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Abstract

Paste fill is a cemented backfill used to fill the void left by mining to provide stability to the

mine. It consists of tailings mixed with a small percentage of cement and water. As the mining

sequence progresses and stopes adjacent to the fill are mined, the fill is subjected to blasting

loads, and subsequently exposed. The purpose of this thesis was to study the effects of blast

loading on paste fill, and the research consisted of experimental and numerical modelling

components and some field work at Cannington mine.

The field work involved monitoring of paste fill during production blasts, in situ tests in paste

fill at Cannington mine and laboratory tests on the paste fill samples. Triaxial geophones were

installed in stope 4261 at Cannington Mine, which had previously been mined and filled with

paste fill. These geophones were used to measure the velocity waveforms produced in the stope

during the blasting in two adjacent stopes. The data collected as part of this field work resulted

in the estimation of a peak particle velocity at which paste fill begins to fail.

The in situ tests involved monitoring the explosion of 9 blast holes in paste fill. Triaxial

geophones were used to measure the velocity profile of each blast. The blast holes were

detonated individually in order to obtain separate velocity profiles. The results were used to

obtain a relationship between the peak particle velocity and the scaled distance from the blast.

The laboratory tests were conducted to measure the attenuation of a wave as it travels through a

column of paste fill. Paste fill was poured into a 2.7 m long column in which 4 accelerometers

were installed. A wave was induced in the column by striking the end of a column with a

hammer and the particle acceleration was measured. The results were used to show the effect of

paste fill mix on the attenuation of a wave.

The finite element method based numerical modelling package, ABAQUS/Explicit, was used to

model the behaviour of paste fill due to adjacent blasting in an underground mine. The first

numerical model consisted of a single column of explosive detonated in paste fill. The results

of this model were validated against the data obtained in the field tests. Once validated, the

model was run for different mixes of paste fill to observe the effect of cement and solids content

of the paste fill on its behaviour. A model of a single column of explosive in rock was also

developed and validated using the same method. The model was then extended to include a

single column of explosive detonated in rock adjacent to a paste fill stope. This model was run

for a variety of blasting conditions to observe the changes in paste fill behaviour due to different

blasting conditions. These different blasting conditions included varying distances between the
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explosive column and the rock/paste fill interface and various positions ofthe explosive column

in relation to the paste fill stope. The model was finally extended to include a row of explosive

columns parallel to the face of a paste fill stope. This model was run for a variety of blasting

patterns and delay intervals to determine their effect on damage to paste fill. The model results

showed that the peak particle velocity and therefore the damage to the paste fill reduced for

increased cement contents ofthe fill. Similar results were observed for increased solids content,

but to a lesser extent. The model results also indicated that the order of detonation and the delay

time between the detonation of blast holes has little effect on the damage to the paste fill.
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Nomenclature

a Attenuation coefficient

bl Damping coefficient

b2 Damping coefficient

c Wave velocity

cp Velocity of a p-wave

Cs Velocity of as-wave

d Cohesion

em o Initial energy per mass unit

f Frequency

g A deviatoric stress measure

h Height

The increment number

J The third invariant of deviatoric stress

k A site specific constant for the charge-weight scaling law

l, An element characteristic length

m The equivalent pressure stress

n An integer

p Pressure

pbvl Bulk viscosity pressure in the form of damping ofthe "ringing" in the highest
element frequency

Pbv2 Bulk viscosity pressure in the form of damping in solid continuum elements

ppv Peak particle velocity

q The Mises equivalent stress

r Pulse travel distance

Sl The gain ofthe reference accelerometer

S2 The gain of the accelerometer being calibrated

t Time
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UN A degree of freedom (displacement or rotation component)

u Velocity

u Acceleration

v The magnitude of the resultant particle velocity

Vradial The particle velocity in the radial direction

Vtransverse The particle velocity in the transverse direction

Vvertical The particle velocity in the vertical direction

w Strike length

A Amplitude

B Material constant for the JWL equation of state

C Constant, experimentally estimated to be 0.53 ± 0.04

D Distance between hanging wall and foot wall

E Young's Modulus

F The discrete Fourier transform output

G Yield criteria

H The height ofthe explosive in the blast hole

IJ The internal force vector

J Material constant for the JWL equation of state

K The ratio of the yield stress in triaxial tension to the yield stress in triaxial
compression

L Linear charge density

MNJ The mass matrix

N The total number of discrete samples taken in the time domain

pJ The applied load vector

Q Quality factor

R Distance

Sl, S2 The principal stresses on the deviatoric plane
and S3

T Total sampling time
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W

a

E: vol

y

K

v

8

p

co

the output ofthe reference accelerometer

The output of the accelerometer being calibrated

Weight

Site specific constant for the charge-weight scaling law

Site specific constant for the charge-weight scaling law

Factor for mass proportional damping

Factor for stiffness proportional damping

Strain

Volumetric strain

Friction angle

Unit weight

The slope ofthe linear yield surface in the p-t stress plane commonly referred to as
the friction angle ofthe material

Decay factor

Geometric attenuation exponent

Lame's Constants

Lame's Constants

Poisson's Ratio

Angle of failure plate from horizontal = 45+<1>/2

Density

Stress

Shear strength

The angle for the column version ofthe charge-weight scaling law (see Figure 2.3)

Natural frequency

Fraction of critical damping

The dilation angle in the p-t plane

Factor of Safety
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o Material constant for the JWL equation of state

n The pulse rise time

'¥1 Material constant for the JWL equation of state

'¥2 Material constant for the JWL equation of state
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