JCU ePrints

This file is part of the following reference:

Moore, Leslie Allan (2010) Niche differentiation, rarity, and commonness in the sympatric Australian white-tailed rats: Uromys caudimaculatus and Uromys hadrourus. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/17434

NICHE DIFFERENTIATION, RARITY, AND COMMONNESS IN THE SYMPATRIC AUSTRALIAN WHITE-TAILED RATS:

UROMYS CAUDIMACULATUS AND UROMYS HADROURUS

Thesis submitted by

Leslie Allan MOORE

March 2010

Thesis submitted for the Degree of Doctor of Philosophy School of Marine and Tropical Biology, James Cook University North Queensland

STATEMENT OF ACCESS

I, the undersigned, the author of this thesis, understand that the following restriction placed by me on access to this thesis will not extend beyond three years from the date on which the thesis is submitted to the University. I understand that James Cook University will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement:

In consulting this thesis I agree not to copy or closely paraphrase it in whole or part without written consent of the author; and to make proper written acknowledgement for any assistance which I have obtained from it.

.....

.....

Leslie Allan MOORE

Date

STATEMENT ON SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published work of others has been acknowledged in the text and a list of references is given.

.....

.....

Leslie Allan MOORE

Date

ABSTRACT

A major problem in characterising rarity traits is that rare species are less studied than common species. Consequently, little is known about their distribution, ecology, demography, or behaviour, and their categorisation as rare may simply be a result of scarcity of data. In particular, there is a lack of comparative studies of closely-related rare and common species, an issue addressed by this thesis. My research investigated niche differentiation, rarity, and commonness in two sympatric species of rainforest rodents in the genus Uromys, one of which is common while the other is extremely rare, and endeavoured to provide insights into why this is so. This is an increasingly important question as continuing habitat destruction, fragmentation, and overexploitation threaten the existence of many rare species and significantly decrease populations of what were once common species. The primary aim of the thesis is to clarify the ecological characteristics that make a species more prone to rareness and thus vulnerable to extinction. Prior to this study little was known of the ecology of the rare Pygmy White-tailed Rat Uromys hadrourus and, surprisingly, only basic distribution and population data was available for its sister species the common Giant White-tailed Rat Uromys caudimaculatus. To obtain the data necessary to facilitate an ecological comparison of the two species, a capture-mark-recapture program was conducted. Using the results from this study, niche differentiation analyses were used to compare the ecological and behavioural traits of the two Uromys species. The characteristics recognised in the literature as potentially predisposing a species to rarity were examined in light of the niche analyses.

Niche differentiation

There is significant niche differentiation between *Uromys caudimaculatus* and *U. hadrourus* but the two species do not appear to occupy completely independent ecological niches. There is overlap in diet with *U. hadrourus* exploiting some of the softer large-fruited seeds also utilised by *U. caudimaculatus*. However, the larger size and strong jaws of *U. caudimaculatus* enable the species to exploit hard-seeded rainforest fruits inaccessible to other rainforest rodents, including *U. hadrourus*. Both species feed on insects by tearing open decomposing logs and stumps; they also chew the bark of tree buttresses to feed on the sap weeping from the fresh edges of the scars. However, a significant part of the diet of *U. hadrourus* was obtained from aerial tree roots, a dietary resource not utilised by *U. caudimaculatus*. Aerial roots primarily occurred on the lower trunks of trees located on the densely vegetated lower slopes,

along streams and gullies, and in the wetter areas of the forest. The ability to climb is a significant niche difference between the two *Uromys* species. The scansorial ability of *U. caudimaculatus* allows it to access resources in the tree canopy (food and refuges/nesting sites) that are unavailable to the terrestrial *U. hadrourus*. However, the structure of the hind foot indicates that *U. hadrourus* was almost certainly scansorial at some stage of its evolution.

Differences in body size are also significant. *Uromys caudimaculatus* is one of the largest species in the genus with a mean body weight three times that of *U. hadrourus*, the smallest representative of the genus. The larger body size of *U. caudimaculatus* brings with it a number of ecological advantages; fewer predators and competitors and the ability to easily break into hard seeds inaccessible to other small mammals. The smaller size of *U. hadrourus* makes it more vulnerable to predation than the larger *U. caudimaculatus*. Further niche differentiation was evident in the habitat utilised by *U. caudimaculatus*, which did most of its foraging in the abundant open-understorey forest. In contrast, *U. hadrourus* was only recorded in the spatially rare and densely-vegetated forest occurring on the lower slopes, along gullies, and 1st and 2nd order streams.

Differences in behaviour may also play a part in niche differentiation with indications that *U. hadrourus* is more sedentary than *U. caudimaculatus* and that the breeding season of *U. caudimaculatus* may be longer with juveniles dispersing away from the natal area more quickly than juvenile *U. hadrourus*.

Rarity Characteristics

Of the nine ecological variables examined, three were identified as characterising natural rarity in the small mammal assemblage. These comprised habitat specificity, low dispersal ability, and specialism. While it is difficult to determine whether any one of these three characteristics is a precursor of, or makes a greater contribution to species' rarity, it is more probable that natural rarity depends on a 'flexible' amalgam of the three traits. Although possibly an important *cause* of rarity in some species, it is equally plausible that specialism may evolve as a *consequence* of rarity. It is also likely that abundance and habitat specificity are strongly regulated by energy (resource) requirements and availability, varying with individual species' ecology and life-history traits. Dispersal ability is fundamentally interrelated with both habitat specificity and specialism and there are indications that it plays an important role in the maintenance of rarity in this north Queensland assemblage of rainforest small mammals. There

were significantly negative associations between three sets of variables: (1) *Abundance - Body Size*; (2) *Habitat - Body Size*; and (3) *Specialism Index - Body Size*, indicating body size has little to do with population density, habitat specificity, or the degree of specialism in this small mammal assemblage.

Predation risk is an unknown factor in habitat specificity-dispersal-specialism characteristics of rare species, but there is ample evidence that predation can force changes in species' habitat use. Animals commonly choose among habitats that differ both in foraging return and mortality hazard, and strong predator pressure has been shown to account for low abundance and small range size of many species. Using the two *Uromy*s as examples of this model, the larger *U. caudimaculatus*, being less at risk of predation, may have chosen to forage in habitat which maximises its foraging gain; while the smaller and more vulnerable *U. hadrourus* may have forgone the benefits of increased foraging gain in favour of reducing predation levels by using less risky habitat.

ACKNOWLEDGEMENTS

Going back to university as a mature student is a brave and difficult undertaking, particularly in the sciences. The hordes of bright young faces seated in lecture theatres, all with few wrinkles and possessing a seemingly natural ownership of the learning environment, is a daunting experience. The strength or otherwise of ones self image and worth is sorely tested, particularly given the almost miraculous transition from a previously secure position of held knowledge and respect to that of a 'lowly' student with no former identity or knowledge worth knowing. Of course there are also the financial and emotional burdens of trying to study full-time while supporting your family and adapting to the absence of a predictable salary, and the persistent companionship of stress and overwork. In these latter difficulties, at least, a mature student is not alone, as this world has been the domain of university students for aeons.

I owe thanks to my wife Nicole and son Nicholas who put up with a constantly tired and sweaty husband-Dad covered in rat and leech bites; Chris Johnson and David Blair who were my supportive supervisors; Diane Bailey in JCU Administration who was always ready to assist when problems arose; and the 'Alans' of the School Stores and Purchasing Section who never tired of giving advice and service. My gratitude goes to John Winter for his support for my work and the generous way he provided me with references and other important material. Thanks also go to Steve Williams who kindly allowed me to use his predictive distribution mapping of the Australian *Uromys*. My sincere thanks also go to my two reviewers who made many comments and suggestions and in doing so helped me produce a better thesis.

This PhD project was supported by an Australian Postgraduate Research Award for three and a half years. The School of Marine and Tropical Biology of the James Cook University supported me with finance and field equipment for which they have my grateful thanks. All research procedures reported in this thesis received the approval of the James Cook University Ethics Committee (Permit No: A897_04) and were carried out under the conditions outlined in Queensland Parks and Wildlife Scientific Permits WISP04634307 and WITK04557907.

TABLE OF CONTENTS

	ABSTRACT	iv
	ACKNOWLEDGEMENTS	vii
CHAPTER 1.	INTRODUCTION AND AIMS OF STUDY	1
1.1	Origins of Australian rodents	4
	1.1.1 Mosaic-tailed Rats	5
	1.1.2 Distribution and taxonomy of the Genus Uromys	6
1.2	Study species	10
	1.2.1 Giant White-tailed Rat Uromys caudimaculatus	10
	1.2.2 Pygmy White-tailed Rat Uromys hadrourus	14
1.3	Previous small mammal studies in north Queensland	20
1.4	Aims of this study	22
1.5	Diversity and abundance of sympatric species	23
	1.5.1 Ecological niche concept and niche differentiation	24
	1.5.2 Types of niche differentiation	26
	1.5.3 Field studies of niche differentiation in sympatric species	29
	1.5.4 Discussion of niches	33
	1.5.5 Unified neutral theory of biodiversity and biogeography	34
1.6	Rarity and Commonness	38
	1.6.1 The definition and characterisation of rarity	38
	1.6.2 Discussion of rarity and commonness	50
1.7	Structure of thesis	52
CHAPTER 2.	STUDY AREA AND METHODS	55
2.1	Study area	55

2.2	Study grids	57
	2.2.1 Vegetation	59
	2.2.2 Climate	61
2.3	General methods	62
2.4	Sampling Design	64
	2.4.1 Trapping grid format	64
2.5	Identification of study species	66
2.6	Animal handling and measurements	73
	2.6.1 Criteria for aging small mammals	73
	2.6.2 Reproductive condition criteria	76
2.7	Spooling and radio tracking	77
2.8	Diet assessment	79
2.9	Habitat mapping	80
2.10	Cyclone damage	82
2.11	Sampling effort in main habitat types	82
	2.11.1 Cage traps	83
	2.11.2 Elliot traps	83
2.12	Statistical analyses	84
	2.12.1 Analysis of species diversity and richness	84
	2.12.2 Adequacy of sample effort	86
	2.12.3 Rarefaction and Sample Interpolation	87
2.13	Capture-Mark-Recapture (CMR)	87
	2.13.1 Open populations – Full Jolly-Seber Method	88
	2.13.2 Open populations – Constant probability of capture	89
	2.13.3 Closed population models	90
	2.13.4 Tests for equal catchability	91
	2.13.5 Estimating population densities	92
	2.13.6 Mean grid movement index (MGMI)	94
		05
CHAPTER 3.	IRAFFING REQULID AND DECIED DIVERDIT	90
3.1	Overall results of live-trapping study	95
3.2	Results of grid trapping	99
	3.2.1 Small mammal captures and seasonal trends	99

	3.2.2	Grid ca	pture rates	101
	3.2.3	Trappir	ng session differences	102
	3.2.4	Trap su	JCCess	102
3.3	Specie	es diversi	ity, richness, and, abundance	102
		3.3.1	Species diversity	104
		3.3.2	Species richness	104
		3.3.3	Grid differences and similarities	105
		3.3.4	Comparison of diversity with other NQ studies	107
		3.3.5	Summary	111
CHAPTER 4.	SMAL		IAL POPULATION DYNAMICS	113
4.1	Northe	ern Bush	Rat Rattus fuscipes coracius	113
	4.1.1	Grid ca	ptures	113
	4.1.2	Popula	tion density	115
	4.1.3	Adult b	ody weights	115
	4.1.4	Breedi	ng	116
	4.1.5	Annual	population demography	118
	4.1.6	Mean r	ninimum age (longevity)	119
	4.1.7	Captur	e-Mark-Recapture analysis (CMR)	120
4.2	Cape `	York Rat	Rattus leucopus cooktownensis	122
	4.2.1	Popula	tion density	123
	4.2.2	Adult b	ody weights	124
	4.2.3	Breedi	ng	124
	4.2.4	Annual	population demography	125
	4.2.5	Mean r	ninimum age (longevity)	125
	4.2.6	Captur	e-Mark-Recapture analysis (CMR)	125
4.3	Fawn-	footed M	elomys Melomys cervinipes	126
	4.3.1	Popula	tion density	127
	4.3.2	Adult b	ody weights	128
	4.3.3	Breedir	ng	129
	4.3.4	Annual	population demography	130
	4.3.5	Captur	e-Mark-Recapture (CMR)	131
	4.3.6	Mean r	ninimum age (longevity)	133

4.4	Musky Rat-kangaroo Hypsiprymnodon moschatus	133
	4.4.1 Population density	134
	4.4.2 Adult body weights	135
	4.4.3 Breeding	136
	4.4.4 Annual population demography	137
	4.4.5 Mean minimum age (longevity)	138
	4.4.6 Capture-Mark-Recapture analysis (CMR)	138
4.5	Other species	140
	4.5.1 Rusty Antechinus Antechinus adustus	140
	4.5.2 Atherton Antechinus Antechinus godmani	142
	4.5.3 Yellow-footed Antechinus Antechinus flavipes	146
	4.5.4 Long-nosed Bandicoot Perameles nasuta	147
	4.5.5 Northern Brown Bandicoot Isoodon macrourus	147
	4.5.6 Long-tailed Pygmy-possum Cercartetus caudatus	147
	4.5.7 Tree Mouse Pogonomys sp	147
	4.58 Grassland Melomys <i>Melomys burtoni</i>	148
	4.5.9 House Mouse Mus musculus	148
4.6	Habitat preferences of small mammal assemblage	148
	4.6.1 Species-habitat inter-relationships	151
4.7	Abundance versus Biomass	154
4.8	Comparison with other studies	157
	4.8.1 Summary	164
CHAPTER 5.	ECOLOGY AND POPULATION DYNAMICS OF THE GIANT WHITE- TAILED RAT UROMYS CAUDIMACULATUS	166
5.1	Trapping results	166
	5.1.1 Grid captures	166
	5.1.2 Population density	169
	5.1.3 Capture-Mark-Recapture analysis (CMR)	170
	5.1.4 Body size	172
	5.1.5 Young	173
	5.1.6 Breeding	175
	5.1.7 Division between juveniles, subadults, and adults	176

	5.1.8 Annual population demography	177
	5.1.9 Diet	178
	5.1.10 Habitat use	181
	5.1.11 Spooling analysis	182
	5.1.12 Additional ecological data	183
	5.1.13 Discussion	186
CHAPTER 6.	ECOLOGY AND POPULATION DYNAMICS OF THE PYGMY WHITE-TAILED RAT UROMYS HADROURUS	189
6.1	Trapping results	189
	6.1.1 Division between juveniles, subadults, and adult	190
	6.1.2 Grid captures	190
	6.1.3 Population density	192
	6.1.4 Capture-Mark-Recapture analysis (CMR)	193
	6.1.5 Annual population demography	195
	6.1.6 Body size	196
	6.1.7 Spooling analysis	198
	6.1.8 Breeding	202
	6.1.9 Young	206
	6.1.10 Diet	208
	6.1.11 Feeding platforms	214
	6.1.12 Refuges and nest hollows	215
	6.1.13 Home range marking	218
	6.1.14 Habitat use	224
	6.1.15 Additional ecological data	229
6.2	Discussion	232
CHAPTER 7.	NICHE DIFFERENTIATION IN THE AUSTRALIAN UROMYS	234
7.1	Niche differentiation	234
	7.1.1 Abundance, density, population size, body size, and biomass	234
	7.1.2 Foraging behaviour	237
	7.1.3 Summary of pes morphology comparisons	243
	7.1.4 Microhabitat preferences of the two <i>Uromys</i> sp	245
	7.1.5 Comparison of habitat preference with coexisting assemblage	248

	7.1.6 Mobility (MGMI)	251
	7.1.7 Breeding cycles	251
	7.1.8 Parental Care and juvenile growth rates	253
	7.1.9 Population demography	253
	7.1.10 Diet	256
	7.1.11 Behaviour	256
	7.1.12 Mean minimum age (longevity)	257
	7.1.13 Predation	257
7.2	Discussion	257
	7.2.1 Comments	260
CHAPTER 8.	CHARACTERISTICS OF RARE AND COMMON MANMAL SPECIES	262
8.1	Rarity characteristics at a species level	262
	8.1.1 Abundance	262
	8.1.2 Geographic range size	263
	8.1.3 Habitat specificity	265
	8.1.4 Specialism (Microhabitat preferences)	266
	8.1.5 Categorisation of rarity - Rabinowitz et al. 1986	268
	8.1.6 Dispersal ability	269
	8.1.7 Resource usage index (RUI)	272
	8.1.8 Reproductive investment	274
	8.1.9 Competitive ability	275
	8.1.10 Body size	275
8.2	Discussion	276
	8.2.1 Rarity categorisation of mammal assemblage	276
	8.2.2 Relationships between ecological variables	276
	8.2.3 What ecological variables best characterised rare species	280
	8.2.4 What ecological variables best characterised common species	282
CHAPTER 9.	CONCLUSION	285
	REFERENCES	291

	Detailed pes morphology of north Queensland rodents	329
	LIST OF FIGURES	
Figure 1.1	Phylogeny of <i>Uromys</i> by Groves and Flannery (1994)	/
Figure 1.2	Distribution of <i>Uromys</i> in Australasia (Groves & Flannery 1994)	8
Figure 1.3	Size comparisons of genus Uromys	9
Figure 1.4	Adult female Uromys caudimaculatus caudimaculatus	11
Figure 1.5	Predicted distribution of Uromys caudimaculatus (Williams 2006)	12
Figure 1.6	Adult female Uromys hadrourus	16
Figure 1.7	Predicted distribution of Uromys hadrourus (Williams 2006)	17
Figure 1.8	Pes colouration of Uromys hadrourus	18
Figure 2.1	Location of study area	56
Figure 2.2	Location of trapping grids	58
Figure 2.3	Vegetation types in study area (Stanton and Stanton 2006)	59
Figure 2.4	Examples of vegetation and landscapes on trapping grids	60
Figure 2.5	Study area rainfall 2004-2006	62
Figure 2.6	Pre-cyclone vegetation on study grids (December 2005)	63
Figure 2.7	Cyclone damage on study grids (March 2006)	63
Figure 2.8	Trapping grid format	65
Figure 2.9	Comparison of juvenile Uromys caudimaculatus and U. hadrourus	68
Figure 2.10	Study area rodents	69
Figure 2.11	Study area marsupials (1)	70
Figure 2.12	Study area marsupials (2) (Antechinus)	71
Figure 2.13	Spooled Uromys hadrourus waiting release	79
Figure 2.14a-c	Broad vegetation types on grids	81
Figure 2.15	Trapping grid showing the effective trapping area (<i>W</i> ')	93
Figure 3.1	Species composition of mammal assemblage	97
Figure 3.2	Session captures at Grid 3 showing species and trap-day data	100
Figure 3.3	Mean and SE of mammal captures per trapping session	101
Figure 3.4	Shannon Weiner species accumulation curves for individual grids	104

APPENDIX 1

Figure 3.5	Species accumulation based on number of trapping grids	105
Figure 3.6	Bray-Curtis similarity dendrogram	107
Figure 4.1	Rattus fuscipes grid captures by trapping session	114
Figure 4.2	Rattus fuscipes mean trapping session captures (±SE)	114
Figure 4.3	Rattus fuscipes mean trapping session weights	116
Figure 4.4	Rattus fuscipes annual breeding cycle	117
Figure 4.5	Rattus fuscipes annual population demography	118
Figure 4.6	Rattus fuscipes minimum age analysis	119
Figure 4.7	Rattus leucopus captures per 100 trapnights	123
Figure 4.8	Rattus leucopus breeding observations	124
Figure 4.9	Rattus leucopus annual population demography	125
Figure 4.10	Melomys cervinipes grid captures per trapping session	126
Figure 4.11	Melomys cervinipes trapping session captures	127
Figure 4.12	Melomys cervinipes trapping session weights	129
Figure 4.13	Melomys cervinipes annual breeding cycle	130
Figure 4.14	Melomys cervinipes annual population demography	131
Figure 4.15	Hypsiprymnodon moschatus trapping session capture means	134
Figure 4.16	Hypsiprymnodon moschatus male and female captures	136
Figure 4.17	Hypsiprymnodon moschatus annual breeding cycle	137
Figure 4.18	Antechinus adustus trapping session captures	141
Figure 4.19	Antechinus adustus annual breeding cycle	142
Figure 4.20	Antechinus godmani trapping session captures	143
Figure 4.21	Antechinus godmani monthly variation in weight	144
Figure 4.22	Antechinus godmani weight changes March to June	145
Figure 4.23	Antechinus godmani annual breeding cycle	146
Figure 4.24	Trapping session biomass of captured mammal species	156
Figure 4.25	Locations of study sites for Laurance (1994) and Moore (2009)	159
Figure 4.26	Comparison of 'gridlet' trapping and 'wide-grid' trapping formats	161
Figure 5.1	Uromys caudimaculatus trapping session captures on grids	168
Figure 5.2	Uromys caudimaculatus mean & SE trapping session captures	169
Figure 5.3	Uromys caudimaculatus juvenile growth rate regression	175
Figure 5.4	Uromys caudimaculatus annual breeding cycle	176
Figure 5.5	Uromys caudimaculatus annual population demography	178

Figure 5.6	Uromys caudimaculatus – example of bark chewing	180
Figure 5.7	Uromys caudimaculatus tree hollow	183
Figure 5.8	Uromys caudimaculatus – distances moved between trap locations	185
Figure 6.1	Uromys hadrourus trapping session grid captures	191
Figure 6.2	Uromys hadrourus annual population demography	195
Figure 6.3	Uromys hadrourus frequency histogram of weights	196
Figure 6.4	Uromys hadrourus spooling at Grid 3	200
Figure 6.5	Uromys hadrourus annual breeding cycle	203
Figure 6.6	Movements of spooled adult Uromys hadrourus 7 September 2005	204
Figure 6.7	Spooling showing Uromys hadrourus male-female interaction	205
Figure 6.8	Territory marking by Uromys hadrourus family party	207
Figure 6.9	Uromys hadrourus diet – fruit and fungi	211
Figure 6.10	Uromys hadrourus diet – bark and aerial root chewing	212
Figure 6.11	Uromys hadrourus diet – insect predation	213
Figure 6.12	Uromys hadrourus tree feeding platform	214
Figure 6.13	Uromys hadrourus – old fruit germinating in tree feeding platforms	215
Figure 6.14	Uromys hadrourus den hollow at base of tree	216
Figure 6.15	Uromys hadrourus den hollow in buttress root	217
Figure 6.16	Uromys hadrourus den hollow in creek bank	217
Figure 6.17	Uromys hadrourus den hollow in tree trunk	218
Figure 6.18	Uromys hadrourus log territory marker	220
Figure 6.19	Uromys hadrourus shrub territory marker	221
Figure 6.20	Uromys hadrourus hard surface territory markers	222
Figure 6.21	Uromys hadrourus log crossing over creek	223
Figure 6.22	Uromys hadrourus drinking site in buttress hollow	224
Figure 6.23	Uromys hadrourus – Histobar of trap location Habitat by Grid	226
Figure 6.24	Typical Uromys hadrourus habitat at Grid 3 (pre-cyclone)	227
Figure 6.25	Logs and dense understorey typify Uromys hadrourus habitat	227
Figure 6.26	Uromys hadrourus habitat on Thornton peak (Winter 1984)	228
Figure 6.27	Trap location habitat for Uromys hadrourus & Antechinus godmani	229
Figure 7.1	Uromys caudimaculatus and Uromys hadrourus Jolly-Seber	235
Figure 7.2	Comparison of mean body weight for mammal assemblage	236
Figure 7.3	Comparison of rodent foot structures	240

Figure 7.4	Typical sitting posture of Uromys hadrourus	242
Figure 7.5	Habitat at trap locations for U. caudimaculatus and U. hadrourus	247
Figure 7.6	Comparison of distance of trap locations from nearest stream or gully	248
Figure 7.7	Boxplots of trap location habitat for the mammal assemblage	250
Figure 7.8	Comparison of U. caudimaculatus and U. hadrourus breeding cycles	252
Figure 7.9	Proportion of adults to non-adults in the Australian Uromys	254
Figure 7.10	Annual cycle of juvenile U. caudimaculatus and U.hadrourus	255
	LIST OF TABLES	
Table 1.1	Worldwide distribution of Uromys species	7
Table 1.2	Rabinowitz et al. (1986) categorisation of rarity	40
Table 2.1	Trappable mammals species in study area	72
Table 3.1	Breakdown of trapping effort	96
Table 3.2	Total number of captures for all species	98
Table 3.3	Small mammal captures on the three trapping grids	99
Table 3.4	Comparison of Shannon Weiner indices for the three trapping grids	103
Table 3.5	Species diversity and evenness of the three trapping grids	106
Table 3.6	Comparison of species diversity with other NQ studies	108
Table 3.7	Margelef's <i>D</i> index of species diversity for three different studies	109
Table 3.8	Species differences and similarities between the three studies	110
Table 4.1	Rattus fuscipes full Jolly-Seber analysis.of grid populations	121
Table 4.2	Rattus fuscipes fully Jolly-Seber population size estimates	122
Table 4.3	Melomys cervinipes full Jolly-Seber analysis	132
Table 4.4	Melomys cervinipes population estimates	133
Table 4.5	Hypsiprymnodon moschatus population estimates (Const. P. & S)	139
Table 4.6	Ch-square tests of species' trap location habitat	149
Table 4.7	Pearson product moment correlation: Species-Habitat	152
Table 4.8	Species total capture numbers compared to mean sample biomass	155
Table 4.9	Comparison of rare species captures from three NQ studies	158
Table 5.1	Uromys caudimaculatus trapping session captures	167
Table 5.2	Uromys caudimaculatus mean & SD trapping session captures	168
Table 5.3	Uromys caudimaculatus population density per trapping session	170

xviii

Table 5.4	Uromys caudimaculatus Jolly-Seber grid population estimates	171
Table 5.5	Uromys caudimaculatus Jolly-Seber population estimates	172
Table 5.6	Adult Uromys caudimaculatus morphological measurements	173
Table 5.7	Linear regression of juvenile Uromys caudimaculatus weights	174
Table 5.8	Identified food items of Uromys caudimaculatus	180
Table 5.9	X^2 frequencies for <i>Uromys caudimaculatus</i> habitat association	181
Table 5.10	Distance travelled between captures for Uromys caudimaculatus	186
Table 6.1	Breakdown of individual Uromys hadrourus captures	189
Table 6.2	Trapping session captures of Uromys hadrourus	191
Table 6.3	Uromys hadrourus trapping session grid captures	192
Table 6.4	Uromys hadrourus population density per trapping session	193
Table 6.5	Jolly-Seber session estimates (Const. P & S) of Uromys hadrourus	194
Table 6.6	Morphological measurements of Uromys hadrourus	197
Table 6.7	Sample size of spooled Uromys hadrourus	198
Table 6.8	Breakdown of travel mode for spooled Uromys hadrourus	199
Table 6.9	Uromys hadrourus spooling analysis data sheet	201
Table 6.9 Table 6.10	Uromys hadrourus spooling analysis data sheet Capture-recapture weights of juvenile Uromys hadrourus	201 208
Table 6.9 Table 6.10 Table 6.11	Uromys hadrourus spooling analysis data sheet Capture-recapture weights of juvenile Uromys hadrourus Identified diet items of Uromys hadrourus	201 208 210
Table 6.9 Table 6.10 Table 6.11 Table 6.12	Uromys hadrourus spooling analysis data sheet Capture-recapture weights of juvenile Uromys hadrourus Identified diet items of Uromys hadrourus Streams and gullies distance categories	201 208 210 225
Table 6.9 Table 6.10 Table 6.11 Table 6.12 Table 6.13	Uromys hadrourus spooling analysis data sheetCapture-recapture weights of juvenile Uromys hadrourusIdentified diet items of Uromys hadrourusStreams and gullies distance categoriesDistance of trap locations from streams and gullies	201 208 210 225 224
Table 6.9Table 6.10Table 6.11Table 6.12Table 6.13Table 6.14	Uromys hadrourus spooling analysis data sheet.Capture-recapture weights of juvenile Uromys hadrourus.Identified diet items of Uromys hadrourus.Streams and gullies distance categories.Distance of trap locations from streams and gullies .Minimum age analysis of adult Uromys hadrourus.	201 208 210 225 224 231
Table 6.9Table 6.10Table 6.11Table 6.12Table 6.13Table 6.14Table 7.1	Uromys hadrourus spooling analysis data sheet.Capture-recapture weights of juvenile Uromys hadrourus.Identified diet items of Uromys hadrourus.Streams and gullies distance categories.Distance of trap locations from streams and gullies .Minimum age analysis of adult Uromys hadrourus.Pes morphology of rodent assemblage.	201 208 210 225 224 231 241
Table 6.9Table 6.10Table 6.11Table 6.12Table 6.13Table 6.14Table 7.1Table 8.1	Uromys hadrourus spooling analysis data sheet.Capture-recapture weights of juvenile Uromys hadrourus.Identified diet items of Uromys hadrourus.Streams and gullies distance categories.Distance of trap locations from streams and gullies .Minimum age analysis of adult Uromys hadrourus.Pes morphology of rodent assemblage.Mammal assemblage population densities (animals/hectare).	201 208 210 225 224 231 241 263
Table 6.9Table 6.10Table 6.11Table 6.12Table 6.13Table 6.14Table 7.1Table 8.1Table 8.2	Uromys hadrourus spooling analysis data sheet.Capture-recapture weights of juvenile Uromys hadrourus.Identified diet items of Uromys hadrourus.Streams and gullies distance categories.Distance of trap locations from streams and gulliesMinimum age analysis of adult Uromys hadrourus.Pes morphology of rodent assemblage.Mammal assemblage population densities (animals/hectare).Approximate geographic range sizes of mammal assemblage.	201 208 210 225 224 231 241 263 264
Table 6.9Table 6.10Table 6.11Table 6.12Table 6.13Table 6.14Table 7.1Table 8.1Table 8.2Table 8.3	Uromys hadrourus spooling analysis data sheet.Capture-recapture weights of juvenile Uromys hadrourus.Identified diet items of Uromys hadrourus.Streams and gullies distance categories.Distance of trap locations from streams and gulliesMinimum age analysis of adult Uromys hadrourus.Pes morphology of rodent assemblage.Mammal assemblage population densities (animals/hectare).Approximate geographic range sizes of mammal assemblage.Habitat usage by the small mammal assemblage.	201 208 210 225 224 231 241 263 264 265
Table 6.9Table 6.10Table 6.11Table 6.12Table 6.13Table 6.14Table 7.1Table 8.1Table 8.2Table 8.3Table 8.4	Uromys hadrourus spooling analysis data sheet.Capture-recapture weights of juvenile Uromys hadrourus.Identified diet items of Uromys hadrourus.Streams and gullies distance categories.Distance of trap locations from streams and gullies .Minimum age analysis of adult Uromys hadrourus.Pes morphology of rodent assemblage.Mammal assemblage population densities (animals/hectare).Approximate geographic range sizes of mammal assemblage.Habitat usage by the small mammal assemblage.Specialism Index based on trap location habitat.	201 208 210 225 224 231 241 263 264 265 267
Table 6.9Table 6.10Table 6.11Table 6.12Table 6.13Table 6.14Table 7.1Table 8.1Table 8.2Table 8.3Table 8.4Table 8.5	Uromys hadrourus spooling analysis data sheet.Capture-recapture weights of juvenile Uromys hadrourus.Identified diet items of Uromys hadrourus.Identified diet items of Uromys hadrourus.Streams and gullies distance categories.Distance of trap locations from streams and gullies .Minimum age analysis of adult Uromys hadrourus.Pes morphology of rodent assemblage.Mammal assemblage population densities (animals/hectare).Approximate geographic range sizes of mammal assemblage.Habitat usage by the small mammal assemblage.Specialism Index based on trap location habitat.Rarity categorisation sensu Rabinowitz et al. 1986.	201 208 210 225 224 231 241 263 264 265 267 269
Table 6.9Table 6.10Table 6.11Table 6.12Table 6.13Table 6.14Table 7.1Table 8.1Table 8.2Table 8.3Table 8.4Table 8.5Table 8.6	Uromys hadrourus spooling analysis data sheet.Capture-recapture weights of juvenile Uromys hadrourus.Identified diet items of Uromys hadrourus.Identified diet items of Uromys hadrourus.Streams and gullies distance categories.Distance of trap locations from streams and gulliesMinimum age analysis of adult Uromys hadrourus.Pes morphology of rodent assemblage.Mammal assemblage population densities (animals/hectare).Approximate geographic range sizes of mammal assemblage.Habitat usage by the small mammal assemblage.Specialism Index based on trap location habitat.Rarity categorisation sensu Rabinowitz et al. 1986.Calculation of resource usage index.	201 208 210 225 224 231 241 263 264 265 267 269 274
Table 6.9Table 6.10Table 6.11Table 6.12Table 6.13Table 6.14Table 7.1Table 8.1Table 8.2Table 8.3Table 8.4Table 8.5Table 8.6Table 8.7	Uromys hadrourus spooling analysis data sheet.Capture-recapture weights of juvenile Uromys hadrourus.Identified diet items of Uromys hadrourus.Streams and gullies distance categories.Distance of trap locations from streams and gulliesMinimum age analysis of adult Uromys hadrourus.Pes morphology of rodent assemblage.Mammal assemblage population densities (animals/hectare).Approximate geographic range sizes of mammal assemblage.Specialism Index based on trap location habitat.Rarity categorisation sensu Rabinowitz et al. 1986.Rarity categorisation of small mammal assemblage.	201 208 210 225 224 231 241 263 264 265 267 269 274 277

BOXES

Box 1 Reproductive codes and age categories	77
---	----