ResearchOnline@JCU

This file is part of the following reference:

Cashins, Scott David (2009) Epidemiology of chytridiomycosis in rainforest stream tadpoles. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/23949/

The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact <u>ResearchOnline@jcu.edu.au</u> and quote <u>http://eprints.jcu.edu.au/23949/</u>

Epidemiology of Chytridiomycosis in Rainforest Stream Tadpoles

A thesis submitted by Scott David CASHINS BSc (ASU) September 2009

for the degree of Doctor of Philosophy within the School of Marine and Tropical Biology & the School of Public Health, Tropical Medicine and Rehabilitation Sciences

James Cook University

STATEMENT OF ACCESS

I, the undersigned, author of work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I wish the following restrictions to be placed on this work:

All users consulting this thesis will have to sign the following statement: In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper public written acknowledgment for any assistance that I have obtained from it.

I do not wish to place any further restriction on access to this work.

Signature

STATEMENT OF SOURCES

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given. All research reported in this thesis received the approval of the ethics committees and the QPW.

Signature

Date

STATEMENT ON THE CONTRIBUTION OF OTHERS

This thesis was co-supervised by Prof. Ross Alford and Dr. Lee Skerratt, but received valuable input from a number of other people. Ross Alford and Lee Skerratt contributed in the form of ideas, experimental design, editorial assistance, statistical advice and provided the majority of funding. Dr. Bryan Windmiller, Robert Puschendorf, Jamie Voyles and anonymous reviewers provided useful advice and suggestions on individual chapters. Dr. Stephen Garland and Ruth Campbell at the School of Public Health and Tropical Medicine, JCU and Veronica Olsen and Dr. Alex Hyatt at the Australian Animal Health Laboratory, CSIRO performed most of the diagnostic PCR tests for *Batrachochytrium dendrobatidis* and contributed experimental design and sampling advice. Bryan Windmiller provided valuable advice on the design of field work and together with Hayley Ricardo and 15 volunteers (listed by name in the acknowledgements) provided logistical and field assistance throughout this project.

This research was funded by The Australian Government Department of Environment and Heritage tenders 42/2004 and 43/2004, the US National Science Foundation Integrated Research Challenges in Environmental Biology grant DEB-0213851 and the School of Marine and Tropical Biology, the School of Veterinary and Biomedical Sciences, and the School of Public Health, Tropical Medicine & Rehabilitation Sciences at James Cook University, Townsville.

ACKNOWLEDGEMENTS

I would like to thank my supervisors Ross Alford and Lee Skerratt who gave me the freedom to pursue my ideas, enough rope to hang myself with, and the guidance to do it properly. I have learned a great deal from them both. Thank you to the Amphibian Disease Ecology Group (ADEG) including Ross Alford, Sara Bell, Lee Berger, Nicole Kenyon, Keith McDonald, Diana Mendez, Andrea Phillott, Robert Puschendorf, Lee Skerratt, Rick Speare, Jamie Voyles, Rebecca Webb, Sam Young and many others. This group has been a great source for discussion and support to further understand amphibian disease and decline. I would like to thank Elizabeth Davidson who shared her love of science with me and started me on my path as a scientist while at Arizona State University.

I owe a big thank you to Bryan Windmiller, who while on a self-styled sabbatical at JCU enthusiastically agreed to join me for months of hard labor in often very wet and difficult conditions. I benefited greatly from his assistance and our frequent discussions. I would like to thank Hayley Ricardo, an invaluable field partner through the long days of field work. I would like to thank Robert Puschendorf and Jamie Voyles for great discussions and support throughout our time at JCU. Thank you to Sean Conlan for assistance with mapping and building enclosures, and Sara Bell for her help in countless ways. I would like to thank Tawni Duran for the love and laughter invested and shared. I am truly grateful for all of my field volunteers not previously mentioned including Tawni Duran, Robert Puschendorf, Sean Conlan, Jamie Voyles, Sara Bell, Lee Skerratt, Rob Gegg, Becky Sears, Noriko Iwai, Sam Young, Hui Jin, Nicole Sutcliffe, Russell Stanford, Eric Russell and Erica Todd.

Finally, I would like to thank my family; my parents Mary and Robert, for their love, support and understanding through it all, and to my brothers Michael and Dennis and my sister Andrea for their love, support and inspiration across the ocean.

ABSTRACT

Amphibians are declining at an alarming rate and approximately one third of species are currently threatened with extinction. A primary cause of this decline has been the emergence of the disease chytridiomycosis caused by the pathogen, *Batrachochytrium dendrobatidis (Bd)*. Historically, the extinction of free-living species due to disease is exceedingly rare; however, dozens of amphibians in recent years are feared gone due to *Bd*. For disease to drive extinction, theory indicates a reservoir host is needed to maintain a positive force of infection on susceptible individuals to prevent pathogen "fade out" as the doomed species decline. Accordingly, understanding pathogen dynamics (e.g. prevalence, intensity, transmission, seasonality) within reservoir hosts is critical to properly understand and mitigate species declines and prevent extinction. In the case of chytridiomycosis, no non-amphibian hosts have been found, however, less susceptible adults and amphibian larvae can serve as reservoirs.

While most research has focused on infection in adults, tadpoles probably are important reservoirs; they carry the pathogen and are thought to suffer few negative effects, and most species that have declined are associated with aquatic habitats. To better understand the role tadpoles play in pathogen dynamics I investigated the epidemiology of *Bd* in a tadpole assemblage (consisting of five species) within two rainforest streams over two years. I studied changes in prevalence and intensity of infection over time and how their values were affected by abiotic factors such as temperature and water flow rate, as well as by biotic factors such as the ecology, behaviour and developmental rate of each species. In species with a high prevalence of infection, I studied the response of tadpoles to infection and the effects these responses had on the infection and on their physical condition. A saprobic or long-lived life stage of *Bd* could significantly alter pathogen dynamics among hosts. To investigate this possibility, I developed a method to detect *Bd* in the environment and I used this to sample the stream over the course of one year.

I found significant species-specific variation in space and resource use within the tadpole assemblage; these differences appear to affect susceptibility to infection. Torrent-adapted tadpoles were significantly more likely to be infected than pool-adapted

ABSTRACT

tadpoles. This is likely due to differences in rates of development that affect duration of exposure to Bd and differences in behaviour that affect pathogen transmission. Prevalence of infection in torrent tadpoles increased with body size (proxy for duration of exposure) indicating that transmission occurred throughout the year. Prevalence varied seasonally between ~ 25-100% and was driven by a combination of duration of exposure, recruitment of small tadpoles and metamorphosis of large tadpoles. Drivers of infection intensity are less clear, however, body size and water flow are important and in fast-flowing habitats repeat transmission from the external environment appears to be more important than self-reinfection in determining individual infection intensities.

After infection most torrent tadpoles suffered significant tooth loss. This loss severely decreased their ability to feed (in some cases causing apparent starvation), which led to significant decreases in body condition for many individuals. Most tadpoles, however, regrew mouthparts despite continued infection, resumed feeding, and metamorphosed. The relationships between infection intensity, prevalence, tooth loss and body condition indicate that these tadpoles have a measure of tolerance or increased resistance, which may be a result of strong selection pressure exerted by chytridiomycosis.

Environmental sampling for Bd revealed that environmental levels are low throughout the year, but may increase when prevalence in tadpoles is highest, suggesting that tadpoles are the major source of Bd zoospores in the environment.

TABLE OF CONTENTS

STATEMENT OF ACCESS	i
STATEMENT OF SOURCES	ii
STATEMENT ON CONTRIBUTION OF OTHERS	
ACKNOWLEDGEMENTS	
ABSTRACT	
TABLE OF CONTENTS	
LIST OF TABLES	
LIST OF FIGURES	
CHAPTER 1 : GENERAL INTRODUCTION	
CHAPTER 2 : SODIUM HYPOCHLORITE DENATURES CHYTRID FUNGUS BATRACHOCHYTRIUM DENDROB.	
ABSTRACT	
Abstract Introduction	
MATERIALS AND METHODS	
RESULTS	
DISCUSSION	
CHAPTER 3 : EFFECT OF SAMPLE COLLECTION TE	
REAL TIME PCR ASSAY FOR DETECTING THE AMPI	
BATRACHOCHYTRIUM DENDROBATIDIS	
Abstract	
INTRODUCTION	
MATERIALS AND METHODS	
Results Discussion	
CHAPTER 4 : LETHAL EFFECT OF LATEX, VINYL AN TADPOLES	
INTRODUCTION	
CASE STUDY 1: LABORATORY	
EXPERIMENT 1: GLOVE SOAK	
EXPERIMENT 2: GLOVE CONTACT CASE STUDY 2: FIELD	
CHAPTER 5 : SITES AND TADPOLE ECOLOGY	
INTRODUCTION	
SITE AND SPECIES DESCRIPTIONS	
MATERIALS AND METHODS	
Results Discussion	
CHAPTER 6 : EPIDEMIOLOGY OF BATRACHOCHYTR RAINFOREST STREAM TADPOLES	
INTRODUCTION	
MATERIALS AND METHODS Results	
DISCUSSION	
CHAPTER 7 : EFFECTS OF INFECTION WITH BATRA	
ON TADPOLES	
Introduction	

TABLE OF CONTENTS

MATERIALS AND METHODS	
Results	
DISCUSSION	
CHAPTER 8 : ENVIRONMENTAL SAMPLING FOR BATRACHOCHYTRIUM	
DENDROBATIDIS	157
INTRODUCTION	
Methods	
Results	
DISCUSSION	
CHAPTER 9 : GENERAL DISCUSSION	
INTRODUCTION	
AIMS AND APPROACH	
DEVELOPMENT OF TECHNIQUES	
VARIATION IN SPACE AND RESOURCE USE	
DIFFERENTIAL RISK OF INFECTION	
DRIVERS OF SEASONAL BD PREVALENCE AND INTENSITY IN TADPOLES	
EFFECT OF INFECTION ON TADPOLES	177
IMPLICATIONS	
REFERENCES	

LIST OF TABLES

Table 6-1. Chi square comparisons of prevalence between tadpoles of all species and
between sites within species73
Table 6-2. Chi squares of Bd prevalence in L. nannotis by season and size class77
Table 6-3. Logistic regression model of Bd prevalence
Table 6-4. Multiple regression model of Bd infection intensity in L. nannotis
Table 7-1. Bd infection status by degree of tooth loss and jaw loss,
Tully Gorge NP (2007-2008)
Table 7-2. Logistic regression model of the association of mouthpart loss and infection
status in L. nannotis and L. rheocola121
Table 7-3. Relationship of overall tooth loss and Bd infection in
L. genimaculata and L. xanthomera
Table 7-4. Relationship of overall tooth loss and Bd infection in
L. nannotis and L. rheocola
Table 8-1.Inhibition of envrionmental samples for PCR,
Tully Gorge NP (2006-2007)164
Table 8-2. Environmental filtering PCR results, Tully Gorge NP, 2006-2007165

LIST OF FIGURES

Figure 2.1. Numbers of Bd zoospores detected in controls and at three concentration	ns
of NaOCl after varying periods of exposure	12
Figure 3.1. Interaction diagram between sample material and <i>Bd</i> zoospore	
concentration	21
Figure 3.2. Mean PCR cycle threshold value (Ct) by sample material and	
<i>Bd</i> zoospore concentration	
Figure 4.1. Tadpole mortality in response to disposable glove exposure	
Figure 5.1. Location of study sites in the Wet Tropics, Queensland Australia	
Figure 5.2. Close up of study site transects	
Figure 5.3. Topography of Tully Gorge National Park transect	
Figure 5.4. Tully Gorge National Park habitat photo.	
Figure 5.5. Murray Upper National Park habitat photo	
Figure 5.6. Tully Gorge National Park habitat photo following heavy rain	
Figure 5.7. Torrent adapted tadpole photos	
Figure 5.8. Torrent tadpole sampling photo	
Figure 5.9. <i>L. nannotis</i> mouthpart loss. A) no loss B) \geq 75% loss	
Figure 5.10. <i>L. nannotis</i> marked with a visible implant elastomer	
Figure 5.11. Boxplot of tadpole movements off substrate	
Figure 5.12. Mean water flow rate profile of tadpoles	
Figure 5.13. Boxplot of mean water flow rate by functional group	
Figure 5.14. Mean water flow profile by site and species.	
Figure 5.15. Mean water flow rate occupied by <i>L. nannotis</i> by size class	49
Figure 5.16. Relative abundance of <i>L. nannotis</i> tadpoles by size class,	F1
Tully Gorge NP	
Figure 5.17. Size-frequency distributions of <i>L. nannotis</i> , Tully Gorge NP	52
Figure 5.18. Length (mm) vs mass (g) scatterplots for <i>L. nannotis</i> and	52
L. rheocola	
Figure 5.19. Size-frequency distributions of <i>L. rheocola</i> , Tully Gorge NP	
Figure 5.20. Size-frequency distributions of <i>L. xanthomera</i> , Tully Gorge NP Figure 5.21. Size-frequency distributions of <i>L. genimaculata</i> , Tully Gorge NP	
Figure 5.21. Size-frequency distributions of <i>L. genimaculata</i> , Huny Gorge IVI	
Figure 5.22. Size-inequency distributions of <i>L. genimacutata</i> , Multitay Opper N1 Figure 5.23. Population estimate of torrent tadpoles before and after	30
	50
peak mouthpart loss, Tully Gorge NP Figure 6.1. Mean prevalence of <i>Bd</i> +/- 95% CI in tadpoles	•• • • •
of five species over two years, Tully Gorge NP and Murray Upper NP	72
Figure 6.2. Mean prevalence $+/-95\%$ CI of <i>Bd</i> infection in	
tadpoles by site	74
Figure 6.3. Mean prevalence +/- 95% CI of <i>Bd</i> in <i>L. nannotis</i>	
and L. rheocola by size class, Tully Gorge NP and Murray Upper NP	75
Figure 6.4. Mean prevalence $+/-95\%$ CI of <i>Bd</i> in <i>L. genimaculata</i>	
and L. xanthomera by size class, Tully Gorge NP and Murray Upper NP	75
Figure 6.5. Mean body length of infected and uninfected <i>L. genimaculata</i>	
Figure 6.6. Mean prevalence +/- 95% CI of <i>Bd</i> in <i>L. nannotis</i>	-
by size class and season	78
Figure 6.7. Seven-day mean water temperature +/- 95% CI for infected	
and uninfected tadpoles	78
Figure 6.8. Seasonal prevalence of <i>Bd</i> in torrent-	

LIST OF FIGURES

	~ ~
adapted and pool-adapted tadpoles, Tully Gorge NP, $2006 - 2008$	
Figure 6.9. Seasonal prevalence of <i>Bd</i> in torrent-adapted and pool-adapted tadpoles, Murray Upper NP, 2006 – 2007	
Figure 6.10. Seasonal prevalence of <i>Bd</i> in <i>L. nannotis</i> tadpoles by size-group,	01
Tully Gorge NP (2006-2008)	82
Figure 6.11. Mean intensity of <i>Bd</i> infection in tadpoles, Tully Gorge NP and	04
Murray Upper NP (2006-2008)	85
Figure 6.12. Mean intensity of <i>Bd</i> infection by size class in <i>L. nannotis</i> , Tully Gorge	
NP and Murray Upper NP (2006-2008)	
Figure 6.13. Mean intensity of <i>Bd</i> infection by size class in torrent-adapted tadpoles,	
Tully Gorge NP and Murray Upper NP (2006-2008)	
Figure 6.14. Mean intensity of Bd by species and site (2006-2007)	
Figure 6.15. Mean intensity of <i>Bd</i> in <i>L</i> . <i>nannotis</i> by size class and site	
(2006-2007)	88
Figure 6.16. Mean intensity of <i>Bd</i> in <i>L</i> . <i>rheocola</i> by size class	
and site (2006-2007)	89
Figure 6.17. Mean intensity of <i>Bd</i> in <i>L</i> . <i>nannotis</i> by sampling	
period and site (2006-2007)	89
Figure 6.18. Mean intensity of <i>Bd</i> in <i>L</i> . <i>rheocola</i> by sampling	
period and site (2006-2007)	. 90
Figure 6.19. Mean intensity of <i>Bd</i> in <i>L</i> . <i>nannotis</i> , <i>L</i> . <i>rheocola</i> and	
L. genimaculata over time at Tully Gorge NP (2006-2008)	
Figure 6.20. Prevalence and intensity of <i>Bd</i> over time in <i>L. nannotis</i> and <i>L. rheocola</i> ,	,
Tully Gorge NP (2006-2008) with water temperature, mouth-	04
part loss and tadpole demographic patterns	
Figure 6.21. Host relative abundance and prevalence of <i>Bd</i> in medium size-group <i>L</i> . <i>nannotis</i> tadpoles, Tully Gorge NP (2006-2007)	
Figure 6.22. Intensity of <i>Bd</i> in large size-group <i>L. nannotis</i> tadpoles	90
and relative density of infected torrent adapted tadpoles, Tully Gorge NP	
(2006-2007).	96
Figure 7.1. L. nannotis mouthparts with labeled tooth rows and jaw sheath	
Figure 7.2. Mean prevalence of Bd in L. nannotis and L. rheocola by degree of overa	
mouthpart loss, Tully Gorge NP (2007-2008)1	
Figure 7.3. Mean prevalence of Bd infection in L. nannotis and L. rheocola by degre	
of jaw sheath loss, Tully Gorge NP (2007-2008) 1	20
Figure 7.4. Mean intensity of Bd in L. nannotis and L. rheocola by degree of overall	
tooth loss, Tully Gorge NP (2007-2008)1	26
Figure 7.5. Mean overall tooth loss score of <i>L. nannotis</i> and <i>L. rheocola</i>	
with varying degrees of jaw sheath loss, Tully Gorge NP (2007-2008)1	130
Figure 7.6. Mean individual tooth row loss by overall tooth loss in	
L. nannotis and L. rheocola, Tully Gorge NP (2007-2008)1	130
Figure 7.7. Mean water flow rate by tooth loss in <i>L. nannotis</i> ,	
Tully Gorge NP (July 4-August 1, 2007)	131
Figure 7.8. Mean individual tooth loss in <i>L. nannotis</i> over time,	122
Tully Gorge NP1	152

LIST OF FIGURES

Figure 7.9. Number of infected and uninfected <i>L. nannotis</i> by overall
tooth loss and size class, Tully Gorge NP (2007-2008)
Figure 7.10. Number of infected and uninfected <i>L. nannotis</i> tadpoles
by size class over time, Tully Gorge NP (2007-2008)
Figure 7.11. Overall tooth loss in <i>L. nannotis</i> by size class over time,
Tuly Gorge NP (2007-2008)
Figure 7.12. Intensity of <i>Bd</i> infection in <i>L</i> . <i>nannotis</i> by size class over time,
Tully Gorge NP (2007-2008)
Figure 7.13. Scatter plot and linear regression of log_{10} mass and
log ₁₀ body length of <i>L. rheocola</i> and <i>L. nannotis</i> , Tully Gorge NP (2007-2008) 138
Figure 7.14. Mean mass residuals overlaid on stacked bar graphs
representing degrees of tooth loss over time. A) Litoria rheocola,
B) L. nannotis, Tully Gorge NP (2007-2008)
Figure 7.15. Comparison of a healthy <i>L. nannotis</i> and an unhealthy,
infected L. nannotis
Figure 7.16. Box Plot of body lengths of large <i>L. nannotis</i> tadpoles at Tully
Gorge NP and McLeod Creek
Figure 7.17. Population estimates of torrent adapted tadpoles before and
after peak mouthpart loss
Figure 8.1. Comparison of mean <i>Bd</i> zoospore equivalents among filter
treatments