ResearchOnline@JCU

This file is part of the following reference:

Barton, Diane Patricia (1995) *The cane toad: a new host for helminth parasites in Australia.* PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/24098/

The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact <u>ResearchOnline@jcu.edu.au</u> and quote <u>http://eprints.jcu.edu.au/24098/</u>

THE CANE TOAD: A NEW HOST FOR HELMINTH PARASITES IN AUSTRALIA

Thesis submitted by

Diane Patricia Barton B.Sc. (Hons.) UQ

February 1995

for the degree of Doctor of Philosophy

Department of Zoology at James Cook University of North Queensland

Abstract

The helminth fauna of native Australian amphibians and the introduced toad, *Bufo marinus* was studied. Species composition and ecological relationships of the helminths were considered in detail. In addition, the relationship of one helminth species, *Rhabdias* sp., to the health of the toad was considered.

A total of 27 helminth species (14 Nematoda, 8 Digenea, 2 Cestoda, 2 Acanthocephala, 1 Monogenea) was collected from both the toad and native amphibians in this study. Six helminth species were found to only infect toads in this study: *Dolichosaccus juvenilis*, *Zeylanurotrema spearei*, *Cosmocerca* sp. 2, *Cosmocerca* sp. 3, *Austraplectana* sp., adult acanthocephalans. Two of these species (*D. juvenilis* and adult acanthocephalans) had been reported from native fauna in previous studies. Three species were found to infect only native amphibians in this study: *Parapolystoma* sp., *Seuratascaris numidica*, and Onchocercidae gen. sp.

All of the helminth species collected from *B. marinus* in this study, with the possible exception of *Rhabdias* sp. and *Mesocoelium* sp. for taxonomic reasons, can be determined as having an Australian origin. The majority were acquired by the toad from native amphibians. Some species, however, were thought to have transferred to the toad from native reptiles.

At least 70% of toads and native frogs were infected with at least one helminth species. Maximum number of helminth species for an individual toad was 6, whereas for native frogs it was 4.

Bufo marinus had a more diverse helminth community than native frogs at both a host individual and host population level. The use of diversity indices in helminth community ecology and the concept of core and satellite species, particularly in relation to amphibian helminth communities, is discussed.

i

Abstract

Comparison of the helminth fauna of *B. marinus* and a native frog, *Litoria inermis*, was undertaken in detail. Relationships of total helminth intensity and species richness to various factors, including host sex and snout-vent length and month of collection were calculated for both host species. Reasons for the possible disparity between helminth infection levels for *B. marinus* and *Lit. inermis* are discussed.

Only one helminth species, *Rhabdias* sp., was thought to have potential as a biological control agent for the toad in Australia. Detailed studies of the life cycle of *Rhabdias* sp., natural infection levels within a population of *B. marinus* and its relationship with the health of the toad were undertaken.

Rhabdias sp. infected over 80% of toads collected from QDPI, with a mean intensity of 16 nematodes per infected toad. Intensity of infection had a significant relationship with length of toad for subadult toads only. Average length of *Rhabdias* sp. within an infrapopulation had a significant relationship to host length for subadult and middle size class toads.

Distribution of *Rhabdias* sp. within the toad population was aggregated, with degree of aggregation increasing with toad size class.

Sex of toad had a significant relationship with average length of *Rhabdias* sp. only in Class II toads, where male toads had larger nematodes.

Rainfall was an important environmental factor influencing infection of toads with *Rhabdias* sp. The majority of *Rhabdias* sp. recruitment into the toad population occurred during the late wet season, although small amounts of recruitment occurred throughout the year.

Development of *Rhabdias* sp. from embryonated egg to infective third stage larva, in the laboratory, took 4 days at 24°C. Development was only observed via a free-

ii

Abstract

living sexual cycle, with only one larva produced per free-living female.

Experimental infections were hampered by a high death rate among the metamorph *B. marinus* and *Limnodynastes ornatus* used. Over 50% of metamorphs exposed to infective larvae of *Rhabdias* sp. became infected. Number of larvae penetrating the metamorph was significantly related to the success of infection. Lower infection dosages produced proportionately higher levels of infection.

Haematological data for *B. marinus* in Australia is presented for the first time. Presence of a *Rhabdias* sp. infection significantly decreased levels of red blood cells, packed cell volume and haemoglobin concentration. Level of *Rhabdias* sp. infection also significantly decreased these levels, but not to the same extent as presence of *Rhabdias* sp. alone.

Declaration

I declare that this thesis is my own work and has not been submitted in any other form for another degree or diploma at any University or other institute of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Diane P. Barton

February 1995

Statement of Access

I, the undersigned, the author of this thesis, understand that James Cook University of North Queensland will make it available for use within the University Library and, by microfilm or other photographic means, will allow access to users at other approved libraries. All users consulting this thesis will have to sign the following statement:

"In consulting this thesis I agree not to copy or paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgment for any assistance which I have obtained from it."

Beyond this, I do not wish to place any restriction on access to this thesis.

Diane P. Barton

February 1995

Acknowledgments

I am eternally grateful to my supervisor, Dr David Blair, for his incredible patience and interest in my work. I would also like to thank Assoc. Prof. Rick Speare of the Anton Brienl Cook University and Dr Tom Cribb of Centre, James the Parasitology Department, University of Queensland for their support and advice on various aspects of this work. Grateful thanks are also given to Dr Mark Hearnden for his unlimited patience with statistical advice. I would like to thank David, Rick, Tom and Dr Ross Alford (Zoology Department, James Cook University) for reading draft versions of this thesis and their constructive criticisms.

To the many property owners who allowed me to wander around their dams late at night in the quest for toads, I am very appreciative. In particular, Karen Wright and (the late) Tom Barnes of `Calvert Hills Station', the Hurle family of Bentley, the Moores family of MVR, the Venables family of Cape Weymouth and the QDPI.

I am most grateful to the many people who assisted me in the field for those fascinating nights in the swamps. In particular, Darren Evans and Justin Mitchell. Also, to the many people who supplied me with toads from various locations, I thank you. In addition, to the parasitologists who rummaged through their collections for worms collected many years In particular, Dr Tom Cribb, Dr Sylvie before, thank you. Pichelin, Prof. John Pearson (all of the Parasitology Department, University of Queensland), and Dr Mal Jones (of the Electron Microscopy Department, University of Queensland).

I also thank the many museum curators I contacted during this study in the eternal quest for worms. In particular, Mrs Pat Thomas of the Australian Helminthological Collection, Mr Kim Sewell of the Queensland Museum, Dr Rod Bray of the Natural History Museum, Dr Ralph Lichtenfels of the United States National Museum Helminthological Collection, and Dr Frank Moravec of the Czechoslovakian Academy of Sciences.

Thanks also to the various people who helped me to identify worms, particularly the nematodes. In particular, Dr Marie-

vi

Claude Durette-Desset of the National Museum of Natural History in Paris, and Dr Hugh Jones of the University of Western Australia.

I am grateful to the Department of Tropical Veterinary Science at James Cook University for the use of their haematological equipment and to Mr Peter Spencer for getting me started in this area.

Thanks also to Mr Steve Richards for his endless enthusiasm for anything `froggy', including parasites. Also to Mr Michael Crossland for putting up with the many carcasses that littered the lab.

Thanks to my rowing crew, the DNA4, and the poop-deck morning coffee crew for reminding me there is a life after a PhD.

During this study I was supported by a Commonwealth Postgraduate Research Award and Australian Postgraduate Research Award. I am also indebted to the Australian Society for Parasitology for their financial support that allowed me to attend conferences and maintain my enthusiasm.

Lastly, I give my greatest appreciation to my parents, Mary and Frank, for their belief in my ability and their general support throughout it all. And to my husband, Justin Mitchell, thanks for the support, belief and assistance.

			Page
Abs Dec Sta Ack Tab Lis Lis	tract larati tement nowled le of t of T t of F	on c of Access lgments Contents Cables 'igures	i iv vi vi vii xii xvii
1.	Intro 1.1 1.2	oduction and Aims Literature Review 1.1.1 Introduction of a New Host 1.1.2 Indirect Effects of Introduction of a New Host 1.1.3 Introduction of <i>Bufo marinus</i> to Australia Aims of Thesis	1 1 5 5 10
2.	Gener 2.1 2.2 2.3 2.4	al Materials and Methods Collection of Hosts 2.1.1 <i>Bufo marinus</i> 2.1.2 Native Frogs Collection of Helminths Definition of Terms Statistical Analyses	11 11 11 11 14 15 15
3.	Helmi 3.1 3.2 3.3	<pre>nth Parasites of Australian Amphibia Introduction 3.1.1 Literature Review: Helminths of the Cane Toad, Bufo marinus. a) South America b) Australia c) Other Introduced Populations of Bufo marinus d) Helminths of Australian Amphibia 3.1.2 Aims of Chapter Materials and Methods 3.2.1 Taxonomy of Helminths 3.2.2 Origins of Helminths of Bufo marinus Results 3.3.1 General a) Bufo marinus b) Native Amphibia c) Checklists 3.3.2 Taxonomy of Helminths 3.3.3 Origins of Helminths found in Bufo marinus in Australia Discussion</pre>	16 16 17 17 22 23 24 25 25 27 29 29 29 29 29 29 36 39 39 39 52 70
4.	Ecolo 4.1	gy of Helminth Parasites of Australian Amphibia Introduction	83 83

viii

	 4.1.1 Literature Review: Ecology of Parasitic Helminths a) Ecology of Parasitic Helminths within Hosts b) Helminth Communities in Amphibians and Reptiles 4.1.2 Aims of Chapter 	83 83 93 100
Part A: 4.2	<pre>Helminth Population Ecology Materials and Methods 4.2.1 Description of Study Site 4.2.2 Collection of Specimens 4.2.3 Statistical Analyses a) General b) Relationship between infection parameters and toad length c) Relationship between infection parameters and adult toad sex d) Relationship between infection parameters and month of collection e) Annual patterns in populations of Rhabdias sp</pre>	101 101 101 103 103 103 104 105
4.3	Results 4.3.1 General 4.3.2 Relationship between infection	105 105 105
	4.3.3 Relationship between infection 4.3.3 Relationship between infection	106
	parameters and adult toad sex 4.3.4 Relationship between infection	114
	parameters and month of collection 4.3.5 Annual patterns in populations of	114
4.4	Rhabdias sp. Discussion	126 128
Part B: 4.2	Helminth Community Structure Materials and Methods 4.2.1 Description of Study Site 4.2.2 Host Species a) Bufo marinus b) Litoria inermis 4.2.3 Measures of Helminth Community Structure Results 4.3.1 Bufo marinus	139 139 139 139 139 139 139 140 142 142
4.4	4.3.2 Litoria inermis 4.3.3 Comparison of Helminth Communities Discussion	154 160 164
5. Biolog 5.1	gical Control for <i>Bufo marinus</i> ? Introduction	172 172
	a) Why Control Bufo marinus?	172 172
	b) Helminths as Possible Biological Control Agents	173

c) Effects of Helminths on Host

	Haematological Values 5.1.2 Aims of Chapter	176 182
Part A: 5.2	Life Cycle of <i>Rhabdias</i> sp. Materials and Methods 5.2.1 Culture Preparation 5.2.2 Studies Undertaken a) Life cycle b) Effect of Temperature	183 183 183 183 183 183
5.3	Results 5.3.1 Life Cycle of <i>Rhabdias</i> sp. 5.3.2 Effect of Temperature	184 184 190
5.4	Discussion	190
Part B: 5.2	Rhabdias sp. Infection Experiments Materials and Methods 5.2.1 Infection Procedure a) Bufo marinus	195 195 195 195
5.3	b) Limnodynastes ornatus Results 5.3.1 Bufo marinus	197 197 198
5.4	5.3.2 Limnodynastes ornatus Discussion	202 203
Part C: 5.2	Haematology Materials and Methods 5.2.1 Collection of Samples 5.2.2 Statistical Analyses	207 207 207 208
	a) Relationship Between Toad Shout -Vent Length and Sex with Blood Parameters	208
	 b) Relationship Between Month of Collection and Blood Parameters c) Relationship Between Intensity of 	209
	Rhabdias sp. Infection and Blood Parameters d) Pelationship Between Site of	209
	 collection and Blood Parameters e) Relationship Between Presence of Rhabdias sp. Infection and Blood 	209
г р	Parameters	209
5.5	Results 5.3.1 Conoral Pogulta	210
	5.3.1 General Results 5.3.2 Relationship Between Toad Snout-Vent Length and Sex with Blood	210
	Parameters	210
	a) Toad Snout-Vent Length	210
	b) Toad Sex	210
	5.3.3 Kelationship Between Month of	71
	5.3.4 Relationship Between Intensity of <i>Rhabdias</i> sp. Infection and Blood	∠⊥4
	Parameters	214
	5.5.5 RELACIONSHID BETWEEN SITE OF COLLECTION	

	and Blood Parameters 5.3.6 Relationship Between Presence of <i>Rhabdias</i> sp. Infection and Blood	223
5.4	Parameters Discussion	223 228
6. Genera	l Discussion	233
7. Refere	nces	242
Appendix 1	Location of Study Sites	262
Appendix 2	Recipes	263
Appendix 3	Fixation and mounting of nematodes using Carnoy's fixative	264
Appendix 4	Checklist of Helminth Parasites of Australian Amphibia	265
Appendix 5	Taxonomic Descriptions of Helminths	284
Appendix 6	Taxonomic Papers Published	313
Appendix 7	Monthly variations in <i>Rhabdias</i> sp. populations at QDPI	330

List of Tables

Table	3.1	Published records of helminths from <i>Bufo</i> marinus.	18
Table	3.2	Numbers of different sexes, range and mean snout-vent length of toads collected from 18 geographical locations.	30
Table	3.3	List of helminth species collected from <i>Bufo marinus</i> and native frogs in Australia in this study.	33
Table	3.4	Overall prevalence and mean intensity of infection of helminths collected from <i>Bufo marinus</i> in Australia.	34
Table	3.5	Numbers of each sex and range of snout- vent length for 23 species of native frogs collected in this study.	37
Table	3.6	Parasite-Host checklist of helminths found in Australian Amphibia in this study.	40
Table	3.7	Host-Parasite checklist for helminths found in Australian Amphibia in this study.	48
Table	4.1	Characteristics of isolationist versus interactive parasite infracommunities.	86
Table	4.2	Results of analysis of relationships between toad snout-vent length with intensity of <i>Rhabdias</i> sp. infection and average length of nematodes in an infrapopulation by simple correlation, and between the factors of <i>Rhabdias</i> sp. infection by partial correlation, adjusted for toad length.	108
Table	4.3	Results of one-way analysis of variance (ANOVA) of relationship between sex of adult toad and intensity of <i>Rhabdias</i> sp. infection and average length of nematodes in an infrapopulation.	115
Table	4.4	Results of one-way analysis of variance (ANOVA) of relationship between month of collection and intensity of <i>Rhabdias</i> sp. infection and average length of nematodes in an infrapopulation in all toads collected and in the three separate toad size classes.	118
Table	4.5	Results of one-way analysis of variance	

xii

.

124

144

(ANOVA) of relationship between month of collection and intensity of Rhabdias sp. infection and average length of nematodes in an infrapopulation for the two adult toad sexes.

- Levels of infection of Rhabdias species as Table 4.6 recorded from various amphibian hosts in the literature and in the present study. 129
- Helminth infracommunities of 186 Bufo Table 4.7 marinus collected from Bentley.

Table 4.8 Relationship between intensity of helminth species infection in a) Bufo marinus and b) Litoria inermis collected at Bentley with month of collection. 146

- Relationship between intensity of helminth Table 4.9 species infection in a) Bufo marinus and b) Litoria inermis collected at Bentley with sex of host. 148
- Table 4.10 Relationship between intensity of helminth species infection in a) Bufo marinus and b) Litoria inermis collected at Bentley with snout-vent length (SVL) of host. 150
- Helminth infracommunities of 141 Litoria Table 4.11 inermis collected from Bentley.
- Helminth infracommunities of 33 Bufo Table 4.12 marinus and 53 Litoria inermis collected from Bentley in April 1991. 161
- Table 4.13 Diversity characteristics of the infracommunities of helminths of Bufo marinus and Litoria inermis collected from Bentley in April 1991. 162
- Table 4.14 Diversity characteristics of the component communities of helminths of Bufo marinus and Litoria inermis collected from Bentley in April 1991.
- Table 5.1 Literature records of packed cell volume and haemoglobin concentration for Bufo marinus.

Time for development and number of larvae Table 5.2 of Rhabdias sp. produced at various culture temperatures. 192

Table 5.3 Comparison of measurements of free-living

xiii

155

163

stages of Rhabdias hylae and Rh. fuelleborni from the literature and 194 Rhabdias sp. from this study. Results of infection experiments with Table 5.4 Rhabdias sp. and metamorph Bufo marinus. 199 Results of infection experiments with Table 5.5 Rhabdias sp. and metamorph Limnodynastes 204 ornatus. Summary of host data for toads collected Table 5.6 from QDPI, Bentley and `Fletcherview' for blood samples. 211 Values for haematological parameters of Table 5.7 Bufo marinus infected with Rhabdias sp. (ODPI and Bentley) and uninfected 212 (`Fletcherview'). Results of analysis of relationships Table 5.8 between snout-vent length and sex of toad on red blood cell count, packed cell volume, haemoglobin concentration, mean corpuscular volume, mean corpuscular haemoglobin, and mean corpuscular 213 haemoglobin concentration. Results of analysis of relationships Table 5.9 between month of collection and mean intensity of Rhabdias sp. infection, red blood cell count, packed cell volume, haemoglobin concentration, mean corpuscular volume, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration. 215 Table 5.10 Results of analysis of relationships between intensity of Rhabdias sp. infection and red blood cell count, packed cell volume, haemoglobin concentration, mean corpuscular volume, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration. 218 Table 5.11 Results of analysis of relationships between site of collection and red blood cell count, packed cell volume, haemoglobin concentration, mean corpuscular volume, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration. 224 Table 5.12 Results of analysis of relationships between presence of Rhabdias sp. infection

226

and red blood cell count, packed cell volume, haemoglobin concentration, mean corpuscular volume, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration.

- Table A5.1Comparative measurements of members of the
genus Diplodiscus recorded from amphibian
hosts in Australia.288
- Table A5.2Measurements of Dolichosaccus symmetrus and
Dolichosaccus anartius as recorded in
Johnston (1912) and this study from
amphibians in Australia.289
- Table A5.3Measurements of Dolichosaccus juvenilis and
Dolichosaccus grandiacetabularis as recorded
in Nicoll (1918), Moravec and Sey (1989) and
this study from amphibians in New Guinea and
Australia.290
- Table A5.4Comparative measurements of Dolichosaccus
longibursatus as recorded in Moravec and
Sey (1989) and Dolichosaccus helocirrus from
this study.291
- Table A5.5Comparative measurements of members of the
genus Mesocoelium recorded in Australia.293
- Table A5.6Comparative measurements of members of the
genus Mesocoelium recorded from Bufo marinus
(natural and introduced populations).294
- Table A5.7Comparative measurements of members of the
genus Pleurogenoides recorded from
amphibians in Australia.297
- Table A5.8Comparative measurements of parasitic stage
of members of the genus Rhabdias recorded in
Australia and from Bufo marinus in natural
populations.299
- Table A5.9Comparative measurements of Oswaldocruzia
limnodynastes and Johnpearsonia pearsoni
recorded in Australia, and Batrachonema
bonai from toads in South America.300
- Table A5.10Comparative measurements of members of the
genus Parathelandros recorded from various
amphibians in Australia.301
- Table A5.11Comparative measurements of members of the
genus Cosmocerca recorded in Australia.303

Table A5.12	Comparative measurements of members of the	
	genus Austrapiectana recorded in Australia.	305
Table A5.13	Comparative measurements of members of the genus <i>Maxvachonia</i> recorded in Australia.	307
Table A5.14	Measurements of <i>Seuratascaris numidica</i> (Seurat 1917) Sprent 1985 recorded from <i>Rana daemelii</i> (Ranidae) in Australia.	308
Table A5.15	Comparative measurements of members of the genus <i>Spinicauda</i> recorded from various host groups in Australia.	310
Table A5.16	Comparative measurements of members of the genus Kreisiella recorded from various host groups in Australia.	312
Table A7.1	Monthly variations of the number of toads collected, prevalence and mean intensity of infection with <i>Rhabdias</i> sp., and the average length of nematodes within an infrapopulation for the three toad size classes.	331
Table A7.2	Monthly variations of the number of toads collected, prevalence and mean intensity of infection with <i>Rhabdias</i> sp., and the average length of nematodes within an infrapopulation for the adult toad sexes (Classes II and III combined).	332

List of Figures

Figure 2.1	Map of collection sites of <i>Bufo marinus</i> throughout Queensland and the Northern Territory.	12
Figure 2.2	Map of collection sites of native amphibians in Queensland and the Northern Territory.	.13
Figure 3.1	Distribution of the number of helminth species per host individual for 24 of the 26 amphibian species collected in this study.	31
Figure 3.2	Distribution of the number of helminth species per individual <i>Bufo marinus</i> at 18 geographical locations.	32
Figure 3.3	<i>Diplodiscus</i> sp., wholemount, collected from <i>Bufo marinus</i> , ventral view.	53
Figure 3.4	Dolichosaccus symmetrus, wholemount, collected from Bufo marinus, ventral view.	54
Figure 3.5	Dolichosaccus juvenilis, wholemount, collected from Bufo marinus, ventral view.	55
Figure 3.6	<i>Dolichosaccus helocirrus</i> , wholemount, collected from <i>Bufo marinus</i> , ventral view.	56
Figure 3.7	<i>Mesocoelium</i> sp., wholemount, collected from <i>Bufo marinus</i> , ventral view.	57
Figure 3.8	<i>Pleurogenoides</i> sp., wholemount, collected from <i>Bufo marinus</i> , ventral view.	58
Figure 3.9	<i>Nematotaenia hylae</i> scolex, wholemount, collected from <i>Cyclorana novaehollandiae</i> , ventral view.	59
Figure 3.10	Parasitic stage of <i>Rhabdias</i> sp., wholemount, collected from <i>Bufo marinus</i> .	60
Figure 3.11	Johnpearsonia pearsoni, wet preparation, collected from Bufo marinus. A, anterior end of female, lateral view. B, tail of female, lateral view. C, caudal bursa of male, ventral view.	61
Figure 3.12	Parathelandros mastigurus, wet preparation, collected from Bufo marinus. A, anterior end of female, lateral view. B, tail of	

female, lateral view. C, anterior end of male, lateral view. D, tail of male, lateral view.

- Figure 3.13 Cosmocerca spp., wet preparation, collected from Bufo marinus. A, anterior end of female Cosmocerca sp. 1, lateral view. B, anterior end of male Cosmocerca sp. 3, lateral view. C, tail of male Cosmocerca sp. 3, lateral view.
- Figure 3.14 Austraplectana sp., wet preparation, collected from Bufo marinus. A, whole female specimen, lateral view. B, anterior end of male, lateral view. C, tail of male, lateral view. 64
- Figure 3.15 Maxvachonia sp., wet preparation, collected from Bufo marinus (female specimen) and Litoria rothii (male specimen). A, anterior end of female, lateral view. B, tail of female, lateral view. C, anterior end of male, lateral view. D, tail of male, lateral view.
- Figure 3.16 Spinicauda sp., wet preparation, collected from Bufo marinus. A, anterior end of female, lateral view. B, tail of female, lateral view. C, tail of male, lateral view.
- Figure 3.17 Kreisiella sp., wet preparation, collected from Bufo marinus. A, anterior end of female, lateral view. B, anterior end of male, lateral view. C, tail of male, lateral view.
- Figure 4.1 Location of the two sampling sites (QDPI and Bentley) involved in the ecological study.
- **Figure 4.2** Frequency distribution of numbers of *Rhabdias* sp. per toad for all toads collected at QDPI for a 20 month period. 107
- Figure 4.3 Relationship between a) intensity of Rhabdias sp. infection and snout-vent length (SVL) of toad, b) average length of Rhabdias sp. and SVL, and c) average length of Rhabdias sp. and intensity of Rhabdias sp. infection for all toads collected from QDPI over a 20 month period. 109
- **Figure 4.4** Relationship between a) intensity of

xviii

63 ·

62

65

67

69

110

113

116

Rhabdias sp. infection and snout-vent length (SVL) of toad, b) average length of Rhabdias sp. and SVL, and c) average length of Rhabdias sp. and intensity of Rhabdias sp. infection for subadult toads (<60mm SVL) collected.

- Figure 4.5 Relationship between a) intensity of Rhabdias sp. infection and snout-vent length (SVL) of toad, b) average length of Rhabdias sp. and SVL, and c) average length of Rhabdias sp. and intensity of Rhabdias sp. infection for mid-size class toads (60.5-90mm SVL) collected. 111
- Figure 4.6 Frequency distribution of numbers of *Rhabdias* sp. per toad for a) <60mm SVL toads, b) 60.5-90mm SVL toads, and c) >90.5mm SVL toads.
- Figure 4.7 Level of rainfall at QDPI over the collection period from August 1990 to March 1992.
- Figure 4.8 Relationship of month of collection with a) mean intensity of *Rhabdias* sp. infection, and b) mean length of *Rhabdias* sp. per infrapopulation for toads in the 3 size classes of <60mm, 60.5-90mm, and >90.5mm from QDPI. 119
- Figure 4.9 Mean snout-vent length of toads in three toad size classes collected from QDPI over a 20 month period. 120

Figure 4.10 Relationship of month of collection with a) mean intensity of *Rhabdias* sp. infection, and b) mean length of *Rhabdias* sp. per infrapopulation for subadult (Class I) and adult (Classes II and III combined) toads. 123

Figure 4.11 Relationship of month of collection with a) mean intensity of *Rhabdias* sp. infection, and b) mean length of *Rhabdias* sp. per infrapopulation for adult male and adult female toads (Classes II and III combined).

Figure 4.12 Size frequency distributions of the 5 classes of *Rhabdias* sp. in the three toad size classes of <60mm, 60.5-90mm, and >90.5mm SVL for toads collected from QDPI. 127

xix

Figure 4.13	Frequency distribution of total helminth intensity (all helminth species) per toad for all toads collected from Bentley.	145
Figure 4.14	Relationship of month of collection with a) mean helminth intensity (all helminth species), and b) mean species richness of <i>Bufo marinus</i> collected from Bentley.	147
Figure 4.15	Distribution of number of helminth species per host individual for <i>Bufo marinus</i> and <i>Litoria inermis</i> collected from Bentley.	151
Figure 4.16	Relationship of month of collection with mean intensity of <i>Johnpearsonia pearsoni</i> in <i>Bufo marinus</i> collected at Bentley.	152
Figure 4.17	Relationship of snout-vent length of Bufo marinus with intensity of a) Johnpearsonia pearsoni, b) Parathelandros mastigurus, and c) Pleurogenoides sp. at Bentley.	153
Figure 4.18	Frequency distribution of total helminth intensity (all helminth species) per host for all <i>Litoria inermis</i> collected from Bentley.	157
Figure 4.19	Relationship of snout-vent length of <i>Bufo marinus</i> and <i>Litoria inermis</i> (combined) with a) total helminth intensity, and b) species richness.	158
Figure 4.20	Relationship of snout-vent length of <i>Litoria inermis</i> with intensity of <i>Parathelandros mastigurus</i> collected from Bentley.	159
Figure 5.1	Eggs of <i>Rhabdias</i> sp. with fully formed larva, dissected from parasitic adult collected from lung of <i>Bufo marinus</i> .	185
Figure 5.2	Larva of <i>Rhabdias</i> sp., freshly released from egg.	186
Figure 5.3	Development of larva within adult free- living female <i>Rhabdias</i> sp. in culture. a) Genital system of adult free-living female <i>Rhabdias</i> sp. b) Genital system of adult free-living female <i>Rhabdias</i> sp. with developing embryo in one arm of uterus at 32hr in culture. c) Genital system of free-living female <i>Rhabdias</i> sp. with developing embryo at 40hr in culture.	

d) Genital system of adult free-living female Rhabdias sp. with fully formed larva in utero at 48hr. 187

- Figure 5.4 Development of larva within adult freeliving female *Rhabdias* sp. in culture. a) Fully formed larva within arm of uterus at 50hr in culture. b) Close up of larva within uterus of female. 188
- Figure 5.5 Larval *Rhabdias* sp. within confines of body of free-living female stage. 189
- **Figure 5.6** a) Free-living adult male *Rhabdias* sp. in culture. b) Posterior end of free-living adult male *Rhabdias* sp. in culture. 191
- Figure 5.7 Relationship of mean intensity of *Rhabdias* sp. to month of collection for 8 collection periods. 216
- Figure 5.8 Relationship of month of collection to a) mean red blood cell count, b) mean packed cell volume, c) mean haemoglobin concentration, d) mean corpuscular volume, e) mean corpuscular haemoglobin, and f) mean corpuscular haemoglobin concentration. 217
- Figure 5.9 Relationship of red blood cell count to intensity of *Rhabdias* sp. infection for all toads collected. 219
- Figure 5.10 Relationship of packed cell volume to intensity of *Rhabdias* sp. infection for a) all toads collected, b) toads collected from infected sites only (QDPI and Bentley, combined), and c) toads collected from Bentley only. 221
- Figure 5.11 Relationship of haemoglobin concentration to intensity of *Rhabdias* sp. infection for a) all toads collected, b) toads collected from infected sites only (QDPI and Bentley, combined), c) toads collected from QDPI only, and d) toads collected from Bentley only.
- Figure 5.12 Relationship of site of collection to a) mean red blood cell count, b) mean packed cell volume, c) mean haemoglobin concentration, d) mean corpuscular volume, e) mean corpuscular haemoglobin, and f) mean corpuscular haemoglobin concentration. 225

Figure 5.13

Relationship of presence of *Rhabdias* sp. infection to a) mean red blood cell count, b) mean packed cell volume, c) mean haemoglobin concentration, d) mean corpuscular volume, e) mean corpuscular haemoglobin, and f) mean corpuscular haemoglobin concentration for all toads collected, independent of site.

Figure 5.14 Relationship of presence of *Rhabdias* sp. infection to a) mean red blood cell count, b) mean packed cell volume, c) mean haemoglobin concentration, d) mean corpuscular volume, e) mean corpuscular haemoglobin, and f) mean corpuscular haemoglobin concentration for toads collected from QDPI and Bentley. 227