DISPERSAL OF CORAL LARVAE: A modelling perspective on its determinants and implications

Thesis submitted by Bernardo BLANCO-MARTIN, "Licenciado", M.Sc., in April 2006

for the degree of Doctor of Philosophy in the School of Marine Biology and Aquaculture James Cook University Nature has been defined as a principle of motion and change, and it is the subject of our inquiry. We must therefore see that we understand the meaning of motion for if it were unknown, the meaning of nature too would be unknown

(Aristotle, Physics, III, 1)

STATEMENT OF ACCESS

I, the undersigned author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place any further restriction on access to this work.

Signature

Date

ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Signature

Date

STATEMENT OF SOURCES

Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Signature

Date

I would like to take this opportunity to thank a number of people I feel truly grateful to for their help and support during my Ph.D. candidature. First, and above all my supervisor, Terry Hughes. Terry, not only provided guidance and advice through these years and proofread numerous drafts of this thesis, but also was very understanding of my problems. Jason Tanner and Andrew Baird supplied valuable discussions and advice in the early stages of the project. Andrew also read the 'almost final draft' of this thesis, making valuable suggestions. Sean Connolly offered important assistance with my exit seminar. Ian Atkinson was very generous with his time, helping me with the use of the super-computers at James Cook University. Jim Monaghan and Adam Lewis gave me useful advice on G.I.S. design and the use of ARC/INFOTM. The Great Barrier Reef Marine Park Authority and Adam Lewis generously allowed me to use their G.I.S. coverages of the Great Barrier Reef. Marc Hubble was a source of interesting discussions, proofread many of the chapters, and was a great friend. Laura Castell and Joanna Boyle also provided help with the proofreading. A number of anonymous people asked stimulating questions, food for thought about the design and limitations of the models.

On a more personal level, I would like to acknowledge the staff in the School of Marine Biology and Aquaculture, without their assistance and support this research would not have been possible. In particular, Laura Castell (gracias Laura), Jenny McGregor and again Terry Hughes were extremely helpful. I would especially like to thank my parents for their unconditional love, encouragement and constant support in so many ways (os quiero mucho). During my difficult times many friends were really caring, and some went well out of their way to help me. In particular, my partner Joanna Boyle was a real angel (thank you very much).

Finally, I am greatly indebted with James Cook University for providing me with the scholarship and grant to enable me to pursue this research. The Doctoral Merit Research Scheme program at the School of Marine Biology and Aquaculture also donated extra funds for my research. In this thesis, I investigate the mechanisms and implications of coral larvae dispersal using spatially explicit and spatially realistic models. *Chapter 1* presents an introduction to the relevant theoretical background and a thesis outline.

Chapter 2 investigates the effects of different combinations of larval type (brooders vs. spawners) and current pattern (non-directional flow vs. strongly directional flow) on settlement, connectivity among reefs by larvae, and evenness and diversity of sources of the larval input to reefs. Despite their simplicity, the models revealed complex dynamics, and significant differences in results were found for different larval types, hydrodynamics conditions, and individual reefs. Settlement was higher for brooders than spawners, because their larvae suffered lower mortality during shorter precompetent and competent periods. Increasing advection in the currents increased nonlocal settlement, however connectivity (the number of reefs connected) was not necessarily increased. The traditional view of connectivity being higher in spawners than brooders was often not supported when the currents were strong. Reefs or reefal systems with high evolutionary-scale connectivity did not necessarily have high ecological-scale connectivity. Moreover, different current patterns produced different effects on each larval type. These differences were quantitative for settlement and connectivity, but qualitative for the diversity of the settling larvae (an increase in advection increased diversity for brooders and decreased it for spawners).

Chapter 3 examines the effect of water retention at reefs on the settlement, connectivity, and evenness and diversity of sources of the larval input of different larval types under varying current patterns. Of the common predictions about the effects of an increase in the level of water retention at reefs only the increases in total and local settlement were fully supported. The other predictions (reduction in non-local settlement, connectivity, evenness, and diversity) were supported, but only at medium and high levels of water retention. At low retention levels and when the currents had a steady and strongly directional flow (the most common current conditions) the predictions were not met in many cases. In the absence of retention, settlement, connectivity, and diversity could be very low, especially for larvae with long precompetent and competent periods (i.e. spawners). It was concluded that some level of larval retention at the reefs must exist, at least for spawners, in order to obtain

settlement and connectivity values comparable to those found by ecological and genetic studies. Moreover, only very small levels of retention were required to produce dramatic increases in settlement rate, and these levels did not substantially reduce connectivity or diversity. In fact, these levels of retention could increase the connectivity of spawners when the currents had a strongly directional flow, as their larvae could become trapped in the circulation of reefs other than their natal. Notably, the estimated level of retention for a typical reef in the central Great Barrier Reef (GBR) provided the most favourable conditions for spawning corals in the models (which included reef densities and current speeds similar to those found in this region); this retention level maximised evolutionary-scale connectivity, yielded a high ecological-scale connectivity, and vastly increased settlement in spawning corals.

Chapter 4 investigates settlement and the mechanisms determining it on the GBR. The models reproduced many patterns of settlement and connectivity previously described by empirical studies, including the latitudinal settlement patterns of spawners and their proportion in the total settlement. It was concluded that a significant part of the large spatial and temporal variation in recruitment observed in the field might be related to variation in the factors included in the models, rather than to purely stochastic variation as often assumed. Therefore, settlement may be predictable to a certain extent if enough physical and biological information is available at the relevant spatial and temporal scales. Discrepancies between the models and field observations most likely reflect the importance of factors not included in the models, such as the decrease in temperature with latitude. Although all the models for brooders predicted a decline in settlement from the central to the southernmost GBR, none of them accurately reproduced the recruitment patterns of the northern GBR (all underestimating recruitment in this area). The models that best reproduced the latitudinal patterns of recruitment of spawners included fecundity, indicating the importance of this process in determining regional-scale recruitment. The proportion of spawners in the total settlement was best predicted when the models included retention and adult abundance (fecundity data was not available for brooders). Large differences in settlement and connectivity patterns occurred in space (even among nearby reefs) and among taxa in the models, suggesting the danger of generalising results obtained by empirical studies sampling a small number of reefs and/or species.

Chapter 5 explores the putative relationship between the potential for dispersal provided by the larvae of scleractinian corals and the extent of their geographic ranges

in the Indo-Pacific (IP). Both the extent of the geographic range and the dispersal variables computed by the models varied substantially among the species in the study. Nevertheless, the potential for dispersal provided by the larvae of coral species was a poor predictor of the size of their geographic ranges. Notably, there was a tentative relationship between estimates of gene flow and some of the variables calculated by the dispersal models (particularly evolutionary-scale connectivity). The dispersal potential of the larvae is an important factor determining the geographic ranges of coral species, but the dispersal hypothesis per se cannot explain the geographic distributions of corals in the IP. The distribution of corals is also influenced by many other factors that mask the effect of the dispersal potential of the larvae in determining the geographic ranges of coral species of coral species of the dispersal potential of the larvae in determining the geographic ranges of coral species of coral species in the IP.

Chapter 6 investigates the mechanisms by which the patterns of species richness in the IP may have arisen, using a 'Topological Model' of coral reef biogeography of this region that included speciation, dispersal, and local extinction processes. In the model dispersal occurred randomly (i.e. exclusively by diffusion) over a spatially realistic representation of the IP. This model produced a good approximation (better than previous models) to the present patterns of coral species richness in the IP. It was concluded that currents might not be the dominant factor shaping the geographic distribution of tropical inshore species as previously suggested, the topology of the habitats of the species being at least as important. In the 'Topological Model' the spatial attributes and relationships among habitats were sufficient for the central IP to act simultaneously as a centre of 'origin', 'accumulation', and 'refuge' (without the need of assuming particular properties for this area and/or the currents it receives), consequently generating a centre of species richness. The 'Topological Model', alone or in combination with a hydrodynamic model, can be used as a null-model against which the patterns of species richness in the IP can be contrasted.

The spatially explicit and spatially realistic models used in this thesis provided significant insights into the factors determining the dispersal and settlement of larvae and their consequences. These models can be used for guiding the conservation and management of marine populations; they should, however, be adapted to each specific problem, and contain adequate information about the physical conditions and organisms in question.

TABLE OF CONTENTS

STATEMENT OF ACCESS	ii
ELECTRONIC COPY	iii
STATEMENT OF SOURCES	iv
ACKNOWLEDGEMENTS	V
ABSTRACT	vi
TABLE OF CONTENTS	ix
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
Chapter 1: GENERAL INTRODUCTION	
1.1. TECHNIQUES USED IN THE STUDY OF DISPERSAL AND	
SETTLEMENT OF MARINE LARVAE	
1.2. CORAL REPRODUCTIVE BIOLOGY AND LARVAL COMPETENCE	
PATTERNS	5
1.2.A. Asexual reproduction	5
1.2.B. Sexual reproduction	6
1.2.B.1. Brooders	
1.2.B.2. Broadcast spawners	9
1.3. LARVAL MORTALITY	
1.4. LARVAL SWIMMING CAPABILITIES AND BEHAVIOUR	
1.5. THESIS OUTLINE	
Chapter 2: LARVAL TYPES, CURRENTS, and their INTERACTION	17
2.1. INTRODUCTION	
2.1.A. Aims of the study	20
2.2. MATERIALS and METHODS	
2.2.A. General design	
2.2.B. Model inputs	22
2.2.B.1. Spatial representations: Charts	22
2.2.B.2. Currents	
2.2.B.3. Larval life	
2.2.B.4. Fixed parameters	
2.2.C. Model functioning and rules	

2.2.D. Model outputs	
2.2.E. Results analysis	
2.2.F. Results presentation	
2.3. RESULTS	
2.3.A. Settlement rate	
2.3.B. Settlement distribution: local vs. non-local settlement	
2.3.C. Connectivity among reefs by larvae	
2.3.D. Evenness and Diversity of reef receptors of the settling larvae	
2.4. DISCUSSION	
2.4.A. Settlement of larvae	
2.4.B. Settlement distribution: local vs. non-local settlement	44
2.4.C. Connectivity among reefs by larvae	45
2.4.D. Evenness and diversity of reef receptors of the settling larvae	
2.4.E. Variation among reefs in the studied dispersal variables	
2.4.F. Model Limitations	
2.4.F.1. General design	47
2.4.F.2. Hydrodynamic conditions	
2.4.F.3. Larval competent periods	49
2.4.F.4. Larval mortality	49
2.4.F.5. Accuracy of the models and concluding remarks	
2.4.G. Summary and Conclusions	50
Chapter 3: EFFECTS OF LARVAL RETENTION ON REEFS	52
3.1. INTRODUCTION	52
3.1.A. Evidence for dispersal and retention of larvae	52
3.1.A.1. Oceanographic evidence	52
3.1.A.2. Behavioural evidence	54
3.1.A.3. Ecological evidence	55
3.1.A.4. Genetic evidence	57
3.1.B. Aims of the study	58
3.2. MATERIALS and METHODS	59
3.2.A. Spatial representation of the reefs: Charts	59
3.2.B. Hydrodynamic patterns	60
3.2.C. Competence patterns of the larvae	60
3.2.D. Other parameters	64

3.2.E. Data analysis and presentation	65
3.3. RESULTS	66
3.3.A. Retention level, settlement rate, and fate of larvae	66
3.3.B. Retention level and local vs. non-local settlement	68
3.3.C. Retention level and connectivity among reefs	70
3.3.C.1. Evolutionary-scale connectivity	70
3.3.C.2. Ecological-scale connectivity	72
3.3.D. Retention level and evenness of the larval input	74
3.3.E. Retention level and diversity of the larval input	74
3.4. DISCUSSION	76
3.4.A. Consequences of the level of water retention in the models	77
3.4.A.1. Settlement rate and larval fate	77
3.4.A.2. Non-local vs. local settlement	78
3.4.A.3. Connectivity among reefs by larvae	79
3.4.A.4. Evenness and diversity of reef sources of the larval input to the reefs	80
3.4.B. Larval retention: implications and applications	81
3.4.B.1. Implications of larval retention	81
3.4.B.2. Applications to management and conservation	82
3.4.C. Model Limitations	
3.4.D. Summary and Conclusions	85
Chapter 4: DISPERSAL OF LARVAE ON THE GREAT BARRIER REEF	87
4.1. INTRODUCTION	87
4.1.A. Climatic and biological latitudinal patterns on the GBR	88
4.1.B. Aims of the study	91
4.2. MATERIALS and METHODS	92
4.2.A. Model Inputs	92
4.2.A.1. Spatial representations: Charts	92
4.2.A.2. Physical Oceanography	96
4.2.B. Model Types	98
4.2.C. Data Analysis	99
4.2.C.1. Aim 1: Patterns of larval dispersal and their effects in six zones of the	
GBR	99
4.2.C.2. Aim 2: Mechanisms underlying the latitudinal recruitment patterns on	
the GBR	. 100

4.2.C.3. Aim 3: Patterns of larval dispersal among reefs within zones	. 101
4.3. RESULTS	. 101
4.3.A. Aim 1: Patterns of larval dispersal in zones of the GBR	. 101
4.3.A.1. Settlement rates	. 101
4.3.A.2. Origin of settled larvae: local vs. non-local settlement	. 103
4.3.A.3. Relationships among reefs	. 103
4.3.A.3.a. Connectivity at an evolutionary-scale	. 103
4.3.A.3.b. Connectivity at an ecological-scale	. 105
4.3.A.3.c. Evenness of larval input	. 105
4.3.A.3.d. Diversity of larval input	. 105
4.3.B. Aim 2: Mechanisms contributing to the latitudinal recruitment patterns on	
the GBR	. 107
4.3.C. Aim 3: Patterns of larval dispersal among reefs within zones	. 112
4.4. DISCUSSION	. 114
4.4.A. Patterns of dispersal among and within sectors in the GBR	. 114
4.4.A.1. Settlement rate	. 114
4.4.A.2. Relationships among reefs	. 115
4.4.B. Mechanisms contributing to the latitudinal recruitment gradients in the	
GBR	. 116
4.4.B.1. Latitudinal recruitment gradients in brooders and spawners	. 116
4.4.B.2. Latitudinal gradient in the proportion of spawners in the total	
settlement	. 117
4.4.C. Model Limitations	. 119
4.4.D. Summary and Conclusions	. 123
Chapter 5: LARVAL COMPETENT PERIOD and SIZE OF GEOGRAPHIC	
RANGE IN CORALS	. 125
5.1. INTRODUCTION	. 125
5.1.A. Relationship between dispersal potential and geographic range size	. 126
5.1.B. Aims of the study	. 129
5.2. MATERIALS and METHODS	. 130
5.2.A. Species of coral used in the study	. 130
5.2.B. Geographic range sizes	. 130
5.2.C. Potential for dispersal of larvae	. 130
5.2.C.1. Dispersal environment	. 132

5.2.C.2. Competence patterns of the larvae	134
5.2.C.2.a. Linear representation of the larval competence patterns	134
5.2.C.2.b. Non-linear representation of the larval competence patterns	135
5.2.C.3. Data analysis	138
5.2.D. Relationship between potential for dispersal and geographic range size	139
5.3. RESULTS	139
5.3.A. Geographic ranges	139
5.3.B. Potential for dispersal provided by the larvae	141
5.3.B.1. Broadcast spawners, linear representation	141
5.3.B.2. Broadcast spawners, non-linear representation	141
5.3.B.3. Brooders, non-linear representation	146
5.3.C. Relationship between larval dispersal potential and geographic range size	148
5.4. DISCUSSION	148
5.4.A. Variation in range sizes of corals in the Indo-Pacific	148
5.4.B. Variation in larval dispersal potential of corals in the Indo-Pacific	150
5.4.C. Relationship between larval dispersal potential and geographic range size	152
5.4.D. Study limitations	157
5.4.D.1. Experimental limitations	157
5.4.D.2. Model limitations	158
5.4.D.3. Statistical analysis limitations	158
5.4.E. Summary and Conclusions	159
Chapter 6: LARVAL DISPERSAL, HABITAT TOPOLOGY, and SPECIES	
RICHNESS IN INDO-PACIFIC CORALS	161
6.1. INTRODUCTION	161
6.1.A. Patterns of species richness in the tropical Indo-Pacific	161
6.1.B. Theories proposed to explain the patterns of species richness in the tropical	
Indo-Pacific	162
6.1.C. Processes determining species richness patterns and the 'Vortex Model'	166
6.1.D. Limitations of the 'Vortex Model'	167
6.1.E. Aims of the study	168
6.2. MATERIALS and METHODS	169
6.2.A. 'Dispersal Sub-model'	169
6.2.A.1. Charts: spatial representations of the environment	171
6.2.A.2. Currents	172

6.2.A.3. Pre-competent and competent periods of the larvae	173
6.2.A.4. Fixed parameters	174
6.2.B. 'Biogeography Sub-model'	174
6.2.C. Data Analysis and Results Presentation	176
6.3. RESULTS	178
6.4. DISCUSSION	184
6.4.A. Evidence in support of the 'Topological Model of Coral Reef	
Biogeography'	184
6.4.B. Potential evidence against the 'Topological Model of Coral Reef	
Biogeography'	185
6.4.C. Comparison of the 'Topological Model' with other theories including	
habitat topology	187
6.4.D. The 'Topological Model of Coral Reef Biogeography' as a null model	188
6.4.D.1. Central Indo-Pacific	188
6.4.D.2. Central and Eastern Pacific	188
6.4.D.3. Arafura Sea	189
6.4.D.4. Great Barrier Reef	189
6.4.E. Model limitations	190
6.4.F. Summary and Conclusions	191
Chapter 7: GENERAL DISCUSSION	193
7.1. OVERVIEW AND DISCUSSION OF THE MAIN FINDINGS IN THE	
THESIS	193
7.1.A. Chapter 2: Larval types, currents patterns, and their interaction	193
7.1.B. <i>Chapter 3:</i> Effect of larval retention on reefs	196
7.1.C. Chapter 4: Dispersal of larvae on the Great Barrier Reef	197
7.1.D. <i>Chapter 5:</i> Larval competent period and size of geographic range in corals	199
7.1.E. <i>Chapter 6:</i> Larval dispersal, habitat topology, and species richness in Indo-	
Pacific corals	200
7.2. APPLICATIONS: CONSERVATION and MANAGEMENT	202
7.3. SUGGESTIONS FOR FURTHER WORK	205
7.3.A. Empirical work	206
7.3.B. Modelling work	
7.4. CONCLUSIONS	210

REFERENCES	212
Appendix I: LIST OF VARIABLES CALCULATED BY THE LARVAE	
DISPERSAL PROGRAM	239
Appendix 11: GEOGRAPHIC SETTING OF THE GREAT BARRIER REEF	242
Appendix III: PHYSICAL OCEANOGRAPH OF THE GREAT BARRIER REEF	246
Appendix IV: GLOSSARY	253

Chapter 2: LARVAL TYPES, CURRENTS, and their INTERACTION

Table 2.1. General description of the spatially explicit and spatially realistic models
of reefal systems used in <i>Chapter 2</i>
Table 2.2. Types of spatially explicit and spatially realistic models of reefal systems
used in <i>Chapter 2</i> grouped by type of input being investigated
Table 2.3. Spatial features of the theoretical charts used in <i>Chapter 2</i>
Table 2.4. List of variables computed by the data analysis module in the models of
reefal systems used in Chapter 2 (contained in the 3rd database output)
Chapter 3: EFFECTS OF LARVAL RETENTION ON REEFS
Table 3.1. Current sets used in the models of reefal systems in <i>Chapter 3</i>
Table 3.2. Types of spatially explicit models of reefal systems used in Chapter 3
grouped by type of data input being investigated
Chapter 4: DISPERSAL OF LARVAE ON THE GREAT BARRIER REEF
Table 4.1. Location of the Great Barrier Reef zones represented by the charts used
as data input to the models in <i>Chapter 4</i>
Table 4.2. Sectors of the Great Barrier Reef used in Chapter 4, their latitudinal
boundaries, and references used in the representation of their hydrodynamic
patterns
Table 4.3. Current sets used in Chapter 4
Table 4.4. Coral cover and adult fecundity in the 6 zones of the GBR used in
<i>Chapter 4</i>
Table 4.5. Comparison of the number of reefs and reefal area (total area of the
reefs) between the polygon coverages (closest to the real world) and the charts
(used in the models) representing each zone
Table 4.6. Contribution of larvae to the 6 study reefs in each zone by 8 reefs
located adjacent (in the 8 cardinal directions) to the charts used in Chapter 4 121
Chapter 5: LARVAL COMPETENT PERIOD and SIZE OF GEOGRAPHIC
RANGE IN CORALS
Table 5.1. Description of the spatially explicit models of reefal systems used in
Chapter 5 grouped by data inputs types

Table 5.2. Current sets used in the models 133
Table 5.3. Reproductive type and competence patterns for the species used in the
models in <i>Chapter 5</i>
Table 5.4. Relationship among biogeographic variables and the dispersal variables
obtained with the models for broadcast spawning corals
Table 5.5. Dispersal potential of larvae computed by the models in Chapter 5 and
gene flows estimated in the GBR (Ayre and Hughes 2000) for 3 brooding and 3
spawning coral species
Table 5.6. Relationships among the variables describing the dispersal potential of
the larvae computed by the models in Chapter 5 (using non-linear
representations of the larval competent period) and the gene flows observed in
the GBR (Ayre and Hughes 2000) for 5 species of coral (P. damicornis, S.
pistillata, S. histrix, A. millepora and A. valida)
Chapter 6: LARVAL DISPERSAL, HABITAT TOPOLOGY, and SPECIES
RICHNESS IN INDO-PACIFIC CORALS
Table 6.1. Description of the current conditions used in the 'Dispersal Sub-model'
of the 'Topological Model' of coral reef biogeography of the Indo-Pacific 173
Appendix I: LIST OF VARIABLES CALCULATED BY THE LARVAE
DISPERSAL PROGRAM
Table ApI.1. Larval fate variables
Table ApI.2. Connectivity and diversity variables

Chapter 2: LARVAL TYPES, CURRENTS, and their INTERACTION

Figure 2.1. Types of population models according to their representation of space 19
Figure 2.2. Example of the representation of reefal systems using 'charts'
Figure 2.3. Information flow and outputs (3 databases) in the general model
Figure 2.4. Larval output and input of a reef
Figure 2.5. Larval output and input connectivity
Figure 2.6. Effect of larval type - current pattern combination (brooders with diffusion;
brooders with diffusion + advection; spawners with diffusion; spawners with
diffusion + advection) on: (2.6.a.) settlement success of larvae; (2.6.b.) fate of the
larvae produced
Figure 2.7. Effect of larval type - current pattern combination (brooders with diffusion;
brooders with diffusion + advection; spawners with diffusion; spawners with
diffusion + advection) on: (2.7.a.) proportion of larvae settling locally and away from
their natal reef; (2.7.b.) connectivity among reefs at different larval thresholds 40
Figure 2.8. Effect of larval type - current pattern combination (brooders with diffusion;
brooders with diffusion + advection; spawners with diffusion; spawners with
diffusion + advection) on: (2.8.a.) evenness of reef receptors of larvae (Simpson's E
index); (2.8.b.) diversity of reef receptors of larvae (Simpson's D index) 42
Chapter 3: EFFECTS OF LARVAL RETENTION ON REEFS
Figure 3.1. Non-linear representation of the cohort competence patterns
Figure 3.2. Effect of the level of water retention at the reefs on the larval settlement of a
cohort
Figure 3. 3. Effect of the level of water retention at the reefs on the fate of the larvae of a
cohort
Figure 3.4. Effect of the level of water retention at the reefs on the spatial distribution of
the settled larvae of a cohort
Figure 3.5. Effect of the level of water retention at the reefs on the connectivity among
reefs by the larvae of a cohort
Figure 3.6. Effect of the level of water retention at the reefs on the evenness of reef
sources of the larval input to the reefs

Figure 3.7. Effect of the level of water retention at the reefs on the diversity of reef	f
sources of the larval input to the reefs	75
Chapter 4: DISPERSAL OF LARVAE ON THE GREAT BARRIER REEF	
Figure 4.1. Map of the GBR and its sectors	88
Figure 4.2. Variation in the proportion of spawner recruits in the total recruitment in	n the
Great Barrier Reef	90
Figure 4.3. Maps of the GBR and the 6 zones used in the models	93
Figure 4.4. Average settlement rates (larvae settled per km ² of receptor reef) for the	e 6
study reefs in each of the 6 zones of the GBR provided by model type 1	102
Figure 4.5. Average origin (local vs. non-local) of the settled larvae for the 6 study	reefs
in each of the 6 zones of the GBR provided by model type 1	102
Figure 4.6. Average connectivity among reefs by larvae for the 6 study reefs in each	h of
the 6 zones of the GBR provided by model type 1	104
Figure 4.7. Average evenness and diversity of reef sources of the larvae settled on t	he 6
study reefs in each of the 6 zones of the GBR provided by model type 1	106
Figure 4.8. Rank - Contribution graphics for the 6 modelled zones of the GBR prov	
by model type 1	108
Figure 4.9. Comparison between settlement results in the models without retention	and
field recruitment data	109
Figure 4.10. Comparison between settlement results in the models with retention an	nd
field recruitment data	110
Figure 4.11. Level of variation in the modelled dispersal variables among the 6 stud	ły
reefs within zones	113
Chapter 5: LARVAL COMPETENT PERIOD and SIZE OF GEOGRAPHIC RANG	GE IN
CORALS	
Figure 5.1. Geographic ranges of the 15 species of corals whose competent periods	were
used in the models	131
Figure 5.2. Competence patterns of the larvae of the five broadcast spawning coral	
species used in the non-linear models	137
Figure 5.3. Competence patterns of the larvae of the three brooding coral species	
(substratum offered) used in the non-linear models	138
Figure 5.4. Variation in the geographic range sizes of the coral species used in the m	nodels
	140

Figure 5.5. Simulation results for the larval dispersal of broadcast spawners in the
absence of retention using a linear representation of the competent periods
Figure 5.6. Simulation results for the larval dispersal of broadcast spawners in the
presence of retention using a linear representation of the competent periods 143
Figure 5.7. Simulation results for the larval dispersal of broadcast spawners in the
absence and presence of retention using a non-linear representation of the competent
periods
Figure 5.8. Simulation results for the larval dispersal of brooders in the absence and
presence of retention using a non-linear representation of the competent periods 147
Figure 5.9. Relationship between the evolutionary-scale connectivity values computed by
the models (using non-linear representations of the larval competent period) and the
gene flows estimated in the GBR (Ayre and Hughes 2000) for 5 species of coral. 156
Chapter 6: LARVAL DISPERSAL, HABITAT TOPOLOGY, and SPECIES RICHNESS
IN INDO-PACIFIC CORALS
Figure 6.1. Digitised map of the Indo-Pacific used in the simulations in <i>Chapter 6</i> 172
Figure 6.2. Competence patterns of the larvae of broadcast spawning coral Acropora
valida, used in the models in Chapter 6
Figure 6.3. Information flow and use in the 'Topological Model of Indo-Pacific Coral
Reef Biogeography'
Figure 6.4. Example of species dynamics over 200 iterations produced by the
'Topological Model of Indo-Pacific Coral Reef Biogeography', illustrating the
emergence of a CIP hotspot
Figure 6.5. Comparison between the species richness patterns found in the IP and the
results produced by the 'Vortex' and 'Topological' Models of Indo-Pacific Coral
Reef Biogeography
Chapter 7: GENERAL DISCUSSION
Figure 7.1. Mechanisms and implications of the dispersal of coral larvae and their
investigation in this thesis
Appendix 111: PHYSICAL OCEANOGRAPHY OF THE GREAT BARRIER REEF
Figure ApIII.1. Background currents influencing the water circulation in the GBR247
Figure ApIII.2. Topography and hydrodynamics of the Capricorn – Bunker Groups
sector