JCU ePrints

This file is part of the following reference:

Crowther, Robert G. (2008) Effects of a long term exercise program on lower limb mobility in peripheral arterial disease patients. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/2110

Effects of a long term exercise program on lower limb mobility in peripheral arterial disease patients

Thesis submitted by Robert George Crowther BSpExSc (Hons) in January 2008

For the degree of Doctor of Philosophy in the Institute of Sport and Exercise Science James Cook University

Statement of access

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place any further restriction on access to this work.

Signature

Date

Statement of sources

Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Signature

Date

Declaration of ethics

The research presented and reported in this thesis was conducted within the guidelines for research ethics outlined in the *National Statement on Ethics Conduct in Research Involving Human (1999)*, the *Joint NHMRC/AVCC Statement and Guidelines on Research Practice (1997)*, the *James Cook University Statement and Guidelines on Research Practice (2001)*. The proposed research methodology received clearance from the James Cook University Experimentation Ethics Review Committee (approval number H2395).

Signature

Date

Acknowledgments

I would like to pay acknowledgment and special recognition to the following people:

To my supervisor Associate Professor Warwick Spinks, thank you for being my PhD supervisor and for believing in my capacity to complete the PhD, as well as your support for my continued education in all matters including wine, the English language, university politics and general life. I cannot thank you enough for your time and effort that you have spent on this PhD candidature and I hope we can continue to produce quality research together in the future. I will always remember: Consistency & detail!

To my co-supervisor Dr. Anthony Leicht, I thank you for your time in assisting with testing and organization of the overall project. Thank you for your comments, advice, being a colleague and the countless debates about sports teams, players and rules.

To vascular surgeons Professor Jonathan Golledge and Dr. Frank Quigley thank you for your recruitment of participants and assistance throughout the project.

Thank you to the Faculty of Medicine, Health & Molecular Sciences, School of Public Health, Tropical Medicine and Rehabilitation Sciences and the Institute of Sport and Exercise Science for the stipend scholarship.

To all the staff at ISES JCU especially Rebecca Kerr, thank you for your time and support.

Thank you to Dr. Simon Wills for your effort in program development and expertise, and to Dr. Ambarish Gosswani for providing Matlab program codes for parameterization calculations.

To Jane I will always remember those special years.

To all my friends especially Annemarie, Marshall, Matt, Corey and Dan thank you for keeping me sane on this journey.

To my mother, Edith, I cannot thank you enough for your continuing support, encouragement and belief in my abilities throughout my life.

Finally a special mention must be made of the participants without whom this study would not have been possible, your gifts and support were greatly appreciated.

Abstract

Peripheral arterial disease (PAD) is a chronic arterial occlusive disease of the lower extremities caused by atherosclerosis. The most common presenting symptom of PAD is intermittent claudication (IC) with exercise induced pain experienced in the calves, thighs or buttocks that is relieved with rest. Research investigating the effects of PAD-IC on lower limb mobility is limited to five studies on the temporal-spatial gait parameters (e.g. stride length, cadence, support times, speed) in PAD-IC populations that produced conflicting results. Gardner et al. (2001) speculated that the temporalspatial gait parameters of individuals with PAD-IC could be improved by participation in exercise programs. To date there has been no attempt to determine the validity of this proposition. There has also been no research on the underlying mechanism of these temporal-spatial gait parameters namely gait kinematics (angular joint displacement, velocity and acceleration). Observed limitations in temporal-spatial gait parameters may be explained by the effects of musculoskeletal abnormalities on lower limb joint kinematics during the gait cycle. Understanding of the relationships between temporalspatial gait parameters and gait kinematics in PAD-IC allows more precise identification of gait abnormality and its effects on lower limb mobility in this population. Analysis of variability in gait kinematics is becoming more commonly used as a clinical tool for evaluation of lower limb mobility in the elderly, lower limb disease populations and individual responses to exercise programs. Increased movement variability in lower limb kinematics has been traditionally associated with decreased movement performance due to disease and aging. However, more recent research from a dynamical systems perspective has indicated that movement variability may be of functional importance in motor control and may provide flexibility when adjusting to movement constraints imposed by disease.

Therefore, for the purposes of this thesis, a series of studies were undertaken to investigate 1) the temporal-spatial gait parameters, gait kinematics, lower limb movement variability, walking performance, physiological responses to exercise and physical activity levels of individuals with and without PAD-IC and 2) the effects of a long term exercise program on these same variables in individuals with PAD-IC compared to individuals with and without PAD-IC.

Study 1 (Chapter 3) examined the lower limb mobility characteristics (temporal-spatial gait parameters and gait kinematics) of individuals with PAD-IC and the relationships between lower limb mobility, walking performance, physiological responses to exercise and physical activity levels in this population. Study 2 (Chapters 4 & 5) assessed intralimb joint coordination and single joint movement variability in patients with PAD-IC and without PAD-IC (CON). Lower limb mobility characteristics were determined via 2D motion analysis. A graded treadmill test was used to assess walking performance (pain free walking distance/time (PFWD/T) and maximal walking distance/time (MWD/T) and peak physiological responses to exercise (VO_{2peak}, HR_{peak}, RER_{peak} and VE_{peak}). Physical activity levels were measured via a 7 d pedometer recording following motion analysis. Intralimb coordination variability was measured using parameterization, vector coding and normalized root mean square techniques applied to relative motion plots of various joint couplings. Single joint movement variability was measured using spanning set and coefficient of variation. Study 3 (Chapter 6) examined the effects of a 12 mth exercise program on the lower limb mobility of individuals with PAD-IC. A further aim was to examine the extent to which lower limb mobility contributes to long term exercise induced changes in walking performance, peak physiological responses to exercise and physical activity levels in PAD-IC patients.

Finally study 4 (Chapter 7) investigated the effects of a 12 mth exercise program on walking performance and lower limb movement variability using intralimb joint coordination and single joint assessment techniques in individuals with and without PAD-IC.

Compared to CON, PAD-IC temporal-spatial gait parameters were significantly lower (P < .05), except for single support ipsilateral limb time. PAD-IC participants spent a greater percentage of time in gait support phases, took longer to complete a stride and had reduced stride length and walking speeds during the gait cycle. Participants with PAD-IC joint angular kinematics showed significantly reduced displacement of ankle plantar flexion (P = .017), knee ROM (P = .021) and hip extension (P = .016) compared to the CON participants during the gait cycle. All joint minimum and maximum angular velocities and accelerations, physiological responses to exercise (walking) and physical activity levels were significantly lower for PAD-IC compared to the CON participants. The PAD-IC participants displayed significantly higher levels of lower limb movement variability in all joints when assessed using the intralimb joint coordination and single joint movement variability techniques.

The 12 mth exercise program had no significant effect on lower limb mobility, peak physiological responses to exercise or physical activity levels in PAD-IC patients who received normal medical therapy treatment and a 12 mth exercise program (TPAD-IC) compared to PAD-IC patients who received normal medical therapy (CPAD-IC) . However, the TPAD-IC participants demonstrated significantly greater walking performance (171% improvement in PFWT and 120% improvement in MWT) compared with baseline. The 12 mth supervised exercise program made no significant

impact on the lower limb movement variability of the TPAD-IC group as determined by either intralimb joint coordination or single joint analysis techniques.

The results of these studies show that patients with PAD-IC have reduced lower limb mobility (temporal-spatial gait parameters and gait kinematics) and increased lower limb movement variability. The derived gait kinematics highlighted that the push-off (or toe-off) of the gait cycle in PAD-IC patients is significantly reduced compared to healthy age matched controls. The increased level of lower limb movement variability may be an adaptation to the gradual onset of claudication pain in this population. Patients with PAD-IC also demonstrated reduced walking performance, peak physiological responses to exercise and physical activity levels compared to healthy age matched controls. PAD-IC patients involved in a 12 mth supervised exercise program exhibited no change in lower limb mobility characteristics, physiological responses to exercise or physical activity levels. Gardner et al.'s (2001) speculation that the reduced temporal-spatial gait parameters of PAD-IC patients could be modified to resemble that of age matched controls through the use of an exercise program was not supported by the data. However, a 12 mth supervised exercise program did cause a significant improvement in walking performance in this population sample. It is suggested that the improvement in walking performance may be due at least in part, to adaptation of peripheral physiological mechanisms.

Table of contents

Page

Title page	i
Statement of access	ii
Statement of sources	iii
Declaration of ethics	iv
Acknowledgements	v
Abstract	vii
Table of contents	xi
List of tables	xvii
List of figures	xix
List of appendices	xvi

Introduction	1
Aging population	1
Cardiovascular disease in Australia	1
Peripheral arterial disease and mortality rates	2
Cause and symptoms of PAD	3
Diagnosis of PAD-IC	5
Consequences of PAD-IC	7
Treatment of PAD-IC	7
PAD-IC walking performance improvement	11
PAD-IC and lower limb mobility	12
PAD-IC and lower limb movement variability	13

Statement of the problem	17
Hypotheses	18
Format for investigation	19
Limitations and delimitations – Studies 1 & 2	20
Limitations and delimitations – Studies 3 & 4	20
Definition of terms	21
List of abbreviations and nomenclature	22
Significance of the study	24

Literature review	26
Characteristics of the Australian population	26
Peripheral arterial disease	28
Diagnosis of PAD-IC	30
Physical findings	31
Ankle-brachial pressure index	31
Vascular imaging	33
Questionnaire assessment	33
Walking assessment	34
Prediction of PFWD and MWD	37
Treatment of PAD-IC	39
Risk factors	40
Pharmacological treatment of PAD-IC	41
Surgical treatment of PAD-IC	43
Exercise programs	46

Exercise program modes	47
Supervised exercise programs	47
Home exercise programs	53
Intensity	54
Mechanisms for improved walking performance in PAD-IC	55
Oxygen uptake	55
Leg musculature	56
Peripheral blood flow	57
Angiogenesis	58
Lower limb mobility characteristics	59
Gait cycle	59
Temporal-spatial gait parameters	60
Cadence	60
Speed/velocity	60
Stride length	61
Double support	61
Kinematics of the gait cycle	64
Kinematics of the hip	65
Kinematics of the knee	65
Kinematics of the ankle	66
Gait across the lifespan	67
Pathologies affecting gait	69
Gait and PAD-IC	69
Theories of motor control	73
Variability	75

Movement variability with aging, injury and disease	76
Methods of determining movement variability	79
Intralimb joint coordination	79
Angle-angle diagrams	80
Parameterization	81
NoRMS	82
Vector coding	83
Single joint movement variability	85
Coefficient of variation (CV)	85
Spanning set	86
Summary of the literature review	88

Experimental studies

Relationship between temporal-spatial parameters of gait, gait kinematics,	
walking performance, exercise capacity and physical activity level in	
peripheral arterial disease	90
Abstract	91
Introduction	93
Methods	94
Results	101
Discussion	108

Intralimb coordination variability in individuals with and without

peripheral arterial disease	112
Abstract	113
Introduction	115
Methods	118
Results	124
Discussion	128

Chapter 5

Lower limb movement variability in patients with peripheral arterial

disease	131
Abstract	132
Introduction	133
Methods	134
Results	138
Discussion	141

Effects of a long term program on lower limb mobility, physiological	
responses, walking performance and physical activity levels in	
patients with peripheral arterial disease	144
Abstract	145
Introduction	147
Methods	149

Results	156
Discussion	168

Effects of a long term exercise program on walking performance and	
lower limb movement variability in peripheral arterial disease patients	171
Abstract	172
Introduction	174
Methods	176
Results	183
Discussion	192

Chapter 8

Summary, conclusions and recommendations	195
Summary	195
Conclusions	200
Recommendations for further study	201
References	203

Appendix A: Disclosure and informed consent form and the subject	
consent form used in the experimental studies	250

Appendix B: Abstracts from conference presentations presented from studies in this thesis during the course of this doctoral candidature....... 252

List of tables

Chapter 2 Literature review

Table	Page
1. Rutherford clinical categories of acute limb ischemia (Rutherford, 1991)	38
2. Rutherford clinical categories of chronic limb ischemia resulting from	
PAD-IC (Rutherford, 1991)	38
3. Fontaine stages of classification of PAD-IC (Lampman & Wolk, 2003)	39
4. PAD-IC exercise programs research protocol review	49
5. PAD-IC exercise program research results review	51
6. Female gait range characteristics (Whittle, 2003)	68
7. Male gait range characteristics (Whittle, 2003)	68

Experimental studies

1.	Mean (±SEM) descriptive characteristics of intermittent claudication	
	(IC) and healthy age and mass matched control (CON) subjects (N=53)	101
2.	Mean (±SEM) temporal-spatial gait parameters of intermittent claudication	
	(IC) and healthy age and mass matched control (CON) subjects (N=53)	103
3.	Mean (±SEM) peak and ROM angular kinematics of intermittent	
	claudication (IC) and healthy age and mass matched control (CON)	
	subjects (N=53)	104
4.	Mean (±SEM) peak angular velocity and acceleration values for	
	intermittent claudication (IC) and healthy age and mass matched control	
	(CON) subjects (N=53)	106

5	Mean (±SEM) walking performance and physiological responses of	
	intermittent claudication (IC) and healthy age and mass matched control	
	(CON) subjects (N=53)	107
6	Mean (±SEM) seven day physical activity levels of intermittent	
	claudication (IC) and healthy age and mass matched control (CON)	
	subjects (N=53)	108

1. Descriptive characteristics of peripheral arterial disease (PAD-IC) and	
healthy age and mass matched control (CON) participants (N=53)	119
2. Mean (\pm SD) NoRMS values for peripheral arterial disease (PAD-IC) and	
control (CON) participants (N=53)	127
3. Mean (±SD) vector coding values for peripheral arterial disease (PAD-IC)	
and control (CON) participants (N=53)	127

Chapter 5

1.	Descriptive characteristics of peripheral arterial disease-intermittent	
	claudication (PAD-IC) and healthy age and mass matched control	
	(CON) participants (N=53)	139
2.	Coefficient of variation (CV) and spanning set values for peripheral	
	arterial disease-intermittent claudication-intermittent claudication	
	(PAD-IC) and control (CON) participants (N=53)	141

1. Descriptive characteristics of participants 1.	56
--	----

2. Mean (±SD) temporal-spatial gait parameter values of participants	158
3. Mean (±SD) angular kinematics values of participants	158
4. Mean (±SD) peak angular velocity and acceleration values of participants	164
5. Mean (\pm SD) walking performance and physiological responses values of	
participants	166
6. Mean (±SD) seven day physical activity levels values of participants	167

1 Descriptive characteristics of participants	184
2 Mean (±SD) normalized root mean square values	189
3 Mean (±SD) vector coding values	189
4 Mean (±SD) coefficient of variation values	190
5 Mean (±SD) walking performance values	191

List of figures

Chapter 1 Introduction

Figure	Page
1. General approaches to the management of patients with PAD-IC (adapted	
from Brook et al., 2002)	9

Chapter 2 Literature review

1. Age structure of Australia (Australian Bureau of Statistics, 2006)	26
2. Australian PAD death rates (adapted from National Cardiovascular Diseases	
and Diabetes Database, AIHW, 2006)	28

3. Site of peripheral arterial disease (Nucleus Communications, 2003)	29
4. Atherosclerotic blockage with diseased artery (National Heart Lung and	
Blood Institute, 2006)	29
5. Trophic skin in severe PAD-IC (adapted from MyFoot Shop, 2007)	31
6. A) Palpation of lower limb arteries B) Ankle Brachial Index (ABI) test	
(Khan, Rahim, Anand, Simel, & Panju, 2006)	32
7. Balloon angioplasty (Texas Heart Institute, 2006)	44
8. A peripheral artery being treated with stenting. A) Balloon angioplasty of	
the blockage. B) Positioning of a balloon-expandable stent & deployment of	
the stent. C) Final result with the stent in place (Texas Heart Institute, 2006)	45
9. A, B & C SilverHawk event (Mayo Clinic, 2006)	46
10. Events of the gait cycle (adapted from Neumann, 2002)	63
11. Angle conventions used to describe the angular displacements of the trunk,	
hip, knee and ankle in the sagittal plane during the walking cycle	64
12. Mean () \pm SD () of hip ROM during normal walking (adapted	
from Perry, 1992)	65
13. Mean (—) \pm SD () of knee ROM during normal walking (adapted	
from Perry, 1992)	66
14. Mean (—) \pm SD () of ankle ROM during normal walking (adapted	
from Perry, 1992)	67
15. Angle-angle plot of the sagittal plane hip and knee during a gait cycle	80
16. Phase-plane plot of the knee angle and knee velocity during a gait cycle	81
17. Vector coding technique	83
18. R^n represents the span of the two vectors, where a_1 , a_2 , b_1 and b_2	
represent the components of the respective vectors (Kurz & Stergiou, 2004)	87

Experimental studies

Chapter 3

1. Joint angle conventions	98
2. Trunk, hip, knee and ankle kinematics in the sagittal plane for IC and CON sul	ojects;
the dashed line indicates toe-off at $\sim 60\%$ gait cycle (with 0-60%)	
representing stance; 60-100% representing swing)	105

Chapter 4

1. Sagittal plane angle convention	121
2. Vector coding technique	123
3. Joint-joint angular kinematics plot of the hip-knee during the gait cycle	
in the sagittal plane for PAD-IC and CON participants	. 125
4. Joint-joint angular kinematics plot of the knee-ankle during the gait cycle	
in the sagittal plane for PAD-IC and CON participants	. 126
5. Joint-joint angular kinematics plot of the hip-ankle during the gait cycle	
in the sagittal plane for PAD-IC and CON participants	. 126

Chapter 5

1	Sagittal plane angle convention	136
2	. Hip, knee and ankle kinematics in the sagittal plane for PAD-IC and	
	CON subjects; the dashed line indicates toe-off at ~60% gait cycle	
	(with 0-60% representing stance; 60-100% representing swing)	140

1. Sagittal joint angle conventions. 15	53
---	----

2	Participant trunk kinematics in the sagittal plane (CON = healthy age	
	and mass matched controls, CPAD-IC = control peripheral arterial	
	disease-intermittent claudication patients, TPAD-IC = treatment peripheral	
	arterial disease-intermittent claudication patients)	160
3.	Participant hip kinematics in the sagittal plane (CON = healthy age	
	and mass matched controls, CPAD-IC = control peripheral arterial	
	disease-intermittent claudication patients, TPAD-IC = treatment	
	peripheral arterial disease-intermittent claudication patients)	161
4	Participant knee kinematics in the sagittal plane (CON = healthy age	
	and mass matched controls, CPAD-IC = control peripheral arterial	
	disease-intermittent claudication patients, TPAD-IC = treatment peripheral	
	arterial disease-intermittent claudication patients)	162
5	Participant ankle kinematics in the sagittal plane (CON = healthy age	
	and mass matched controls, CPAD-IC = control peripheral arterial	
	disease-intermittent claudication patients, TPAD-IC = treatment peripheral	
	arterial disease-intermittent claudication patients)	163

1. Sagittal plane angle convention	178
2. Vector coding technique	181
3. Hip-knee plot in the sagittal plane (CON, healthy age and mass matched	
controls; CPAD-IC, control peripheral arterial disease-intermittent	
claudication patients; TPAD-IC, treatment peripheral arterial	
disease-intermittent claudication patients)	186
4. Knee-ankle plot in the sagittal plane (CON, healthy age and mass matched	

controls; CPAD-IC, control peripheral arterial disease-intermittent	
claudication patients; TPAD-IC, treatment peripheral arterial	
disease-intermittent claudication patients)	187
5. Hip-ankle plot in the sagittal plane (CON, healthy age and mass matched	
controls; CPAD-IC, control peripheral arterial disease-intermittent	
claudication patients; TPAD-IC, treatment peripheral arterial	
disease-intermittent claudication patients)	198