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Abstract

As a large asteroid encounters a smaller body, its gravitational attraction per-
turbs the trajectory of the smaller asteroid. The method of astrometric mass deter-
mination uses a least-square algorithm to simultaneously solve for both the orbit
of the small asteroid, and the mass of the larger asteroid required to produce the
observed perturbation. Since the perturbations are quite small, the observations of
the smaller asteroid must be highly precise; and the perturbations of other asteroids
must be accounted for.

Current practice, however, is to assume that all observations of a given era have
the same uncertainty, and that the errors in these observations are uncorrelated.
These assumptions are unrealistic; and they lead to sub-optimal masses and orbits.
We therefore pursue development of an observational error model that provides
realistic estimates of the uncertainties and correlations in asteroid observations.

In the course of our first attempt to construct the error model, we detected a sig-
nificant bias in the observations of numbered asteroids, due to position-dependent
errors in the star catalogs from which the observations were reduced. Before pro-
ceeding further, we developed a method to remove these biases, and undertook
extensive calculations to validate its performance. Implementing this technique,
we completed development of the error model, and demonstrated that it produces
orbits that are both more accurate, and more precise.

We then used the new error model to iteratively refine an integrated ephemeris
of 300 large asteroids, which allowed us to deduce the masses of 28 main-belt
asteroids. These include the first published masses of 5 Astraea (1.255±0.003×
10−12M�) and 39 Laetitia (2.83±0.73×10−12M�).

After combining our mass estimates with those of other authors, we studied the
bulk porosities of over 50 main-belt asteroids; and after reviewing the collisional
evolution of main-belt asteroids, we concluded that asteroids as large as 300 km in
diameter may be loose gravitational aggregates. This finding will place a specific
constraint on models of main-belt collisional evolution. Additionally, we found
that C-type asteroids tend to have significantly higher macroporosity than S-type
asteroids; and after reviewing thermal models of asteroid accretion, we concluded
that distant C-type asteroids likely have a cometary-type structure and composition
that results from a lack of global heating following their initial accretion.
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