summation of Pk or PDx depending if we
consider missing evidence or not
 'Carranza uses PDx instead of Pk to verify the influence of
missing evidence layers

 Dim cellsz = TextBox9.Text
 Dim a As Integer
 Dim NDpred As Double = 0
 Dim NDpred_m As Double = 0
 For a = 0 To PkD.Length - 1

 NDpred_m = NDpred_m + PkD(a) 'these are not standard
deviations

 NDpred = NDpred + PDx(a)

 Next
 PkD = Nothing
 PDx = Nothing
 Dim OT As Single = 0
 Dim OT_m As Single = 0
 OT = Dep / NDpred
 Label39.Text = OT
 OT_m = Dep / NDpred_m
 Label41.Text = OT_m
 ' MsgBox("OT should be higher than 0.85<< " & "OT " &
OT.ToString & "OT_m " & OT_m.ToString)

 Dim NewOT As Single = 0
 Dim NewOT_m As Single = 0

 NewOT_m = ((NDpred_m * cellsz) - (Dep * cellsz)) /
Math.Sqrt(s2Pkf_miss)
 Label45.Text = NewOT_m
 NewOT = ((NDpred * cellsz) - (Dep * cellsz)) /
Math.Sqrt(s2Pkf)
 Label43.Text = NewOT

Appendix C Source code

Leonardo Feltrin C-46

 ' MsgBox("NewOT should be lower than 0.7>> " & "NewOT " &
NewOT.ToString & "NewOT_m " & NewOT_m.ToString)

 Dim file As System.IO.StreamWriter
 file =
My.Computer.FileSystem.OpenTextFileWriter("c:\wofe\NOT&OT.txt", False)

 file.WriteLine("OT OT_m")
 file.WriteLine(OT & " " & OT_m)
 file.WriteLine("NewOT NewOT_m")
 file.WriteLine(NewOT & " " & NewOT_m)
 file.Close()

 End Sub

 Public Sub open_dep()
 'Dim myStream As Stream

 Dim selectFileDialog1 As New OpenFileDialog()

 selectFileDialog1.InitialDirectory = "c:\wofe\"
 selectFileDialog1.Filter = "bmp files (*.bmp)|*.bmp|All files
(*.*)|*.*"
 selectFileDialog1.FilterIndex = 2
 selectFileDialog1.RestoreDirectory = True

 If selectFileDialog1.ShowDialog() = DialogResult.OK Then

 Me.TextBox8.Text = selectFileDialog1.FileName

 'myStream = selectFileDialog1.OpenFile()
 'If Not (myStream Is Nothing) Then
 ' Insert code to read the stream here.
 'myStream.Close()
 'End If
 End If

 End Sub

 Private Sub saveToolStripMenuItem_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
saveToolStripMenuItem.Click
 If Me.Validate Then
 Me.Bayes_Data_Source_ModelBindingSource.EndEdit()

Me.Bayes_Data_Source_ModelTableAdapter.Update(Me.BayesDataSet.Bayes_Da
ta_Source_Model)
 Else

Appendix C Source code

Leonardo Feltrin C-47

 System.Windows.Forms.MessageBox.Show(Me, "Validation
errors occurred.", "Save", System.Windows.Forms.MessageBoxButtons.OK,
System.Windows.Forms.MessageBoxIcon.Warning)
 End If

 Try
 My.Computer.FileSystem.CopyFile("Bayes.mdb",
"c:\wofe\DataBase\Bayes.mdb")
 Catch ex As Exception

My.Computer.FileSystem.DeleteFile("c:\wofe\DataBase\Bayes.mdb")
 My.Computer.FileSystem.CopyFile("Bayes.mdb",
"c:\wofe\DataBase\Bayes.mdb")
 End Try
 End Sub

 Private Sub exitToolStripMenuItem_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
exitToolStripMenuItem.Click
 Me.Close()
 End Sub

 Private Sub openToolStripMenuItem_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
openToolStripMenuItem.Click
 Try
 My.Computer.FileSystem.CopyFile("Bayes.mdb",
"c:\wofe\DataBase\Bayes.mdb")
 Catch ex As Exception
 Exit Try
 End Try

 'this is to open bmp files and display or manipulate them
 Dim openFileDialog As New OpenFileDialog
 openFileDialog.Filter = "Data Files(*.MDB)" + "|*.MDB;|All
files (*.*)|*.*"
 openFileDialog.FilterIndex = 2
 openFileDialog.RestoreDirectory = True

 If DialogResult.OK = openFileDialog.ShowDialog() Then

 Dim a As String = openFileDialog.FileName
 Try
 My.Computer.FileSystem.RenameFile("Bayes.mdb",
"Bayes_saved.mdb")
 Catch ex As Exception
 My.Computer.FileSystem.DeleteFile("Bayes_saved.mdb")

Appendix C Source code

Leonardo Feltrin C-48

 My.Computer.FileSystem.RenameFile("Bayes.mdb",
"Bayes_saved.mdb")
 End Try

 My.Computer.FileSystem.CopyFile(a, "Bayes.mdb")

 ElseIf DialogResult.Cancel Then
 Exit Sub

 End If

 'TODO: This line of code loads data into the
'FirstDatabaseDataSet.sysdiagrams' table. You can move, or remove it,
as needed.

Me.Bayes_Data_Source_ModelTableAdapter.Fill(Me.BayesDataSet.Bayes_Data
_Source_Model)

 ' bmpImage = CType(Bitmap.FromFile(openFileDialog.FileName,
False), Bitmap)
 ' Me.AutoScroll = False
 ' ' Me.AutoScrollMinSize = New Size(CInt(bmpImage.Width *
curZoom), CInt(bmpImage.Height * curZoom))
 ' ' Me.Invalidate()
 ' ' zoomMode = True
 'End If
 '' curRect = New Rectangle(0, 0, bmpImage.Width,
bmpImage.Height)
 ''originalSize.Width = bmpImage.Width
 ''originalSize.Height = bmpImage.Height
 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 'TODO: This line of code loads data into the
'BayesDataSet.Bayes_Data_Source_Model' table. You can move, or remove
it, as needed.

Me.Bayes_Data_Source_ModelTableAdapter.Fill(Me.BayesDataSet.Bayes_Data
_Source_Model)
 End Sub

 Private Sub bindingNavigatorSaveItem_Click_1(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
bindingNavigatorSaveItem.Click
 If Me.Validate Then
 Me.Bayes_Data_Source_ModelBindingSource.EndEdit()

Appendix C Source code

Leonardo Feltrin C-49

Me.Bayes_Data_Source_ModelTableAdapter.Update(Me.BayesDataSet.Bayes_Da
ta_Source_Model)
 Else
 System.Windows.Forms.MessageBox.Show(Me, "Validation
errors occurred.", "Save", System.Windows.Forms.MessageBoxButtons.OK,
System.Windows.Forms.MessageBoxIcon.Warning)
 End If
 Try
 My.Computer.FileSystem.CopyFile("Bayes.mdb",
"c:\wofe\DataBase\Bayes.mdb")
 Catch ex As Exception

My.Computer.FileSystem.DeleteFile("c:\wofe\DataBase\Bayes.mdb")
 My.Computer.FileSystem.CopyFile("Bayes.mdb",
"c:\wofe\DataBase\Bayes.mdb")
 End Try
 End Sub

 Private Sub Bayes_Data_Source_ModelDataGridView_MouseWheel(ByVal
sender As Object, ByVal e As System.Windows.Forms.MouseEventArgs)
Handles Bayes_Data_Source_ModelDataGridView.MouseWheel
 Dim selectFileDialog1 As New OpenFileDialog()

 selectFileDialog1.InitialDirectory = "c:\"
 selectFileDialog1.Filter = "bmp files (*.bmp)|*.bmp|All files
(*.*)|*.*"
 selectFileDialog1.FilterIndex = 2
 selectFileDialog1.RestoreDirectory = True

 'If selectFileDialog1.ShowDialog() = DialogResult.Cancel Then
 ' Exit Sub
 If selectFileDialog1.ShowDialog() = DialogResult.OK Then

 Me.Bayes_Data_Source_ModelDataGridView.CurrentCell.Value =
selectFileDialog1.FileName

 ' 'myStream = selectFileDialog1.OpenFile()
 ' 'If Not (myStream Is Nothing) Then
 ' ' Insert code to read the stream here.
 ' 'myStream.Close()
 End If
 End Sub

 Private Function BinArcon(ByVal input() As Single) As Byte

 'This function is a generalisation of the second part of the
Bayes alghorithm, it is designed to solve a problem of
 'compatibility between arrays and bmp files, basically we need
a conversion from single to byte
 'The main difficulty is that this conversion has to represent
probability in a scale of 255 colors.

Appendix C Source code

Leonardo Feltrin C-50

 'Casting of single withought rescaling will likely reduce all
the array values to 0. Therfore it is useful to
 'firstly define the minimum value of the array then multiply
for an appropriate scaling factor to
 'obtain a range of values large than delta255
 'We need a string to save the name of each output file

 Dim ad As Integer

 Dim postprobByte(input.Length - 1) As Byte
 Dim rescale(input.Length - 1) As Single

 Array.Copy(input, rescale, input.Length)
 Array.Sort(rescale)

 Dim min As Single = rescale(0)
 Dim max As Single = rescale(rescale.Length - 1)

 My.Computer.FileSystem.WriteAllText("c:\wofe\scale_M.txt",
"min = " & min.ToString & "max = " & max.ToString, False)

 For ad = 0 To input.Length - 1

 ' we shift or translate the scale to get a minimum of 0
 'min must become firslty equal to 1 so if min*x=1
 Dim alfa As Single = (1 / min)
 input(ad) = input(ad) * alfa
 input(ad) = (input(ad) - (min * alfa))
 input(ad) = (input(ad) * 255) / ((max * alfa) - (min *
alfa))
 postprobByte(ad) = CByte((input(ad)))
 input(ad) = (input(ad) * ((max * alfa) - (min * alfa))) /
255
 input(ad) = (input(ad) + (min * alfa))
 input(ad) = input(ad) / alfa
 Next

 Dim response As MsgBoxResult = MsgBox("Binary conversion
completed, would you like to save the file?", MsgBoxStyle.YesNo)

 If response = MsgBoxResult.Yes Then

 Dim saveFileDialog1 As New SaveFileDialog()

 saveFileDialog1.InitialDirectory = "c:\wofe\"
 saveFileDialog1.Filter = "bin files (*.bin)|*.bin|All
files (*.*)|*.*"
 saveFileDialog1.FilterIndex = 2
 saveFileDialog1.RestoreDirectory = True

Appendix C Source code

Leonardo Feltrin C-51

 If saveFileDialog1.ShowDialog() = DialogResult.OK Then

My.Computer.FileSystem.WriteAllBytes((saveFileDialog1.FileName),
postprobByte, False)
 End If
 Else

My.Computer.FileSystem.WriteAllBytes("c:\wofe\arraybin.bin",
postprobByte, False)
 End If

 End Function

 Private Sub Button11_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button11.Click

 'This function save a bmp file of an array of posteriror
probability
 'Dim myStream As Stream
 Dim selectFileDialog1 As New OpenFileDialog()

 selectFileDialog1.InitialDirectory = "c:\wofe\"
 selectFileDialog1.Filter = "bin files (*.bin)|*.bin|All files
(*.*)|*.*"
 selectFileDialog1.FilterIndex = 2
 selectFileDialog1.RestoreDirectory = True
 'first dialog fpr selection of binary array to map
 If selectFileDialog1.ShowDialog() = DialogResult.OK Then

 Dim name As String = selectFileDialog1.FileName

 Dim postprobByte() As Byte =
My.Computer.FileSystem.ReadAllBytes(name)
 MsgBox("Please select reference (rows*column bmp file)",
MsgBoxStyle.OKOnly)
 'Array.Reverse(postprobByte)

 'second dialogue box for selection of a bmp as reference
 Dim selectFileDialog2 As New OpenFileDialog()

 selectFileDialog2.InitialDirectory = "c:\wofe\"
 selectFileDialog2.Filter = "bmp files (*.bmp)|*.bmp|All
files (*.*)|*.*"
 selectFileDialog2.FilterIndex = 2
 selectFileDialog2.RestoreDirectory = True

 If selectFileDialog2.ShowDialog() = DialogResult.OK Then

 'There might be a problem with loading this binary
file in term of header
 bayesmap = Bitmap.FromFile(selectFileDialog2.FileName)
 Dim x As Integer

Appendix C Source code

Leonardo Feltrin C-52

 Dim y As Integer
 Dim count As Integer = 0

 '(bayesmap.Width - 1) - inverted also y with x

 For y = 0 To bayesmap.Height - 1
 For x = 0 To bayesmap.Width - 1
 bayesmap.SetPixel(x, y,
Color.FromArgb(postprobByte(count), postprobByte(count),
postprobByte(count)))
 count = count + 1
 Next
 Next

 File.Delete(name & ".bmp")
 bayesmap.Save(name & ".bmp")

 MsgBox("Map completed and saved in " & name & ".bmp")
 End If
 End If
 End Sub

 Private Sub Button14_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button14.Click
 'This routine is compiled to solve the problem of calculating
the additional error seen as variance of the posterior
 'probability. The objective is to create a function that input
info from the datagrid view
 'in particular the weights and the relative missing patterns,
in term of number and area

 'Here we select the patterns with missing evidence
 'start new ot ot

 Try
 cell = Me.TextBox9.Text
 Catch ex As Exception
 MsgBox("Please provide cell size")
 Exit Sub
 End Try

 d = Nothing
 PkD = Nothing
 PDx = Nothing

 SigmaSQm = Nothing
 s2Pk = Nothing
 s2Pkf = Nothing
 s2Pkf_miss = Nothing
 Dep = Nothing
 bmpsizepub = Nothing
 AD_w = Nothing

Appendix C Source code

Leonardo Feltrin C-53

 AI_w = Nothing
 AG_w = Nothing
 AT_w = Nothing 'shared variables expressing areas as cell
numbers; they work in all sub routines

 Dim a As Integer
 'Dim b As Integer

 Dim FileName(Bayes_Data_Source_ModelDataGridView.Rows.Count)
As String
 Dim Wplus(Bayes_Data_Source_ModelDataGridView.Rows.Count) As
Single
 Dim Wminus(Bayes_Data_Source_ModelDataGridView.Rows.Count) As
Single
 Dim sWplus(Bayes_Data_Source_ModelDataGridView.Rows.Count) As
Single
 Dim sWminus(Bayes_Data_Source_ModelDataGridView.Rows.Count) As
Single
 Dim MissEv(Bayes_Data_Source_ModelDataGridView.Rows.Count) As
String

 Dim FileName_r(Bayes_Data_Source_ModelDataGridView.Rows.Count)
As String
 Dim Wplus_r(Bayes_Data_Source_ModelDataGridView.Rows.Count) As
Single
 Dim Wminus_r(Bayes_Data_Source_ModelDataGridView.Rows.Count)
As Single
 Dim sWplus_r(Bayes_Data_Source_ModelDataGridView.Rows.Count)
As Single
 Dim sWminus_r(Bayes_Data_Source_ModelDataGridView.Rows.Count)
As Single
 Dim MissEv_r(Bayes_Data_Source_ModelDataGridView.Rows.Count)
As String

 For a = 0 To Bayes_Data_Source_ModelDataGridView.Rows.Count
 'DBnull
 Try
 If
Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(3).Value Is
System.DBNull.Value Then
 Exit Try
 End If
 FileName(a) =
Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(6).Value
 Wplus(a) =
Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(1).Value
 Wminus(a) =
Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(2).Value
 sWplus(a) =
Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(4).Value

Appendix C Source code

Leonardo Feltrin C-54

 sWminus(a) =
Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(5).Value
 MissEv(a) =
Bayes_Data_Source_ModelDataGridView.Rows(a).Cells(3).Value

 Catch : Exit For

 End Try

 Next

 Dim b As Integer
 For a = 0 To FileName.Length - 1
 If FileName(a) <> Nothing Then
 FileName_r(b) = FileName(a)
 Wplus_r(b) = Wplus(a)
 Wminus_r(b) = Wminus(a)
 sWplus_r(b) = sWplus(a)
 sWminus_r(b) = sWminus(a)
 MissEv_r(b) = MissEv(a)

 b = b + 1
 Else

 End If
 Next
 ' we need to reduce FileName to just the layer with missing
evidence in it
 missing_evidence(FileName_r, Wplus_r, Wminus_r, MissEv_r)

 End Sub

 Private Function missing_evidence(ByVal FileName_r() As String,
ByVal Wplus_r() As Single, ByVal Wminus_r() As Single, ByVal
MissEv_r() As String) As Integer

 'looks fine
 'here we use the first part of bayes to get the value of
posterior probability
 'we have to use the postlogit array as prior probability when
we calculate P(d:x)
 'and P(d)
 'weights are automatically picked from the data grid view, but
the arrays with final summation of weights
 'has to be stripped of values that are not included within
deposits and missing evidence ???
 'we need to input a layer representing the area of missing
evidence = bmp indexed image then perform a boolean with
 'deposit and this layer to get only values useful for the
calculation, we consider only missing evidence as we are

Appendix C Source code

Leonardo Feltrin C-55

 'using it to calculate the posterior probability resulting
when missing evidence is intersected
 'therefore a cumulative area obtained combining all the
missing evidence on a single layer positively defines
 'the pixel where this calculation is meaningfull
 'in any case we cannot calculate sigma^2(p) for missing
eveidence if there is no missing evidence
 Dim Form5Inst As New Form5
 Dim SigmaSQ2(imagesize.Height * imagesize.Width - 1) As Double
 Dep = Form5Inst.AD(TextBox8.Text)
 imagesize = Bitmap.FromFile(FileName_r(0))

 'Static header() As Byte 'on

 'four
 'six necessary to weight step
 ' Static rescale((imagesize.Height * imagesize.Width) - 1) As
Single 'seven

 Dim ab As Integer
 For ab = 0 To FileName_r.Length - 1
 Dim weightedArray((imagesize.Height * imagesize.Width) -
1) As Single
 Dim postlogit((imagesize.Height * imagesize.Width) - 1) As
Single
 Dim postlogit_miss((imagesize.Height * imagesize.Width) -
1) As Single
 Dim postlogit_wplus((imagesize.Height * imagesize.Width) -
1) As Single
 Dim postlogit_wminus((imagesize.Height * imagesize.Width)
- 1) As Single

 Try
 ' imagesize = Bitmap.FromFile(FileName(ab))
 myfile =
My.Computer.FileSystem.ReadAllBytes(FileName_r(ab)) 'may need to
string -- 'three
 Catch : Exit Try
 End Try

 'need to strip the header
 ' Dim headerfile() As Byte =
My.Computer.FileSystem.ReadAllBytes("c:\wofe\imageheader.bmp")
 'header = headerfile
 'Array.Resize(header, (headerfile.Length -
(imagesize.Height * imagesize.Width)))
 Array.Reverse(myfile)
 Array.Resize(myfile, (imagesize.Height * imagesize.Width))
 'Array.Reverse(myfile)

Appendix C Source code

Leonardo Feltrin C-56

 'here we start looping the different layers

 'Dim x As Integer
 'Dim y As Integer
 Dim value As Byte
 Dim ard As Integer

 If FileName_r(ab) Is Nothing Then 'solves issue of final
(0)
 Exit For
 Else

 'here we convert the image in evdence layer using the
weights
 For ard = 0 To myfile.Length - 1

 value = myfile(ard)

 If value = 0 Then
 weightedArray(ard) = Wminus_r(ab)
 Else
 weightedArray(ard) = Wplus_r(ab)
 End If
 Next

 'For y = 0 To imagesize.Height - 1
 ' For x = 0 To imagesize.Width - 1
 ' 'value = imagesize(a)

 ' If imagesize.GetPixel(x, y) =
Color.FromArgb(0, 0, 0) Then
 ' weightedArray(x * y) = Wminus(ab)
 ' Else
 ' weightedArray(x * y) = Wplus(ab)
 ' End If

 ' Next
 'Next

 End If

 'now we need to add the evidence layer created to the
prior probability
 'prilogit should be calculated as the ratio D/T the
conversion in ODDS and

Appendix C Source code

Leonardo Feltrin C-57

 'ln function gives prilogit value
 'I need the deposit layer and the tot number of pixels

 ' Dep = Form5Inst.AD(TextBox8.Text)
 ' Dim Dep_conv As Single = Dep * 0.000269
 Dim priprob As Single = (Dep / (imagesize.Height *
imagesize.Width))
 Dim priOdd As Single = priprob / (1 - priprob)
 Dim con As Single
 con = Math.Log(Double.Parse(priOdd))

 Dim ac As Integer
 Dim priorlogit((imagesize.Height * imagesize.Width) - 1)
As Single 'five

 ' con = Single.Parse(TextBox6.Text)
 For ac = 0 To ((imagesize.Height * imagesize.Width) - 1)
 priorlogit(ac) = con
 Next

 'For ac = 0 To postlogit.Length - 1
 ' If ab = 0 Then
 ' postlogit(ac) = postlogit(ac) + priorlogit(ac) +
weightedArray(ac)
 ' Else
 ' postlogit(ac) = postlogit(ac) + weightedArray(ac)
 ' End If
 ' 'we get a postlogit value that is the sum of all
images- as postlogit is declared
 ' 'outside the For "ab" loop, each cycle updates its
value

 'Next

''
''
 'From this point we introduce new code that considers the
missing eveidence
 'the code loads the missing eveidence layer a boolean
image
 'where pixel columns contain missing information the
weights are turned to (0)

 Dim MissingEv As String
 Dim MEArray() As Byte
 ' Dim test As String =
Bayes_Data_Source_ModelDataGridView.Rows(ab).Cells(3).Value.ToString

Appendix C Source code

Leonardo Feltrin C-58

 MissingEv = MissEv_r(ab)
 MEArray = My.Computer.FileSystem.ReadAllBytes(MissingEv)
 Array.Reverse(MEArray)
 Array.Resize(MEArray, imagesize.Height * imagesize.Width)
 'Array.Reverse(MEArray) changed as all others were not
reversed to original like bayes to display purpose

 Dim a As Integer
 For a = 0 To MEArray.Length - 1
 If Not MEArray(a) = 0 Then
 'seems that here we turn to 0 all the pixels that
has at least one layer with missing evidence in it
 'the weightedArray is computed multiple times for
each j layer so we put 0 in each layer with missing
 'evidence
 weightedArray(a) = 0

 End If
 Next

''
'''''''''''''''''''''''''''''''''''''''
 For ac = 0 To postlogit.Length - 1
 If ab = 0 Then
 postlogit_miss(ac) = postlogit_miss(ac) +
priorlogit(ac) + weightedArray(ac)
 Else
 postlogit_miss(ac) = postlogit_miss(ac) +
weightedArray(ac)
 End If
 'we get a postlogit value that is the sum of all
images- as postlogit is declared
 'outside the For "ab" loop, each cycle updates its
value

 Next

 'LOOP to change to W+

 For a = 0 To MEArray.Length - 1
 If Not MEArray(a) = 0 Then
 'seems that here we turn to 0 all the pixels that
has at least one layer with missing evidence in it
 'the weightedArray is computed multiple times for
each j layer so we put 0 in each layer with missing
 'evidence
 weightedArray(a) = Wplus_r(ab)

Appendix C Source code

Leonardo Feltrin C-59

 End If
 Next

''
'''''''''''''''''''''''''''''''''''''''
 For ac = 0 To postlogit.Length - 1
 If ab = 0 Then
 postlogit_wplus(ac) = postlogit_wplus(ac) +
priorlogit(ac) + weightedArray(ac)
 Else
 postlogit_wplus(ac) = postlogit_wplus(ac) +
weightedArray(ac)
 End If
 'we get a postlogit value that is the sum of all
images- as postlogit is declared
 'outside the For "ab" loop, each cycle updates its
value

 Next

 'LOOP to change to W-

 For a = 0 To MEArray.Length - 1
 If Not MEArray(a) = 0 Then
 'seems that here we turn to 0 all the pixels that
has at least one layer with missing evidence in it
 'the weightedArray is computed multiple times for
each j layer so we put 0 in each layer with missing
 'evidence
 weightedArray(a) = Wminus_r(ab)
 End If
 Next

''
'''''''''''''''''''''''''''''''''''''''
 For ac = 0 To postlogit.Length - 1
 If ab = 0 Then
 postlogit_wminus(ac) = postlogit_wminus(ac) +
priorlogit(ac) + weightedArray(ac)
 Else
 postlogit_wminus(ac) = postlogit_wminus(ac) +
weightedArray(ac)
 End If
 'we get a postlogit value that is the sum of all
images- as postlogit is declared
 'outside the For "ab" loop, each cycle updates its
value

Appendix C Source code

Leonardo Feltrin C-60

 Next

 'now we have all three Pprob we need for the calculation
the area where the jth layer with Pattern Bj has 1 and the area with 0
value
 'which is negBj

 'Calculation of AreaBj
 'For this we need the file path we call the binary file
and use a bit counter to find out the number of 0 and 1

 Dim r As Integer
 'Here we need some code that cleans up the bitmaps for us,
we declare 2 new myarrays that will be locally storing
 'the original BMP in binary format. Then we get the data
out of them and feed SumArray
 Dim PatternBj() As Byte =
My.Computer.FileSystem.ReadAllBytes(FileName_r(ab)) 'we call the file
with missing evidence

 r = (imagesize.Height * imagesize.Width) ' the number of
cells needed to get the number of good data pixels

 'tronca arrays con remove command

 Array.Reverse(PatternBj)
 Array.Resize(PatternBj, r)
 Array.Reverse(PatternBj)

 Dim b As Integer = 0
 Dim Sum As Single = 0

 ' algebric sum of array (PatternBj) we get just 1s not 0
counted, therfore the area of cells containing the pattern
 For b = 0 To PatternBj.Length - 1
 Sum = Sum + PatternBj(b) '-1 is inserted as the array
starts from 0
 Next b

 Dim AreaPattern As Single = Sum

Appendix C Source code

Leonardo Feltrin C-61

 Dim Area_emptyPattern As Single = (r - AreaPattern)

 'estimation of postbrob for the 3 postlogits

 Dim aq As Integer

 Try

 weightedArray = Nothing

 Dim postprob_wminus(postlogit.Length - 1) As Single
 Dim postprob_miss(postlogit.Length - 1) As Single
 Dim postprob_wplus(postlogit.Length - 1) As Single

 ' Dim postprobByte(postlogit.Length - 1) As Byte
 For aq = 0 To postlogit.Length - 1
 'we convert to probability
 'postodds= exp(postlogit)
 'postprob= postodds/(1+postodds)

 'this post prob is Pk of Carranza 2004
 postprob_wplus(aq) = Math.Exp(postlogit_wplus(aq))
/ (1 + Math.Exp(postlogit_wplus(aq)))
 postprob_wminus(aq) =
Math.Exp(postlogit_wminus(aq)) / (1 + Math.Exp(postlogit_wminus(aq)))
 postprob_miss(aq) = Math.Exp(postlogit_miss(aq)) /
(1 + Math.Exp(postlogit_miss(aq)))

 Next

 'sigmasq(Pk)= (P(DBj)-Pk)^2 * PBJ + (P(BnegBj)-Pk)^2 *
PnegBj

 cellsz = TextBox9.Text

 For a = 0 To postlogit.Length - 1
 SigmaSQ2(a) = (Math.Pow((postprob_wplus(a) -
postprob_miss(a)), 2) * ((AreaPattern * cellsz) / (imagesize.Height *
imagesize.Width)) + (Math.Pow((postprob_wminus(a) - postprob_miss(a)),
2) * (Area_emptyPattern * cellsz) / ((imagesize.Height *
imagesize.Width))))
 Next
 Catch ex As Exception
 Exit Function
 End Try

Appendix C Source code

Leonardo Feltrin C-62

 Next

 SigmaSQ_missingev = SigmaSQ2
 MsgBox("missing evidence calculated!")
 End Function

End Class
'remember that inside the buttons we have the code that defines the
order of use of such functionalities
#End Region

C.2. Spatial Analyser

Compiled in VB 2005 (Express Edition)

Software used to compute minimum Euclidean distances (Chapter 6)

Imports System.IO
Imports System.Text
Imports System
Imports System.Drawing
Imports System.Drawing.Printing
Imports System.Collections
Imports System.ComponentModel
Imports System.Windows.Forms

Public Class Form1

 Dim breccia() As Double
 Dim faults() As Double
 Dim deltaMin() As Double

 'Array gen
 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button1.Click
 'the button is used to convert a txt file to an array of data
in double format
 'we need a the initialisation of the butto to get access to
the hard drive and select the file

 Dim selectFileDialog1 As New OpenFileDialog()

 selectFileDialog1.InitialDirectory = "C:\Documents and
Settings\Leonardo\My Documents"

Appendix C Source code

Leonardo Feltrin C-63

 selectFileDialog1.Filter = "txt files (*.txt)|*.txt|All files
(*.*)|*.*"
 selectFileDialog1.FilterIndex = 2
 selectFileDialog1.RestoreDirectory = True

 If selectFileDialog1.ShowDialog() =
Windows.Forms.DialogResult.OK Then
 TextBox1.Text = selectFileDialog1.FileName

 'we need a call to the file that we host in a string
 Dim mystring As String =
My.Computer.FileSystem.ReadAllText(TextBox1.Text)
 'This command split the string in an array of string
containing xyz separated by space
 Dim mystring2() As String = Split(mystring,
Environment.NewLine)

 Dim a As Integer
 Dim b As Integer
 Dim mystring4((mystring2.Length) * 3) As Double
 'the loop is used to split more all data are charging a
single array
 For a = 0 To ((mystring2.Length - 1) * 3)
 Dim mystring3() As String = Split(mystring2(b), " ")
 mystring4(a) = Double.Parse(mystring3(0))
 mystring4(a + 1) = Double.Parse(mystring3(1))
 mystring4(a + 2) = Double.Parse(mystring3(2))
 a = a + 2
 'as b is always very small compared to a then it is
reasonable the use of b in the same loop
 'the problem would be that the loop is based on a
therefore if a ends earlier than b then
 b = b + 1
 If mystring2(b) = "" Then Exit For
 Next
 breccia = mystring4
 While breccia(breccia.Length - 1) = 0
 Array.Resize(breccia, breccia.Length - 1)
 End While

 End If
 End Sub
 'Array gen
 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button2.Click
 'the button is used to convert a txt file to an array of data
in double format
 'we need a the initialisation of the butto to get access to
the hard drive and select the file

 Dim selectFileDialog1 As New OpenFileDialog()

Appendix C Source code

Leonardo Feltrin C-64

 selectFileDialog1.InitialDirectory = "C:\Documents and
Settings\Leonardo\My Documents"
 selectFileDialog1.Filter = "txt files (*.txt)|*.txt|All files
(*.*)|*.*"
 selectFileDialog1.FilterIndex = 2
 selectFileDialog1.RestoreDirectory = True

 If selectFileDialog1.ShowDialog() =
Windows.Forms.DialogResult.OK Then
 TextBox2.Text = selectFileDialog1.FileName

 'we need a call to the file that we host in a string
 Dim mystring As String =
My.Computer.FileSystem.ReadAllText(TextBox2.Text)
 Dim mystring2() As String = Split(mystring,
Environment.NewLine)

 Dim a As Integer
 Dim b As Integer
 Dim mystring4(((mystring2.Length) * 5)) As Double
 'the loop is used to split more all data are charging a
single array
 For a = 0 To (mystring2.Length * 5)
 Dim mystring3() As String = Split(mystring2(b), " ")
 mystring4(a) = Double.Parse(mystring3(0))
 mystring4(a + 1) = Double.Parse(mystring3(1))
 mystring4(a + 2) = Double.Parse(mystring3(2))
 mystring4(a + 3) = Double.Parse(mystring3(3))
 mystring4(a + 4) = Double.Parse(mystring3(4))

 a = a + 4
 b = b + 1
 If b > mystring2.Length - 1 Then Exit For
 If mystring2(b) = "" Then Exit For
 Next
 faults = mystring4
 While faults(faults.Length - 1) = 0
 Array.Resize(faults, faults.Length - 1)
 End While

 End If

 End Sub
 'Algorithm to compute minimum distances between the two pointsets
 Private Sub MainAlgho()
 'variables
 Dim a As Integer

 Dim xb As Double
 Dim yb As Double
 Dim zb As Double

Appendix C Source code

Leonardo Feltrin C-65

 Dim xf As Double
 Dim yf As Double
 Dim zf As Double
 'clear txt file
 Dim file As System.IO.StreamWriter
 file = My.Computer.FileSystem.OpenTextFileWriter("c:\spatial
data\results.txt", False)
 file.WriteLine("")
 file.Close()
 'loops to select the coordinates to compute distance, store
distances on delta

 For a = 0 To breccia.Length - 1
 xb = breccia(a)
 yb = breccia(a + 1)
 zb = breccia(a + 2)

 a = a + 2

 Dim b As Integer = 0
 Dim c As Integer = 0
 Dim delta(faults.Length - 1) As Double 'delta lasts only
inside the b loop
 Dim deltacopy(faults.Length - 1) As Double
 For b = 0 To faults.Length - 1

 xf = faults(b)
 yf = faults(b + 1)
 zf = faults(b + 2)
 b = b + 4
 'delta gets all the distances of a single cbx point
 delta(c) = distance(xb, yb, zb, xf, yf, zf)
 c = c + 1
 Next

 'copy delta for index search
 Array.Copy(delta, deltacopy, delta.Length - 1)
 'sort delta to get a minimum
 Array.Resize(delta, c - 1)
 Array.Sort(delta)

 'compute index and retrive d1 and d2 on faults array
 Dim index As Integer = Array.IndexOf(deltacopy, delta(0))

 Dim d1 As Double = faults((index * 5) + 3)
 Dim d2 As Double = faults((index * 5) + 4)

 'write halt instruction in case of 0 or multiple equal
minimum values
 If delta(0) = 0 Or delta(0) = delta(1) Then
 'export values on a file text that is progressively
updated for each breccia loop in case of 0 or multiple

Appendix C Source code

Leonardo Feltrin C-66

 file =
My.Computer.FileSystem.OpenTextFileWriter("c:\spatial
data\results.txt", True)
 file.WriteLine(xb & " " & yb & " " & zb & " "
& d1 & " " & d2 & " " & delta(0) & " err")
 file.Close()

 'export values on a file text that is progressively
updated for each breccia loop
 Else
 file =
My.Computer.FileSystem.OpenTextFileWriter("c:\spatial
data\results.txt", True)
 file.WriteLine(xb & " " & yb & " " & zb & " "
& d1 & " " & d2 & " " & delta(0))
 file.Close()
 End If

 Next
 MsgBox("Computation completed!")
 End Sub

 Function distance(ByVal xb As Double, ByVal yb As Double, ByVal zb
As Double, ByVal xf As Double, ByVal yf As Double, ByVal zf As Double)
 'Euclidean formula
 Dim dist As Double = Math.Sqrt((Math.Pow(xb - xf, 2)) +
(Math.Pow(yb - yf, 2)) + (Math.Pow(zb - zf, 2)))
 Return dist
 End Function

 Private Sub Button3_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button3.Click
 Me.mainAlgho()
 End Sub
End Class

Appendix D Specimens list

Leonardo Feltrin D-1

APPENDIX D

Appendix D Specimens list

Leonardo Feltrin D-2

 Table D.1. Summary of rock specimens used in this thesis, illustrating their relative location, age, lithology and stratigraphic collocation.

* Easting and Northing expressed either as AMG84 coordinates or Mine Grid coordinates.
** MP = Mesoproterozoic, MC = Middle Cambrian.

Specimen ID Location Easting* Northing Age** Lithotype Stratigraphic Unit Chapter Figure

CDH 114 PCM 338(171.41 m) 47132.61 27873.7 MP Siltstone/Shale Pmh4s 3 5a
CDH83 PCM325(271.17 m) 46849.8 27850.56 MP Siltstone/Shale Pmh4s 3 5b
CDH85 PCM325(235.20 m) 46849.8 27850.56 MP Shale Pmh4s 3 5c

HSCM103 Century Mine (St4) 47430 27460 MP Shale Pmh4s 3 5d
HSCMT Century Mine (St4) 47400 27550 MP Mudstone/Siltstone Pmh4s 3 5e
RLWL01 Watson's Lode 246462 7916970 MP Qtz/Sid vein Pmh3 3 6c
RLWL02 Watson's Lode 246301 7916930 MP Qtz vein Pmh3 3 6d

RLSK-BC35786 Silver King 245470 7925470 MP Qtz/Sulph. infill Pmh2 3 6e
RLWL-BC35780 Watson's Lode 246211 7916340 MP Siltstone/Qtz vein Pmh3 3 6f

HSCM32 Century Mine (St4) 47320 27500 MP Siltstone/Shale Pmh4s 5 2a
HSCM106 Century Mine (St4) 47410 27590 MP Siltstone/Shale Pmh4s 5 2b
HSCM109 Century Mine (St4) 47460 27510 MP Siltstone/Shale Pmh4s 5 2c
HSCM111 Century Mine (St4) 47340 25530 MP Siltstone/Shale Pmh4s 5 2e
HSCM33 Century Mine (St4) 47560 27313 MP Siltstone/Shale Pmh4s 5 2f

HSCML69 Century Mine (St4) 46920 28220 MC CBX breccia Thorntonia Limestones 6 11a
HSCML63 Century Mine (St4) 47070 28260 MC MB Marl breccia Thorntonia Limestones 6 11b

CDH55 PCM302(168 m) 47070 28250 MC CLS nodular limestone Thorntonia Limestones 6 11d
HSLHA67 Lawn Hill Annulus 251460 7928439 MC Sandstone Thorntonia Limestones 6 11e
HSCML64 Century Mine (St4) 46980 28240 MC Karst breccia Thorntonia Limestones 6 11f
LHCSO1 Lawn Hill Annulus 251049 7933520 MP Siltstone Pmh4s 6 25b

jc151654
Text Box

 THE ABOVE ARTICLE FROM:

 Journal of Geochemical Exploration, 4076 (2003), 1-4

 HAS NOT BEEN INCLUDED DUE TO COPYRIGHT RESTRICTIONS

jc151654
Text Box

 THE ABOVE ARTICLE FROM:

 Predictive Mineral Discovery CRC Conference, Barossa Valley, 1-3 June 2004

 HAS NOT BEEN INCLUDED DUE TO COPYRIGHT RESTRICTIONS

jc151654
Text Box

 THE ABOVE ARTICLE FROM:

 INT. ASSOC. FOR MATHEMATICAL GEOLOGY, XIth INTERNATIONAL CONGRESS

 HAS NOT BEEN INCLUDED DUE TO COPYRIGHT RESTRICTIONS

Null~erical Models of Extensional Deforlilation, Heat Transfer, and
Fluid Flow across Basement-Cover Intertjces during Basin-Related Mineralization

jc151654
Text Box

 THE ABOVE ARTICLE FROM:

 ECONOMIC GEOLOGY, Bulletin of the Society of Economic Geologists
 v. 101(1), January-February 2006
 100th Anniversary Special Paper

 HAS NOT BEEN INCLUDED DUE TO COPYRIGHT RESTRICTIONS

	APPENDICES
	APPENDIX A
	A.1. Nodal formulation
	A.2. Theorem of the virtual work
	A.3. The Mohr-Coulomb constitutive model and itsrelationship to the motion equations
	A.4. Effect of fluid flow in a deforming porous media

	APPENDIX B
	B.1. Weights of Evidence formulation

	APPENDIX C
	C.1. Wofe Modeler
	C.2. Spatial Analyser

	APPENDIX D

