JCU ePrints

This file is part of the following reference:

van Gool, Bronwyn (2007) Effects of blasting on the stability of paste fill stopes at Cannington Mine. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/4833

James Cook University

SCHOOL OF ENGINEERING

CIVIL AND ENVIRONMENTAL ENGINEERING

Effects of Blasting on the Stability of Paste Fill Stopes at Cannington Mine

Thesis Submitted by

Bronwyn Susan van Gool BE(Hons)

In September 2007

for the degree of Doctor of Philosophy

in the School of Engineering

James Cook University

Statement of Access

I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright act and I do not wish to place any restriction on access to this work.

BSvanfred

10/9/07

i

Bronwyn van Gool

Date

Statement of Sources Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

BSramford

10/9/07

Bronwyn van Gool

Date

Statement on the Contribution of Others

This thesis included the following contribution of others:

Grants: This work was supported by a grant from the Australian Research Council (#C00107460)

Supervision: Supervision for this thesis was provided by A/Prof W Karunasena and A/Prof N Sivakugan from James Cook University and Dr M Bloss from BHP Billiton's Cannington Mine

Editorial assistance: Assistance was provided by my supervisors

Project costs: BHP Billiton provided assistance to this work by covering the costs of the field instrumentation tests and the field monitoring conducted at Cannington Mine for this work.

Use of infrastructure external to JCU: Field monitoring and field instrumentation tests were carried out at BHP Billiton's Cannington Mine.

Acknowledgements

I would like to thank the following people:

A/Prof Warna Karunasena and A/Prof Nagaratnam Sivakugan for their support, guidance and assistance in preparing this thesis.

BHP Billiton, Dr Martyn Bloss and Mr Dale Luke for their support.

Mr Warren O'Donnell and Mr Peter Grabau for their assistance with the laboratory tests.

Mr John Heilig for his assistance with the field tests

My family: my husband Shane, Mum and Dad for their endless support and encouragement throughout the years.

Abstract

Paste fill is a cemented backfill used to fill the void left by mining to provide stability to the mine. It consists of tailings mixed with a small percentage of cement and water. As the mining sequence progresses and stopes adjacent to the fill are mined, the fill is subjected to blasting loads, and subsequently exposed. The purpose of this thesis was to study the effects of blast loading on paste fill, and the research consisted of experimental and numerical modelling components and some field work at Cannington mine.

The field work involved monitoring of paste fill during production blasts, in situ tests in paste fill at Cannington mine and laboratory tests on the paste fill samples. Triaxial geophones were installed in stope 4261 at Cannington Mine, which had previously been mined and filled with paste fill. These geophones were used to measure the velocity waveforms produced in the stope during the blasting in two adjacent stopes. The data collected as part of this field work resulted in the estimation of a peak particle velocity at which paste fill begins to fail.

The in situ tests involved monitoring the explosion of 9 blast holes in paste fill. Triaxial geophones were used to measure the velocity profile of each blast. The blast holes were detonated individually in order to obtain separate velocity profiles. The results were used to obtain a relationship between the peak particle velocity and the scaled distance from the blast.

The laboratory tests were conducted to measure the attenuation of a wave as it travels through a column of paste fill. Paste fill was poured into a 2.7 m long column in which 4 accelerometers were installed. A wave was induced in the column by striking the end of a column with a hammer and the particle acceleration was measured. The results were used to show the effect of paste fill mix on the attenuation of a wave.

The finite element method based numerical modelling package, ABAQUS/Explicit, was used to model the behaviour of paste fill due to adjacent blasting in an underground mine. The first numerical model consisted of a single column of explosive detonated in paste fill. The results of this model were validated against the data obtained in the field tests. Once validated, the model was run for different mixes of paste fill to observe the effect of cement and solids content of the paste fill on its behaviour. A model of a single column of explosive in rock was also developed and validated using the same method. The model was then extended to include a single column of explosive detonated in rock adjacent to a paste fill stope. This model was run for a variety of blasting conditions to observe the changes in paste fill behaviour due to different blasting conditions. These different blasting conditions included varying distances between the

explosive column and the rock/paste fill interface and various positions of the explosive column in relation to the paste fill stope. The model was finally extended to include a row of explosive columns parallel to the face of a paste fill stope. This model was run for a variety of blasting patterns and delay intervals to determine their effect on damage to paste fill. The model results showed that the peak particle velocity and therefore the damage to the paste fill reduced for increased cement contents of the fill. Similar results were observed for increased solids content, but to a lesser extent. The model results also indicated that the order of detonation and the delay time between the detonation of blast holes has little effect on the damage to the paste fill.

Table of Contents

7	itle	Page
	inc	I uge

Statement o	f Access	i
Statement o	f Sources Declaration	ii
Statement o	n the Contribution of Others	iii
Acknowledg	rements	iv
Abstract		v
Table of Co	ntents	vii
List of Table	25	xii
List of Figu	res	xiii
Nomenclatu	re	xvi
1. Introdu	uction	1
1.1. G	eneral	1
1.2. Pr	oblem Statement	1
1.3. O	bjectives	2
1.4. Re	elevance of Research	2
1.5. TI	nesis Overview	2
2. Literat	ure Review	4
2.1. Bl	asting	4
	ave Propagation	4
2.2.1. 2.2.2.	Types of Waves Behaviour of Waves at Boundaries	4 6
	ak Particle Velocity	7
2.3.1.	The Charge-Weight Scaling Law	8
	Prediction of Peak Particle Velocity for a Column Explosion	8
2.3.3.	Prediction of Damage using Peak Particle Velocity	10
	emented Backfill in Underground Mining	12
2.4.1.	Commonly Used Backfills	12
2.4.2. 2.4.3.	Paste Fill Static Stability of Paste Fill	12 13
	odelling an Explosive Blast	15
2.5.1.	The Concept of an "Equivalent Cavity"	15
2.5.2.	Modelling a Cylindrical Charge	16
2.5.3.	Applying the Blast Load	17
2.5.3		18
2.5.3		19
2.5.3	e	20
2.5.4.	Modelling Multiple Blast Holes	21
2.5.5.	Modelling the Effects of a Blast on Cemented Backfill	21

	2.6.	Summary	23
3.	Mon	itoring of Stope 4261 During Nearby Blasting	25
	3.1.	General	25
	3.2.	Monitoring Equipment Used	25
	3.3.	Location of Monitoring Equipment	26
	3.4.	Type of Explosive Used in the Production Blasts	26
	3.5. 3.5.1	1	27 27
	3.5.2	1	30
		Collected Data1.Stope 47602.Stope 47633.Volume of Stopes	 31 31 31 31
	3.7.	Analysis of Data	31
	3.7.1		31
		 Peak Particle Velocities Measured During Monitoring 7.2.1. Stope 4760 	34 34
		7.2.2. Stope 4763	44
		7.2.3. Summary	45
	3.7.3		45
	3.7.4	 Estimation of the Peak Particle Velocity at which Failure of Paste Fill Occurs 	47
	3.7.4	5. Fourier Analysis	50
	3.7.6	•	51
	3.8.	Summary	51
4.	Fiel	d Instrumentation Tests	53
	4.1.	Introduction	53
	4.2.	Location of the Blast Holes and Geophones	53
	4.3.	Type of Explosive Used in the Test	55
	4.4.	Test Methodology	56
	4.5.	Collected Data	57
	4.6.	Analysis of Results	58
	4.6.1	J. And A.	58
	4.6.2		58
	4.6.3 4.6.4		62 65
	4.6.5	5	67
	4.6.6		68
	4.7.	Summary	68
5.	The	Study of Blast Attenuation in Paste Fill using Laboratory Tests	71
	5.1.	General	71
	5.2.	Seismic Attenuation and Dispersion	71

	5.3.	Apparatus	73
	5.3.	1. General	73
	5.3.	2. Accelerometers	74
	5.3.	1	76
	5.3.	6	77
	5.3.	5. Hammer	77
	5.4.	Test Methodology	78
	5.4.	1	78
		2. Pouring of Columns	79
	5.4.	3. Test Procedure	80
	5.5.	Calibration of the Accelerometers	82
	5.5.		82
	5.5.	2. Calibration Factors	84
	5.6.	Analysis of Results	84
	5.6.	1 2	84
		2. Transmission of a Wave through a Column of Paste Fill	85
		3. Effect of Curing Age on Attenuation	88
	5.6.	4. Effect of Paste Fill Mix on Attenuation	88
	5.7.	Summary	90
6.	App	olying a Blast Load	92
	6.1.	Introduction	92
	6.2.	What Happens When an Explosive Detonates?	92
	6.3.	Measuring Blast Damage	94
	6.4.	Prediction of Peak Particle Velocity	94
	6.5.	How Can Blast Loads be Applied in ABAQUS/Explicit	96
	6.5.	1. Applying a Time Varying Pressure to the Walls of the Blast Hole	96
	6.5.		96
	6.5.	Cavity" 3. Incident Wave Field	90 97
	6.5.		91
	0.01	Equation of State Material Model	97
	6.5.	•	98
	6.6.	Concept of an "Equivalent Cavity"	98
	6.7.	Explosives Being Modelled	100
	6.8.	Form of the Loading Function	101
	6.8.		107
	6.9.	Validation of the Loading Function	108
	6.10.	Variables Which Affect Blast Loading	111
	6.10		111
	6.10		112
	6.10	e	112
	6.10	6	113
	6.10		116
	6.10	0.6. Delay Intervals	116

6.10.7. Blast Size6.10.8. Velocity of Detonation	117 117
-	
6.11. Summary	117
7. Development of the Finite Element Model	118
 7.1. Finite Element Analysis 7.1.1. General 7.1.2. ABAQUS 7.1.2.1. ABAQUS/Standard 7.1.2.2. ABAQUS/Explicit 7.1.2.3. ABAQUS/CAE 7.1.2.4. ABAQUS/Viewer 7.2. The ABAQUS input file 7.2.1. Model Data 7.2.2. History Data 7.2.3. Data Definitions 7.3.1. General 7.3.2. Stage 1 Model: Single Column of Explosive in Paste Fill 7.3.3. Stage 2 Model: Single Column of Explosive in Rock 	118 118 118 119 120 121 122 122 123 124 124 124 124 125 128
7.3.4. Stage 3 Model: Columns of Explosive in Rock Adjacent to Paste F	
7.4. Simplifications and Assumptions	135
 7.5. Model Parameters 7.5.1. Material Properties 7.5.1.1. Constitutive Models 7.5.1.2. Mohr Coulomb Material Model 7.5.1.3. Material Models to apply in ABAQUS/Explicit 7.5.1.4. Drucker Prager Plasticity Model 7.5.1.5. Matching Mohr-Coulomb Parameters to the Drucker-Prager Model 7.5.1.6. Damping 7.5.2. Interface between Paste Fill and Rock 7.5.3. Boundaries 7.5.4. Element Definitions 7.5.4.2. Element types used in Models 7.5.5. Loading of Model 7.5.6. Outputs 	135 135 135 136 137 137 137 139 140 142 143 143 143 143 146 147 147
8. Numerical Model Results and Discussion	149
 8.1. Stage 1 Model: Single Column of Explosive in Paste Fill 8.1.1. Stage 1 Model Scenarios 8.1.2. Stage 1 Model Results and Discussion 8.1.2.1. Comparison of Model Results and Field Data 8.1.2.2. Damage to Paste Fill 8.1.2.3. Effect of Cement Content on Peak Particle Velocity 8.1.2.4. Effect of Solids Content on Peak Particle Velocity 8.1.2.5. Comparison between Effect of Cement and Solids Content 	149 149 150 150 151 151 154 154

8.2. Stage 2 Model: Single Column of Explosive in Rock	156
8.2.1. Scenarios Modelled	156
8.2.2. Results and Discussion	157
8.2.2.1. Comparison of Results against Peak Particle Velocity	1.55
Prediction Equation	157
8.2.2.2. Effect of Rock Parameters on Peak Particle Velocity	158
8.3. Stage 3 Model: Column of Explosive in Rock Adjacent to Paste Fill	159
8.3.1. General	159
8.3.2. Scenario 1: Single Borehole Detonated Adjacent to the Centreline of a Paste Fill Stope	159
8.3.2.1. Effect of Rock/Paste Fill Interface	160
8.3.2.2. Internal Reflections Within Paste Fill	165
8.3.2.3. Effect of Distance of Borehole from Paste Fill on Peak Particle Velocity	172
8.3.2.4. Effect of Borehole Diameter on Peak Particle Velocity	174
8.3.3. Scenario 2: Singe Borehole Offset from the Centreline of the Paste	
Fill Stope	176
8.3.3.1. Effect of Location of Borehole Relative to Paste Fill	176
8.3.4. Scenario 3: Detonation of a Row of Boreholes Parallel to a Face of	
the Paste Fill Stope	178
8.3.4.1. Comparison of Single Borehole Versus Multiple Boreholes	179
8.3.4.2. Comparison of Detonation Patterns	181
8.3.4.3. Effect of Delay Time on Peak Particle Velocity	183
8.4. Summary	184
8.4.1. Stage 1 Model	184
8.4.2. Stage 2 Model	185
8.4.3. Stage 3 Model	185
9. Summary, Conclusions and Recommendation for Future Work	187
9.1. Summary and Conclusions	187
9.2. Recommendations for Future Work	190
10. References	191
Appendix A - Plan of Stopes in Monitoring Program	196
Appendix B - Stope 4760	19 7
Appendix C - Stope 4763	<i>198</i>
Appendix D – Field Instrumentation Tests	199
Appendix E – Waveforms Recorded in Laboratory Tests	200
Appendix F – Electronic Copy of Finite Element Model Input Files	201

List of Tables

Table 2.1 Peak Particle Velocity – Damage Correlation (Persson et al. 1994)	11
Table 3.1 Properties of Powerbulk VE	
Table 3.2 Monitoring Data Collected During Blasting of Stope 4760	29
Table 3.3 Details of Stope 4763 Blast Event Monitored	
Table 3.4 Failure Observed During Blasting of Secondary Stopes	
Table 3.5 Results for Blast 904064	
Table 3.6 Blast 904068 Delay Times	
Table 3.7 Results for Blast 904068	41
Table 3.8 Delay Times for Blast 904072	
Table 3.9 Results for Blast 904072	
Table 3.10 Transmission of Blast Wave Across Rock/Paste Fill Interface	46
Table 3.11 Characteristic Impedance of Rock and Paste Fill at Cannington Mine	
Table 3.12 Peak Particle Velocity at which Failure Occurs in Paste Fill	
Table 4.1 Distance Between Explosives and Geophones	55
Table 4.2 Properties of Explosive Used in Field Instrumentation Tests	
Table 4.3 Effect of Paste Fill/Rock Interface on Transmission of p-Wave	
Table 4.4 Results of Fourier Analysis	69
Table 5.1 Paste Fill Mixes used in Laboratory Tests	79
Table 5.2 Calibration for Reference Accelerometer	83
Table 5.3 Calibration of Accelerometers	
Table 5.4 Quality Factors for Paste Fill Obtained in Laboratory Test	
Table 6.1 Blast Parameters for Stope 4760	95
Table 6.2 Advantages and Disadvantages of Methods of Applying a Blast Load	
Table 6.3 Loading Functions found in Literature	
Table 7.1 Paste Fill Mixes used in the Stage 1 Mo del	127
Table 7.2 Material Properties used for Paste Fill	127
Table 7.3 Rock Types Used in the Stage 2 Model	129
Table 7.4 Material Properties used for Rock	
Table 8.1 Expected Failure of Paste Fill from Single Column of Explosive in Near	by
Rock	. 176
Table 8.2 Expected Failure of Paste Fill from Multiple Boreholes in 2.5 m from Pa	ste
Fill	. 180

List of Figures

Figure 2.1 – Reflection of a p-wave at a Free Boundary
Figure 2.2 – Reflection and Refraction of a p-Wave at a Boundary Between Two Media
Figure 2.3 – Geometry of a Blast Hole Loaded With Explosives
Figure 2.4 – Typical Extraction Sequence Around a Backfilled Stope 13
Figure 3.1 – Layout of Stopes Used in Monitoring Program 20
Figure 3.2 – Location of Geophones G3 to G6
Figure 3.3 – Location of Geophone G7
Figure 3.4 – Winze Blast Hole Layout for Stope 4760 29
Figure 3.5 – Failure at Intersection of Stope 4261 and 4760 32
Figure 3.6 – Failure at Intersection of Stope 4261 and 4763 3.
Figure 3.7 – Location of Blast 904064 Boreholes 3:
Figure 3.8 – Velocity Profiles Measured During Blast 904064 30
Figure 3.9 – Location of Blast 904068 Boreholes 38
Figure 3.10 – Velocity Profiles Measured During Blast 904068 39
Figure 3.11 – Location of Blast 904072 Boreholes 42
Figure 3.12 – Velocity Profiles Measured During Blast 904072 43
Figure 3.13 – Frequency Spectrum for Blast 904064, Wave Arrival 1 Recorded at
Geophone G3 in Rock 51
Figure 4.1 – Plan View of Blast Holes and Geophones within Stope 4261 54
Figure 4.2 – Waveforms Recorded at Geophone G1 for Blast Cann#1 and the Velocity
Magnitude for this Blast 59
Figure 4.3 – Peak Particle Velocity in Paste Fill6
Figure 4.4 – Equivalent Distances for Blast in Rock Adjacent to Paste Fill 60
Figure 5.1 – Accelerometer Connected to Circuit Board 74
Figure 5.2 – Accelerometer Installed in Casing Prior to Pouring Resin 7.
Figure 5.3 – Accelerometer Installed in Pipe Joiner 70
Figure 5.4 – Apparatus for Preliminary Test 72
Figure 5.5 – Apparatus for the Full Test Stage 72
Figure 5.6 – Hammer used to Initiate Waves in Laboratory Tests 78
Figure 5.7 – Paste Fill Being Mixed in the Cement Mixer as Cement is Added 79
Figure 5.8 – Paste Fill Column Filled to the First Accelerometer 80
Figure 5.9 – Finished Paste Fill Column 81
Figure 5.10 – Columns Ready For Testing 81
Figure 5.11 – Apparatus used to Calibrate Accele rometers 85
Figure 5.12 – Waveforms Recorded for Column 6 After 14 Days Curing Time 80
Figure 5.13 – Comparison of Waveforms Recorded for Column 6 After 14 Days Curing
Time 82
Figure 5.14 – Frequency Spectrum for Waveforms Recorded for Column 6 After 14
Days Curing Time 82
Figure 5.15 – Comparison of Waveforms Recorded for Different Curing Times 89
Figure 5.16 – Comparison of Waveforms Recorded for Different Cement Contents 9.
Figure 6.1 – Fragmentation Zones Around a Blast Hole in Rock 95
Figure 6.2 – Unit Loading Amplitude Applied to ABAQUS/Explicit Models 100
Figure 6.3 – ppv Versus Pressure for 2 m Long Explosive Column in Rock 109
Figure 6.4 – Validation of the Stage 1 Model - Cartridge of Explosive in Paste Fill 110
Figure 6.5 – Validation of Stage 2 Model - Explosive Column in Rock 110

Figure 6.6 – Blasting Methods Used in Underground Metal Mines	114
Figure 6.7 – Ring Blasting (Sen, 1995)	115
Figure 6.8 – Vertical Crater Retreat Blasting (Sen, 1995)	116
Figure 7.1 – ABAQUS Modelling Process	_ 119
Figure 7.2 – Scenario Represented in Stage 1 Models (Not to Scale)	_ 125
Figure 7.3 – Finite Element Mesh for the Stage 1 Model	_ 126
Figure 7.4 – Scenario Represented in Stage 2 Model (Not to Scale)	_ 128
Figure 7.5 – Finite Element Mesh for Stage 2 Model	_ 129
Figure 7.6 – Scenario Represented in the Stage 3 Model	_ 132
Figure 7.7 – Scenario Represented by Stage 3 Model (Plan View)	_ 133
Figure 7.8 – Finite Element Mesh for Stage 3 Model	_ 134
Figure 7.9 – Mohr Coulomb Stress Conditions at Failure (Craig 1997)	_136
Figure 7.10 – Drucker-Prager Yield Surface in the Meridional Plane	_138
Figure 7.11 – Typical Stress-Strain Curve for a Ductile Material	_ 139
Figure 7.12 – Comparison of Mohr-Coulomb and Drucker-Prager Models in the	
Deviatoric Plane (ABAQUS 2003)	_139
Figure 7.13 – Typical Axisymmetric Element (ABAQUS 2003)	_144
Figure 7.14 – Node Numbering on 4 node Axisymmetric Element (ABAQUS 2003)	_144
Figure 7.15 – Node Numbering on 4 node Plane Strain Element (ABAQUS 2003l)	_145
Figure 7.16 – Node Numbering on 4 Infinite Element (ABAQUS 2003)	_146
Figure 8.1 – Stage 1 Model Results and Field Instrumentation Test Data	-150
Figure 8.2 – Stress in the Region of the Blast Load	-152
Figure 8.3 – Stage 1 Model Results for Paste Fill with 76% Solids Content	-152
Figure 8.4 – Stage 1 Model Results for Paste Fill with 78% Solids Content	-153
Figure 8.5 – Stage 1 Model Results for Paste Fill with 80% Solids Content	-153
Figure 8.6 – Stage 1 Model Results for Paste Fill with 6% Cement Content	-154
Figure 8.7 – Stage 1 Model Results for Paste Fill with 4% Cement Content	-155
Figure 8.8 – Stage 1 Model Results for Paste Fill with 2% Cement Content	<u>_156</u> 156
Figure 8.9 – Stage 1 Model Results for Different Paste Fill Mixes Figure 8.10 – Stage 2 Model Results Versus Peak Particle Velocity Predictions	$-\frac{150}{158}$
Figure 8.10 – Stage 2 Model Results Versus Feak Fanticle Velocity Freakflows Figure 8.11 – Stage 2 Model Peak Particle Velocities for Different Rock Types	-150 159
Figure 8.12 – Particle Velocity 0.005 s After Det onation	-159 161
Figure 8.13 – Particle Velocity 0.020 s After Detonation	-161
Figure 8.14 – Particle Velocity 0.045 s After Detonation	-162
Figure 8.15 – Particle Velocity 0.090 s After Detonation	-163
Figure 8.16 – Particle Velocity 0.049 s After Detonation	166
Figure 8.17 – Particle Velocity 0.098 s After Detonation	167
Figure 8.18 – Particle Velocity 0.147 s After Detonation	168
Figure 8.19 – Particle Velocity 0.196 s After Detonation	169
Figure 8.20 – Particle Velocity 0.245 s After Detonation	- 170
Figure 8.21 – Particle Velocity 0.294 s After Detonation	
Figure 8.22 – Particle Velocity in the x-Direction	172
Figure 8.23 – Velocity in the y-Direction	172
Figure 8.24 - Centreline of Paste Fill Along Which the Results Have Been Analysed	d 173
Figure 8.25 – Comparison of results from a Single Borehole at Various Locations	
Relative to the Paste Fill	_ 174
Figure 8.26 – Location of 76 mm Diameter Blast Holes, Blast 904064	_ 175
Figure 8.27 – Comparison of Results from a 89 mm and 76 mm Diameter Blast Hole	
	_175
Figure 8.28 – Stage 3 Model, Scenario 2	_ 177

Figure 8.29 – Line Along which Results were Analysed for Stage 3 Model, S cenario .	2
	177
Figure 8.30 – Peak Particle Velocities Along Paste Fill Face Due to a Single Column	n of
Explosive	178
Figure 8.31 – Borehole Numbering for Stage 3 Model, Scenario 3	179
<i>Figure 8.32 – ppv Predicted along the Centreline of a Paste Fill Stope</i>	180
Figure 8.33 – ppv Predicted Along the Face of a Paste Fill Stope	181
<i>Figure 8.34 – ppv Predicted Along the Centreline of a Paste Fill Stope for Different</i>	
Detonation Patterns	182
Figure 8.35 – ppv Predicted Along the Face of a Paste Fill Stope for Different	
Detonation Patterns	182
Figure 8.36 – ppv Predicted Along the Centreline of a Paste Fill Stope for Different	
Delay Times	183
Figure 8.37 – ppv Predicted Along the Face of a Paste Fill Stope for Different Delay	,
Times	184

Nomenclature

a	Attenuation coefficient
b ₁	Damping coefficient
b_2	Damping coefficient
c	Wave velocity
c _p	Velocity of a p-wave
C _s	Velocity of a s-wave
d	Cohesion
e _{mo}	Initial energy per mass unit
f	Frequency
g	A deviatoric stress measure
h	Height
i	The increment number
j	The third invariant of deviatoric stress
k	A site specific constant for the charge-weight scaling law
l _e	An element characteristic length
m	The equivalent pressure stress
n	An integer
р	Pressure
p_{bv1}	Bulk viscosity pressure in the form of damping of the "ringing" in the highest element frequency
p_{bv2}	Bulk viscosity pressure in the form of damping in solid continuum elements
ppv	Peak particle velocity
q	The Mises equivalent stress
r	Pulse travel distance
s ₁	The gain of the reference accelerometer
\mathbf{s}_2	The gain of the accelerometer being calibrated
t	Time

u ^N	A degree of freedom (displacement or rotation component)
ü	Velocity
ü	Acceleration
v	The magnitude of the resultant particle velocity
Vradial	The particle velocity in the radial direction
V _{transverse}	The particle velocity in the transverse direction
V _{vertical}	The particle velocity in the vertical direction
W	Strike length
А	Amplitude
В	Material constant for the JWL equation of state
С	Constant, experimentally estimated to be 0.53 ± 0.04
D	Distance between hanging wall and foot wall
E	Young's Modulus
F	The discrete Fourier transform output
G	Yield criteria
Н	The height of the explosive in the blast hole
\mathbf{I}_{1}	The internal force vector
J	Material constant for the JWL equation of state
К	The ratio of the yield stress in triaxial tension to the yield stress in triaxial compression
L	Linear charge density
\boldsymbol{M}^{NJ}	The mass matrix
Ν	The total number of discrete samples taken in the time domain
\mathbf{P}_{1}	The applied load vector
Q	Quality factor
R	Distance
S1, S2 and S3	The principal stresses on the deviatoric plane
Т	Total sampling time

U_1	the output of the reference accelerometer
U_2	The output of the accelerometer being calibrated
W	Weight
α	Site specific constant for the charge-weight scaling law
β	Site specific constant for the charge-weight scaling law
χr	Factor for mass proportional damping
δ_{R}	Factor for stiffness proportional damping
3	Strain
$\dot{m{arepsilon}}_{vol}$	Volumetric strain
ф	Friction angle
γ	Unit weight
η	The slope of the linear yield surface in the p-t stress plane commonly referred to as the friction angle of the material
φ	Decay factor
к	Geometric attenuation exponent
λ	Lame's Constants
μ	Lame's Constants
ν	Poisson's Ratio
θ	Angle of failure plate from horizontal = $45 + \frac{\phi}{2}$
ρ	Density
σ	Stress
$\tau_{\rm f}$	Shear strength
ω	The angle for the column version of the charge-weight scaling law (see Figure 2.3)
ω	Natural frequency
ξ	Fraction of critical damping
ψ	The dilation angle in the p-t plane
Φ	Factor of Safety

- Θ Material constant for the JWL equation of state
- Ω The pulse rise time
- Ψ_1 Material constant for the JWL equation of state
- Ψ_2 Material constant for the JWL equation of state