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Abstract

Background: Marine diseases are being increasingly linked to anthropogenic factors including global and local stressors. On
the Great Barrier Reef, up to 66% of the Ianthella basta population was recently found to be afflicted by a syndrome
characterized by brown spot lesions and necrotic tissue.

Methodology/Principal Findings: Manipulative experiments were undertaken to ascertain the role of environmental
stressors in this syndrome. Specifically, the effects of elevated temperature and sedimentation on sponge health and
symbiont stability in I. basta were examined. Neither elevated temperature nor increased sedimentation were responsible
for the brown spot lesions, but sponges exposed to 32uC developed substantial discoloration and deterioration of their
tissues, resulting in death after eight days and a higher microbial diversity in those samples. No shifts in the microbial
community of I. basta were observed across a latitudinal gradient or with increased sedimentation, with three previously
described symbionts dominating the community of all sponges (Alphaproteobacteria, Gammaproteobacteria and
Thaumarchaea).

Conclusions/Significance: Results from this study highlight the stable microbial community of I. basta and indicate that
thermal and sedimentation stress are not responsible for the brown spot lesions currently affecting this abundant and
ecologically important sponge species.
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Introduction

Marine sponges host a diverse range of microorganisms,

including 32 bacterial phyla and both major lineages of Archaea

[1,2,3]. Coupled with their high diversity, sponge microorganisms

are involved in important functional processes including nitrifica-

tion [4,5,6,7,8,9,10], denitrification [7,11] and Anammox [11,12].

Given the host specificity of sponge microbes, evidence of vertical

transmission of symbionts to larvae (reviewed in [2]) and their

involvement in important functional processes, it is clear that

sponge-associated bacteria are critical to the health and survival of

their host.

The stability of sponge-microbial associations appears to vary

between species and environments. For instance, whilst the stable

microbial community in Aplysina aerophoba is disrupted by disease

[13], the symbionts are unaffected by both starvation conditions

and antibiotic exposure [14]. Similarly, transplantation of Aplysina

cavernicola from its original habitat (.40 m) to a shallower, more

illuminated environment does not affect the microbial community

[15]. In contrast, other species exposed to environmental stress

exhibit a disruption of the microbial community including the loss

of sponge symbionts and the appearance of putative pathogens.

Environmental stressors such as increased temperature [16,17,18]

and heavy metal exposure [19,20] have caused shifts in typically

stable microbial communities with cascading effects on host

health.

Rising temperatures and anthropogenic stressors are being

increasingly linked with disease in marine and terrestrial organisms

[21,22]. Disease outbreaks can have extensive impacts on sponge

populations and thereby the ecology of reef environments

(reviewed in [23]). Notably, an epidemic in 1938 affected 70–

95% of the total Caribbean sponge population [24] and disease in

commercial Mediterranean species caused the complete collapse

of the sponge fishery in the 19809s [25,26]. Mass sponge

mortalities have also occurred in association with abnormally

high seawater temperatures [27,28], including a recent mass

mortality event affecting 80-100% of the Ircinia fasciculata

populations in the western Mediterranean [29]. The effects of
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increased sedimentation on sponge communities are not well

documented, but there are very clear impacts on host pumping

rates [30,31,32], metabolism [33], reproductive output [34,35]

and survival of larval recruits [36,37]. Climate change predicted

by the Intergovernmental Panel on Climate Change (IPCC) [38] is

likely to have widespread effects on ecosystems such as coral reefs

[39,40] with elevated temperature and terrestrial runoff contrib-

uting to disease, as seen in corals exposed to higher temperatures

[41,42,43] and sedimentation/runoff [21,44]. While there is

compelling evidence for the effects of elevated sea surface

temperature and sedimentation on the symbiotic partnerships

between coral, zooxanthellae and associated microbes [45,46],

there is a conspicuous absence of knowledge on other benthic

groups, such as sponges [47].

A disease-like syndrome is currently affecting a large percentage

of I. basta in Torres Strait and the Palm Islands in the Great

Barrier Reef [48]. However, despite extensive microbial and

molecular characterization, no pathogen(s) have been identified or

implicated in the formation of brown spot lesions and necrosis in

these populations [49] raising questions of whether environmental

factors are responsible. This study will explore the role of

environmental parameters in the formation of brown spot lesions

by assessing the effects of elevated seawater temperature and

sedimentation on the sponge holobiont (host and associated

microbial communities).

Materials and Methods

Sponge collection for analysis of microbial stability
To assess the microbial stability in different populations of I.

basta, specimens were collected from three different locations in

eastern Australia: (1) Orpheus Island, central Great Barrier Reef

(18u 36.878’ S, 146u 29.9909E), (2) Masig Island, Torres Strait (9u
44.260’ S, 143u 25.2759E) and (3) Davies Reef (18u 49.246’ S, 147u
37.9189E) representing a geographic range of 1100 km. Seven

samples from each location were photographed in situ and

preserved in 100% ethanol for molecular analysis. All individuals

were collected from a 12–15 m depth range.

Sponge collection for environmental stress experiments
Having determined a uniform microbial community in different

I. basta populations, fourteen individuals were collected from the

fringing reefs of the Palm Islands, central GBR. These donor

sponges were cut into smaller explants (approximately 10 cm3)

using a scalpel blade and transferred to four Aquapurse baskets

(TTP plastics by design; Brisbane, Queensland, Australia) that

were secured to the reef (18u 35.5959S, 146u 28.9559E). This

procedure is well established with sponge explants generally

recovering within two months [50]. I. basta explants recovered for

12 weeks before collection and transportation to climate-con-

trolled aquaria at the Australian Institute of Marine Science

(AIMS), Townsville. I. basta explants were placed into 12630 l

flow-through aquaria (flow rate of 600 ml min21) and maintained

under a diel cycle of 12:12 h at 40 mmol quanta m22s21. Seawater

was pumped from a pipe 400 m off the coast at the AIMS Cape

Cleveland site and filtered to 5 mm to remove large particulates,

but still provide sponges with a sufficient food source [51].

Explants were left to acclimate under these aquarium conditions

for 48 h before experiments commenced.

Temperature experiment
To assess the effect of thermal stress on the I. basta holobiont,

sponge explants were exposed to four different temperature

treatments: 27, 30, 31 and 32uC (range +/2 0.2uC). Both 27

and 30uC represent ambient temperatures commonly recorded on

inshore reefs of the GBR during the summer period [52] and

therefore serve as control temperatures for this experiment. The

treatment temperatures of 31 and 32uC represent temperatures

which have been linked with mass coral bleaching [52] and the

disruption of sponge symbiosis [18].

The experimental design comprised three replicate tanks per

temperature treatment, each holding seven explants to allow the

destructive sampling of 1 clone per tank for each of the time

points. Initially, all tanks were left at 27uC for 72 h and then

temperatures were adjusted gradually (0.2uC h21) until reaching

the final temperature treatments, to allow sponges to acclimate

[18]. Following the acclimation period, explants were randomly

selected and removed from each temperature treatment at 0, 1, 4,

7, 14 and 18 days. Day one sampling commenced 24 h after the

32uC treatment temperature had been reached. All sampled

explants were photographed to visually assess tissue health and

frozen in liquid nitrogen for molecular analysis. After seven days,

sponges in the 32uC treatment displayed substantial discoloration

and deterioration of the tissues and were considered dead after

8 days. After 14 days, the three remaining temperature treatments

were returned to 27uC for the final four days to serve as a recovery

period, at which point the remaining explants were sampled.

Sediment experiment
To examine the effects of increased sedimentation on the I. basta

holobiont, sediment was collected from the reef slope where I. basta

was cloned at Orpheus Island (18u 35.5959S, 146u 28.9559E).

Table 1. Sediment particle compositions added to
concentrated stock tanks and used to dose sponges.

Percentage Particle size

47 .125 mm ,180 mm

43 .63 mm ,125 mm

10 ,63 mm

doi:10.1371/journal.pone.0039779.t001

Figure 1. Principal components analysis (PCA) of I. basta
community composition, using DGGE banding pattern data
to construct a similarity matrix of sponges from each of the
three geographic locations.
doi:10.1371/journal.pone.0039779.g001
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Sediment was subsequently dried at 100uC and sieved to a final

composition of particles that ranged between ,63 and #180 mm

(Table 1). These particle sizes are consistent with suspended

sediment compositions for the inner shelf of the GBR [32]. The

experimental design comprised four different sediment treatments:

0, 13, 30 and 100 mg l21 (+/22 mg l21). Following procedures of

[53], fiberglass stock tanks (240 l) were used to deliver short,

frequent pulses of concentrated sediment stocks to treatment tanks.

The stock tanks were designed with a 45u taper at their base to

prevent sediment accumulation and ensure constant rates of

delivery. To maintain sediment suspension throughout the

experiment, an external 2400 l h21 pump (Eheim 1260) was used

to circulate the water/sediment suspension from the base to the

top of the tank. The delivery of sediment pulses was achieved using

a second Eheim 1260 pump, which was set on a timer to pulse for

8 sec every 8 min and delivered approximately 120 ml of

concentrated sediment stock to the treatment tanks. A second

inverted pump (Eheim Compact+3000 pump) was suspended at

the waterline of each experimental tank to further improve re-

suspension of sediments. The frequent pulsing and partial re-

suspension of sediments ensured that turbidity (NTU) within tanks

was typically 10% CV [coefficient of variation, CV = (Std Dev

x100)/mean] when logged every 30 s and within 5% CV on a

daily basis (A. Negri pers. comm.). Total suspended sediment

Table 2. Sequence similarity in excised 16S rRNA DGGE bands from I. basta using BLAST.

Band ID Accession Number Percent Similarity Description

A* GQ347593 91 a-proteobacteria (Oceanic dead zone)

B FJ205252 89 a-proteobacteria (Deep sea hydrothermal region)

C GQ347593 91 a-proteobacteria, (Oceanic dead zone)

D FJ205252 90 a-proteobacteria (Deep sea hydrothermal region)

E GQ274301 94 c-proteobacteria (marine biofouling sample)

F* GQ348745 95 c-proteobacteria (oceanic dead zone)

G FM242455 94 c-proteobacteria (coastal sediment)

H GQ204920 93 c-proteobacteria (hard coral)

I JF733387 99 Pseudomonas sp. (adult black fly)

J* EU283427 96 Thaumarchaeota (ascidian)

K AJ876989 96 Thaumarchaeota (soft coral )

L EU283427 95 Thaumarchaeota (ascidian)

M EU182114 99 unidentified bacterium (sediment and seawater, South China Sea)

N HQ436843 96 unidentified bacterium (Lake Bosten, China)

The asterisks (*) denotes bands from the three dominant symbionts previously reported [47].
doi:10.1371/journal.pone.0039779.t002

Figure 2. Representative photos of I. basta explants from the
temperature stress experiment: control explant from 27uC (a), explant
from 30uC treatment at day 14 (b) and explant from 31uC treatment at
day 14 (c).
doi:10.1371/journal.pone.0039779.g002

Figure 3. Principal components analysis (PCA) of I. basta
community composition, using DGGE banding pattern data
to construct a similarity matrix, at 27 (blue), 31 (red) and 326C
(black). Symbols correspond to the different time points. Due to
spatial constraints of the gel, the 30uC treatment was excluded from the
analysis.
doi:10.1371/journal.pone.0039779.g003
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(TSS) concentrations in the treatment tanks were achieved and

maintained by measuring turbidity (NTU) with a TPS 90 FL-T

water quality logger (Springwood, QLD, Australia). Turbidity

measurements were taken daily throughout the experiment and

the amount of sediment added to the concentrated stock tanks was

adjusted according to the following turbidity calibration equation:

NTU = 0.2646TSS +0.05, r2 = 0.99.

Consistent with the temperature experiment, there were three

replicate tanks per treatment, each tank holding seven explants.

Single explants were randomly selected and removed from each

sediment treatment tank at 0, 1, 3, 7 and 9 days. All sampled

explants were photographed to visually assess tissue health and

frozen in liquid nitrogen for molecular analysis. After seven days

the sediment influx was turned off and a 48 h recovery period was

established.

DNA extraction and DGGE
DNA was extracted from all sponge tissue samples from each

experiment using the Power Plant DNA Isolation kit, MoBio

Laboratories (Carlsbad, CA) according to the manufacturer’s

protocol. The 16S rRNA gene was amplified by PCR with

bacterial primers (1055f: 5’-ATGGCTGTCGTCAGC T-3’ and

1392r: 5’-ACGGGCGGTGTGTRC-3’) [54]. The reverse primer

was modified to contain a 40 bp GC clamp [55]. PCR reactions

contained 5 ml dNTP (2.5 mM), 5 ml 106OptiBuffer, 0.15 ml of

each primer (100 pmol ml21), 0.4 ml BSA (10 mg ml21), 3 ml

MgCl2 (50 mM), 0.5 ml Bio-X-ACT Taq polymerase (Bioline,

London, UK) and 1 ml DNA template. Reactions were made up to

50 ml total volume with Milli-Q water. The PCR conditions were:

1 cycle at 95uC for 5 min; 30 cycles at 95uC for 30 sec, 55uC for

1 min, 70uC for 1 min; and a final elongation at 70uC for 10 min.

Twenty ml of each sample was added to an 8% w/v polyacryl-

amide gel containing a 50–70% denaturing gradient of formamide

and urea. The gels were run at 60uC for 16 h in 1 x TAE buffer at

75 V using the Ingeny D-code system, stained with 1 x sybr gold

for 10 min, visualized under UV illumination and photographed

with the Vilber Lourmat ChemiSmart 3000 system. Reference

bands from each gel were excised, re-amplified with PCR and

checked for correct mobility on a 50–70% gel. PCR products were

sequenced by Macrogen Inc. (Seoul, Korea) using the forward

primer (1055f).

Due to spatial constraints of the gel, only 46 samples can be

visualized at once. Therefore, the 30uC treatment from the

temperature experiment and the 13 mg l21 treatment from the

sediment experiment were excluded from the DGGE analysis.

Cloning and sequencing (temperature experiment)
The 16S rRNA gene from three replicate sponges, from the

32uC treatment at day 7, and three replicate control samples at

27uC, was amplified by PCR with universal bacterial primers: 63f

5’-CAGGCCTAACACATG CAA GTC-3’ [56] and 1492r 5’-

GGT TACCTTGTTACGACT T 23’ [57]. PCR reactions

contained 10 ml 5x MyTaq Buffer, 0.15 ml of each primer (100

pmol ml21), 0.4 ml BSA (10 mg ml21), 0.25 ml MyTaq DNA

polymerase (Bioline, London, UK) and 1 ml DNA. Reactions were

made up to 50 ml total volume with Milli-Q water. The PCR

conditions were: 1 cycle at 95uC for 1 min; 32 cycles at 95uC for

30 sec, 56uC for 30 sec, 72uC for 2 min; and a final elongation at

72uC for 10 min. PCR products from the control and 32uC
treatments were pooled and gel purified following the manufac-

Figure 4. Pie charts showing the differences in bacterial community composition in I. basta between control samples and samples
from the 326C treatment at day seven. The graphs were constructed based on the frequency of clones from each library (n = 88 per library).
Clone 8 and 5 had identical 16S rRNA sequences in both libraries.
doi:10.1371/journal.pone.0039779.g004
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turers protocol (NucleoSpin Extract II, Scientifix). Purified PCR

products were cloned with a TOPO TA cloning kit (Invitrogen,

Carlsbad, CA) according to the manufacturer’s instructions.

Plasmids were checked for inserts by PCR amplification using

M13 forward and reverse primers. Restriction digests using HhaI

and HaeIII (New England Biolabs Inc.) were performed to

determine operational taxonomic units (OTUs) for each library.

Eighty-eight clones from each library were screened and triplicates

of each representative OTU from both libraries were sent to

Magrogen Inc. (Seoul, Korea) for sequencing using 63f and 1492r

as the sequencing primers.

Phylogenetic analysis
DGGE and clone sequences were compared with available

databases using the Basic Local Alignment Search Tool (BLAST)

[58] to determine nearest relatives and percent similarity. Clone

sequences were submitted to Genbank under the accession

numbers JN388026-JN388033. Due to the repetition of DGGE

sequences from each of the experiments and the latitudinal

comparison, only one representative sequence corresponding to

each band was submitted to Genbank (accession numbers

JN388012-JN388025). Sequences were checked for chimera

formation using Greengenes [59] and all chimeric sequences were

removed before tree construction. Sequences were compiled,

automatically aligned and manually edited in the ARB software

0.1

Ianthella basta clone 1, JN388026 (12% 32ºC) *
Montiproa sp. clone AB470941
 Marine bacterium EU513001

Pseudoalteromonas sp. EU930871
Pseudoalteromonas sp. AM941186

Spongiobacter nickelotolerans AB205011 *
Ianthella basta clone 2, JN388027 (9% 32ºC) *

Marine sediment clone AM292385
Alteromonadaceae bacterium AM935070

Ianthella basta clone 3, JN388028 (13% 32ºC) *
 Seawater clone GU061307

Ianthella basta clone 4, JN388029 (12% 32ºC) *
Seawater clone FJ347760

Arctic sediment clone EU050809
Axinella verrucosa clone AJ581351 *

Ianthella basta clone H4 GU784985 *
Ianthella basta clone 5, JN388030 (7% Control, 14% 32ºC) *

Petroleum-contaminated soil clone HQ727620
Ianthella basta clone 6, JN388031 (5% 32ºC) *

Montipora sp. clone AB470948
Marine sediment clone GU176617

Montastraea favelota clone FJ202499
Hydrothermal vent clone GU369921
Rhodobacteraceae bacterium EF620870 *
Ianthella basta clone 7, JN388032 (7% 32ºC) *
 Roseobacter sp. EF092256 *

Ruegeria lacusaerulensis HQ908678 *
Seawater clone GQ349430

Ianthella basta clone H1 GU784988 *
Ianthella basta clone 8, JN388033 (93% Control, 28% 32ºC) *100

100

100

100

100
100

100

100

100

100
99

99
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85
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77
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m
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Figure 5. Maximum-likelihood phylogenetic tree from analysis of all 16S rRNA gene sequences retrieved from clone library
analysis. I. basta sequences from this study indicated by bold font, with the percentage of each library it comprised listed in parenthesis afterwards
and * indicates clones isolated from marine sponges. The numbers at the nodes are percentages indicating the levels of bootstrap support based on
analysis of 1000 re-sampled data sets. Only values .50% are shown. Scale bar represents 0.1 substitutions per nucleotide position.
doi:10.1371/journal.pone.0039779.g005
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package (http://www.arb-home.de [60]). Initially, trees were

calculated with almost complete 16S rRNA (1400 bp) sequences

for all close relatives of target sequences using the neighbor-joining

and maximum parsimony methods in ARB. Partial sequences

were subsequently imported to the tree without changing branch

topology using the ARB parsimony-interactive method. The

robustness of inferred tree topologies was evaluated after 1000

bootstrap re-samplings of the neighbor-joining data in the

PHYLIP program [61]. Synechoccocus elongatus was used as an out

group for the tree.

Data analysis
Principal Component Analysis (PCA) using a presence (1)/

absence (0) matrix for each of the DGGE bands from both

experiments and the spatial analysis comparison was used to

analyze microbial communities between treatments. All analyses

were carried out using Stastitica 8 (StatSoft 2002).

Results

Analysis of geographic variability
DGGE analysis revealed a microbial community dominated by

three microbes, in I. basta from each of the three geographical

locations (Figure S1). Overall, sponges hosted stable microbial

communities regardless of their geographic location. PCA

explained 75.4% of the total variation in the first three factors,

with the first two factors explaining 64%. The ordination revealed

little variation among samples from the three locations, with the

exception of one sample from Orpheus Is., which grouped

separately (Figure 1). In addition, minor variation was detected

between two individuals from Davies Reef and an individual from

Masig Is. (Figure 1).

The 16S rRNA gene sequencing of excised DGGE bands from

sponges at each of the three locations was the same as previously

reported for I. basta [49] with the community comprised of Alpha

and Gammaproteobacteria and Thaumarchaea (Table 2).

Temperature experiment
I. basta explants in all temperature treatments (30, 31 and 32uC)

showed consistent color and gross morphologies to those

maintained at 27uC for the first four days of the experiment, with

no evidence of the brown spot lesions previously described [48,49].

Explants from the 30uC treatment survived the full 14 day

exposure and subsequent four day recovery period, never

changing in appearance from the explants maintained at 27uC
(Figure 2A, B). Up until day seven, explants from the 31uC
treatment also appeared visually similar to control sponges;

however, by day 14 they displayed a blackish discoloration, and

tissue had retracted resulting in obvious subdermal gaps between

skeletal fibers (Figure 2C). Although temperature treatments were

returned to 27uC for a 4 day recovery period, blackened explants

from the 31uC treatment did not return to their original yellow

color and subdermal gaps were still evident.

Consistent with the sponges sampled as part of the geographic

survey, DGGE analysis of I. basta from the temperature

experiment revealed three dominant bright bands, with additional

minor light bands also present (Figure S2). PCA analysis explained

50.5% of the total variation in the first three factors, with the first

two factors explaining 41.3%. The ordination revealed a stable

microbial community in sponges from all replicate time points and

treatments up to and including 31uC. In contrast, all three

replicate sponges exposed to 32uC clustered separately after 7 days

(Figure 3). Overall, the community composition of I. basta explants

remained stable over all temperatures for the first four days of the

experiment (Figure 3). With the exception of I. basta explants at

27uC at day seven, there was larger variation between the three

individual replicates for each of the temperature treatments after

day four (Figure 3).

The 16S rRNA sequencing of excised DGGE bands from the

temperature experiment confirmed the same community previ-

ously reported for I. basta [49], with the three dominant symbionts

present in all treatments (Alphaproteobacteria, Gammaproteobacteria, and

Thaumarchaea).

Clone library analysis of I. basta from the 32uC treatment at day

seven and control samples confirmed the presence of only a few

dominant symbionts indicated by DGGE. All clone sequences fell

into only two classes, the Alpha- and Gammaproteobacteria, with both

libraries dominated by a single Alphaproteobacteria sequence (clone

8). This Alphaproteobacteria accounted for 93% of the control library

and 28% of the 32uC library. The remaining 7% of the control

library was comprised of a single Gammaproteobacteria sequence

(clone 5), which made up 14% of the 32uC library. The 32uC
library contained an additional two Alphaproteobacteria sequences

(Clones 6 & 7) and four Gammaproteobacteria sequences (Clones 1 to

4). Alphaproteobacteria and Gammaproteobacteria comprised 40 and

60% of the 32uC library respectively (Figure 4).

Phylogenetic analysis revealed that clone 8 was 99% similar to

the previously described Alphaproteobacteria symbiont from healthy

and diseased I. basta (GU784988) [48]. The next closest relatives of

clone 8 were only 86% similar, comprising sequences from

seawater and sediment samples, as well as other sponge and coral-

derived sequences (Figure 5). Clone 5 was identical to the

previously described Gammaproteobacteria symbiont from I. basta

(GU784985). Clones 6 and 7, exclusively detected in the 32uC
library, were both most closely related to other sponge and coral-

derived sequences (Figure 5). The additional Gammaproteobacteria

sequences observed in the 32uC library were most closely related

to other environmental sequences. Specifically, clone 1 was related

to a sequence retrieved from the coral Montipora sp. (AB470941)

while clone 2 was most closely related to Spongiobacter nickelotolerans

(AB205011) isolated from a marine sponge. Clones 3 and 4 were

Figure 6. Principal components analysis (PCA) of I. basta
community composition, using DGGE banding pattern data
to construct a similarity matrix, at 0 (blue), 30 (red) and 100 mg
l21 (black). Symbols correspond to the different time points. Due to
spatial constraints of the gel the 13 mg l21 treatment was excluded
from the analysis.
doi:10.1371/journal.pone.0039779.g006
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most closely related to soil and seawater bacteria respectively

(Figure 5).

Sediment experiment
I. basta explants in all sediment treatments (13 to 100 mg l21)

survived the seven day exposure and further two day recovery

period and appeared visually similar to those explants maintained

at 0 mg l21. Explants from the 30 and 100 mg l21 treatment

accumulated sediments on their surfaces; however, tissue health

remained similar to explants maintained at 0 mg l21 when

sediments were manually removed after 7 days. None of the

sponge clones developed brown spot lesions during the course of

the sedimentation experiment.

DGGE analysis of sponges in the sediment treatments at each

time point confirmed the presence of three dominant community

players with other low abundance microbes also present. PCA

analysis explained 47.8% of the total variation in the first three

factors, with the first two factors explaining 37.7%. In general,

there was a large amount of variation between individuals,

regardless of the sediment treatment or time point (Figure 6). This

variation was attributed to the absence of bands in some samples

(see Figure S3) rather than the appearance of novel microbes not

normally detected in I. basta. 16S rRNA sequencing of excised

DGGE bands revealed the same microbes detected in sponges

from the temperature experiment with all sequences identical to

those previously reported for I. basta [49].

Discussion

Elevated seawater temperature and sedimentation do not

appear to be responsible for the syndrome of brown spot lesions

currently affecting a large portion of the I. basta population on the

Great Barrier Reef [48]. Sponges exposed to elevated temperature

and sedimentation did not develop symptoms of the syndrome and

the microbial symbionts were not affected by the environmental

stressors. However, I. basta do not tolerate seawater temperatures

of 32uC, which is only 2–4 degrees higher than the average

summer temperature at Orpheus Is. [52]. This indicates a very

narrow thermal threshold for I. basta as no morphological changes

were evident at 30uC, but sponges at 32uC exhibited substantial

discolouration and deterioration of the tissue with death occurring

after 8 days. In addition, sponges exposed to 31uC showed

symptoms of tissue regression and discolouration after 14 days.

Accompanied with the decline in host health at 32uC, sponges

from this treatment had a greater diversity of microbes within the

Alpha- and Gammaproteobacteria. Whilst other studies have reported

microbial shifts in sponges exposed to elevated seawater temper-

atures [16,18,62], these studies have described both the loss of

symbionts and the appearance of foreign microbes including

putative pathogens. Bacteria within the Bacteroidetes, Epsilon- and

Deltaproteobacteria commonly occur after stress in both sponges and

corals [18,63,64]. In contrast, all three dominant I. basta symbionts

were maintained in sponges at 32uC after 7 days and all of the

microbes exclusively detected in the 32uC treated sponges were

members of the Alpha and Gammaproteobacteria. Given this apparent

stability in the microbial community of I. basta, it is likely these

microbes play an important functional role(s) in this sponge.

Sponges can produce secondary metabolites to maintain their

inherent microbial community, as well as protecting themselves

from microbial attack [65]. I. basta produces both araplysillin and

bastadin compounds that are known to have strong biological

activity and antimicrobial properties [66,67]. DGGE analysis

revealed higher diversity in moribund samples from 32uC at day

seven than from 32uC at day four. It is possible that this increased

diversity coincides with the breakdown in I. basta’s antimicrobial

compound production, allowing the proliferation of a greater

number of opportunistic bacteria prior to sponge mortality.

I. basta explants exposed to high levels of sediments (100 mg l21)

appeared visually similar to those maintained at 0 mg l21,

indicating this sponge is capable of withstanding high levels of

sediment exposure, at least in the short term. Despite the potential

pumping implications from the high amounts of sediment on the

sponge surface [30,31,33], I. basta showed no visible adverse

effects. Conversely, coral tissues exposed to high sedimentation

rates show decreased photosynthetic activity and necrosis [68].

The ability of I. basta to cope with short term sediment stress is

likely linked to their habitat and distribution, which includes

inshore silty patches and fringing reef slopes [48,69]. For instance,

the mean max turbidity of Orpheus Island in the summer is 26 +/

211 NTU (AIMS Water Quality Monitoring Data), which is

equivalent to the turbidity experienced by I. basta in the highest

treatment of this study. No microbial community shifts were

detected in sponges from any of the sediment treatments or time

points. While previous studies have documented the negative

impacts of water quality and increased sedimentation on sponge

pumping rates [30,31,32], reproduction [34,35] and metabolism

[33], this is the first study to assess the effects of increased

sedimentation on sponge symbiosis.

Sponge microbial communities are generally stable across

temporal and spatial scales [14,70,71,72]. For instance, the sponge

Cymbastela concentrica maintains a similar microbial community

composition across a 500 km region of its temperate range [71].

The microbial community of I. basta is no exception, with

consistent communities observed in sponges from three separate

locations across an 1100 km latitudinal gradient.

I. basta’s microbial community is consistently dominated by

three symbionts, regardless of its disease status [49], the

environmental stress or the geographic location it inhabits. In all

instances, the community is dominated by three symbionts within

the Alphaproteobacteria, Gammaproteobacteria and Thaumarchaea al-

though other low abundance microbes within the Cyanobacteria,

Chloroflexi and Verrucomicrobia are also present [65,73]. To date,

none of the three dominant symbionts have been successfully

cultivated [49]. Neither increased temperature nor sedimentation

induced the disease-like symptoms (brown spot lesions) observed in

I. basta in the field [48], indicating that these two environmental

factors are unlikely causes of the syndrome. In addition, multiple

techniques (e.g. bacterial cultivation, molecular community

analysis and electron microscopy) have failed to identify any

microbial community shifts or putative pathogens responsible for

this syndrome [49]. Given these results, the cause of the syndrome

is still uncertain. It cannot be ruled out that other environmental

factors (e.g. elevated nutrients) may be responsible, or that it is a

combination of different environmental factors working together

to induce the lesions. In addition, the pre-filtration of the

experimental water (5 mm) may have removed potential protist

vectors and/or disease causing protists. Future work will assess the

role of protists in disease aetiology and examine immune

dysfunction and senescence in the sponge host by identifying

differentially expressed genes in sponges displaying the syndrome.

This may provide further insight into the cause of the brown spot

lesions in this abundant and ecologically important species.

Supporting Information

Figure S1 DGGE gel image of 16S rRNA-defined bacte-
rial populations from I. basta from three geographical
locations. Bands excised for sequencing are labeled on the right
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hand side of the bands, and asterisks (*) denote bands that yielded

low sequence quality.

(PPT)

Figure S2 DGGE gel image of 16S rRNA-defined bacte-
rial populations from I. basta explants in the 27, 31 and
326C treatments over the course of the experiment
(T = 0, 1, 4, 7, 14 and 18). Bands excised for sequencing are

labeled on the right hand side of the bands, and asterisks (*) denote

bands that yielded low sequence quality. Due to spatial constraints

of the gel, only 46 samples can be visualized at once. Therefore,

the 30uC treatment was excluded from the analysis.

(PPT)

Figure S3 DGGE gel image of 16S rRNA-defined bacte-
rial populations from I. basta explants in the 0, 30 and
100 mg l21 treatments over the course of the experiment
(T = 0, 1, 4 and 7). Bands excised for sequencing are labeled on

the right hand side of the bands, and asterisks (*) denote bands that

yielded low sequence quality. Due to spatial constraints of the gel,

only 46 samples can be visualized at once. Therefore, the 13 mg

l21 treatment was excluded from the analysis.

(PPT)
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