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The broad diversity of amphibian developmental strategies has been shaped, in part, by pathogen pressure, yet trade-offs
between the rate of larval development and immune investment remain poorly understood. The expression of antimicrobial
peptides (AMPs) in skin secretions is a crucial defense against emerging amphibian pathogens and can also indirectly affect
host defense by influencing the composition of skin microbiota. We examined the constitutive or induced expression of
AMPs in 17 species at multiple life-history stages. We found that AMP defenses in tadpoles of species with short larval peri-
ods (fast pace of life) were reduced in comparison with species that overwinter as tadpoles and grow to a large size. A com-
plete set of defensive peptides emerged soon after metamorphosis. These findings support the hypothesis that species with
a slow pace of life invest energy in AMP production to resist potential pathogens encountered during the long larval period,
whereas species with a fast pace of life trade this investment in defense for more rapid growth and development.
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Introduction

Recent ecological theory suggests that trade-offs exist between
host defenses and pace of life (Martin et al., 2007; Previtali
et al., 2012; Sandmeier and Tracy, 2014; Sears et al., 2015). In

animals with complex life histories, such as amphibians, slow
pace of life often refers to growth to a large size over a rela-
tively long larval period, including overwintering as larvae in
some species (Stoks et al., 2006; Johnson et al., 2012).
Amphibians with a fast pace of life are more likely to use
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behavioural defenses against parasitic trematodes than slow
pace-of-life species, and they appear to invest less in costly
immune defenses that would provide infection tolerance (Sears
et al., 2015). Here, we examine an innate immune defense of
amphibians, antimicrobial skin peptides, in relation to amphib-
ian life history and pace of life.

The cutaneous granular glands of many, but not all,
amphibian species produce diverse gene-encoded antimicro-
bial peptides (AMPs) that are specific to species and popula-
tions (Apponyi et al., 2004; Woodhams et al., 2006a, b;
2010; Tennessen et al., 2009; Holden et al., 2015). Although
peptide structure is clearly linked to amphibian phylogeny
(Conlon et al., 2009b), peptide expression during ontogeny
has not been carefully studied and may reflect ecological
trade-offs between pace of life and immune investment (Todd,
2007). We hypothesized that slow pace-of-life species would
produce and secrete effective AMPs during the larval period,
whereas fast pace-of-life species would not.

Little is known about the ontogeny of amphibian skin pep-
tide defenses. By northern blot analysis and in situ hybridiza-
tion, mRNA for the two most abundant antimicrobial
peptides (magainin and PGLa) was first detected at the begin-
ning of metamorphic climax in Xenopus laevis tadpoles.
When whole animals were homogenized, mature peptides
could be isolated (Reilly et al., 1994). In a similar study of
Lithobates catesbeianus tadpoles, expression of mRNA for
ranalexin was not detected by northern blot analysis in pre-
metamorphic tadpoles (forelimbs had not emerged), but was
detected in metamorphosing tadpoles and adults (Clark et al.,
1994). In both studies, production of AMPs was localized to
developing cutaneous granular glands (Clark et al., 1994;
Reilly et al., 1994). Katzenback et al. (2014) found increasing
mRNA expression of brevinin-1SY through tadpole develop-
ment in Lithobates sylvaticus. A study of Rana ornataventris
adds to the evidence that late stage (metamorphosing) tad-
poles of some species, but not early stage tadpoles, produce
AMPs that are also expressed by adults. Temporin-1O was
produced at the end of pre-metamorphosis and increased in
late stage tadpoles and adults of this species (Iwamuro et al.,
2006). Wabnitz et al. (1998) observed small amounts of
host defense peptides in protein extracts from larval Litoria
splendida as early as 14 days after egg deposition, but the
complete set of adult skin peptides was not detected until
metamorphosis. An ultrastructural study of Phyllomedusa
bicolor indicated that both mucous and granular glands were
present in tadpoles, but the gland duct did not appear to
develop until metamorphosis (Lacombe et al., 2000). Using
mass spectrometry (MS), known antimicrobial peptides were
not consistently expressed in Lithobates sphenocephalus
until ~12 weeks after metamorphosis (Holden et al., 2015).
Although all of these studies provide some information
about when in ontogeny AMPs can be expressed, they do
not address the question of whether living tadpoles secrete
defensive peptides onto the skin to function in microbial
defense.

In this study, we used a combination of approaches to
broadly assess the influence of host ontogeny and of interspe-
cific variation in host life history on the expression of defen-
sive skin peptides. Using matrix-assisted laser desorption time-
of-flight (MALDI-TOF) MS, we tested for expression of
AMPs in anuran species at developmental stages ranging from
larvae to mature adults. In order to examine the influence of
life-history trade-offs among species, we analysed AMP data
from 17 anuran species and found that pace of life appears to
influence immune investment. Our studies show that long-
lived tadpoles of several species in two of six amphibian fam-
ilies sampled secrete a subset of the same active defensive
peptides that are secreted by adults, but the full set of adult-
type peptides does not emerge until metamorphosis. These
studies also suggest that these innate immune defenses are an
important aspect in the evolution of amphibian life-history
strategy, and a trade-off exists between pace of life and invest-
ment in skin peptide defenses.

Materials and methods
Experimental amphibians
Seventeen species of anuran amphibians were examined in
these studies. Sample sizes, life stages sampled and body size of
all individuals are presented in Tables 1 and 2. Although sam-
pling occurred at different field and laboratory sites, the sam-
pling and collection methods were consistent across species.

Tadpoles of northern leopard frogs, Lithobates pipiens,
were obtained from a commercial supplier (NASCO, Fort
Atkinson, WI, USA) and were maintained in groups of 10 in
16 litre tanks at Vanderbilt University. These and other species
were sampled as tadpoles before limb development and as
metamorphs immediately after tail resorption was complete.
In July 2004, skin peptides from subadults were sampled in
the field in Van Buren County, MI, USA. In September 2004,
skin peptides from six adult L. pipiens were sampled from the
same field location. Nine additional adult L. pipiens were
obtained from Connecticut Valley Biological Supply Co.,
Southhampton, MA, USA, housed in 16 litre plastic containers
and cared for as described below. Skin peptides from these
frogs are described by Woodhams et al. (2006b) and Rollins-
Smith et al. (2006).

Tadpoles of American bullfrogs, Lithobates catesbeianus,
were sampled in the field in Boulder, CO, USA in June 2013.
An egg mass was collected from Davidson County, TN, USA
in June 2004, and tadpoles were reared in the laboratory at
Vanderbilt University. Tadpoles and adults were also obtained
from Charles D. Sullivan Co., Inc. Newly metamorphosed
L. catesbeianus were obtained from a commercial supplier
(Rana Ranch, Twin Falls, ID, USA). After 1 year, the suba-
dults were sampled in the laboratory. Adult frogs were
sampled in the laboratory in May 2007 at the University of
Georgia.
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At Sixty Lake Basin in the Sierra Nevada Mountains of CA,
USA, skin peptides from adult mountain yellow-legged frogs,
Rana sierrae, were collected in September 2004 (Rollins-Smith
et al., 2006). At the same time and location, R. sierrae tadpoles
were sampled for skin peptides. Metamorphs were sampled in
the laboratory at James Madison University in January 2008
after being raised from an egg clutch salvaged from a drying
pool in Sixty Lake Basin in the summer of 2007.

Green-eyed treefrogs, Litoria serrata (formerly L. genima-
culata), were sampled for skin peptides at Birthday Creek,
near Paluma, Queensland, Australia in September 2005
(adults) and December 2006 (tadpoles). Data were also
included from Woodhams (2003), including skin peptide
samples from metamorphs raised in the laboratory at James
Cook University from tadpoles collected at Birthday Creek,
Queensland, Australia in February 2003.

Table 1: Skin peptide collections across anuran life-history stages

Species Life-history stage
(Gosner, 1960 stage)

n Mass [g (mean ± SD)] Method of skin
peptide inductiona

Quantity of peptides [μg/g
body mass (mean ± SEM)]

Alytes obstetricans Tadpole (25) 25b 0.30 ± 0.09 Bath 1297.56 ± 571.93

Metamoprh 5 1.87 ± 0.18 Injection 2168.3 ± 410.4

Adult 8 7.08 ± 0.88 Injection 574.87 ± 216.02

Lithobates catesbeianus Tadpole (25–35) 7 21.99 ± 6.05 Bath 16.0 ± 3.3

Tadpole (36–39) 9 38.50 ± 1.84 Bath 22.2 ± 10.8

Tadpole (40–41) 9 44.18 ± 2.03 Bath 47.0 ± 15.7

Tadpole (42) 2 18.60 ± 3.08 Bath 230.3 ± 101.0

Metamorph 12 15.07 ± 2.76 Injection 66.4 ± 11.1

Subadult 5 45.97 ± 19.51 Injection 256.5 ± 72.9

Adult 10 100.1 ± 7.22 Injection 186.9 ± 61.4

Adult 6 14.95 ± 2.09 Injection 459.8 ± 184.3

Lithobates pipiens Tadpole (25) 9 2.44 ± 0.46 Bath 174.6 ± 8.5

Metamorph 11 1.84 ± 0.62 Bath 247.7 ± 76.9

Metamorph 3 2.44 ± 0.76 Injection 248.5 ± 105.9

Subadult 6 8.53 ± 2.42 Bath 64.5 ± 11.1

Adult 13 30.38 ± 4.07 Injection 437.45 ± 68.1

Adult 9 27.83 ± 8.54 Bath 42.7 ± 8.2

Litoria serrata Tadpole (25) 107c 1.33 ± 0.71 Bath 105.0 ± 26.2

Metamorph 8 0.25 ± 0.12 Bath 449.8 ± 131.9

Adult 24 4.88 ± 1.18 Bath 31.2 ± 4.5

Adult 20 4.06 ± 0.22 Injection 579.8 ± 50.5

Rana sierrae Tadpole (25) 25c 1.32 ± 0.23 Bath 171.9 ± 16.8

Metamorph 10 2.73 ± 0.44 Injection 1753.8 ± 596.0

Adult 30 34.59 ± 14.38 Injection 636.1 ± 80.1

Litoria nannotis Tadpole (25) 5 2.45 ± 0.43 Bath 240.3 ± 101.6

Mixophyes shevilli Tadpole (25) 10 1.53 ± 0.41 Bath 77.3 ± 62.6

Hyla cinerea Adult 10 6.91 ± 0.57 Injection 196.6 ± 42.1d

Secretions were induced by norepinephrine in the bath (tadpoles) or by subcutaneous injection (post-metamorphosis). Note that the peptide quantity is compar-
able across samples collected by the same induction method.
aBath indicates immersion for 15min in 100 µM norepinephrine bitartrate; injection indicates subcutaneous administration of 10 nmol/g body mass norepinephrine
bitartrate.
bTwenty-five tadpoles; five groups of five tadpoles each.
cOne hundred and seven tadpoles; 16 groups of 3–11 tadpoles each.
dNo peptides were detected by mass spectrometry.
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Common midwife toads, Alytes obstetricans, were raised
at the University of Zurich through metamorphosis from egg
clutches collected in Germany. Tadpoles and metamorphs were
sampled for skin peptides in August 2008. Additional adults
were sampled from Canton Basel, Switzerland in June 2009.
Antimicrobial peptides were described by Conlon et al. (2009a).

The five species described above were sampled as tadpoles,
as recent metamorphs and as juveniles or adults for compari-
sons across life history, examination of constitutive skin pep-
tide expression and quantification of induced skin peptide
secretions. An additional 12 species were examined to com-
pare more broadly between larval and adult stages (Table 2).
The following species were raised in Switzerland from field-
collected egg clutches: Bufo bufo and Rana temporaria
(Woodhams et al., 2014), Bufotes viridis, Hyla meridionalis,
Pelobates fuscus, Pelodytes punctatus, Rana arvalis and Rana
iberica. Rhinella marina were sampled in Panama, Pseudacris
regilla were sampled in California, and Hyla versicolor were

sampled from Minnesota. In addition to these field-sampled
amphibians, data are included from Litoria ewingii sampled
in New Zealand (Schadich et al., 2010). An additional three
species were sampled from only one life stage and include
Litoria nannotis and Mixophyes shevilli tadpoles sampled in
the field in Queensland, Australia, and Hyla cinerea adults
obtained from PETCO Animal Supplies, Inc. and sampled at
the University of Colorado, Boulder, CO, USA.

Animal care
Tadpoles were reared in dechlorinated tap water (changed
twice weekly) and were fed boiled romaine lettuce. After fore-
limb emergence at stage 42 (Gosner, 1960), metamorphs
were moved to 16 litre polystyrene containers set at an
incline, with a small volume of water at one end so that the
frogs could choose wet or dry conditions. All containers were
sterilized with bleach and dried before use. Each newly meta-
morphosed juvenile was fed two or three vitamin-dusted
crickets three times weekly.

Skin peptide sampling
Table 1 lists the methods of skin peptide induction and sam-
pling for MS analyses for each species and life-history stage.
Granular gland secretions were induced from post-
metamorphic amphibians by administration of norepinephrine
(bitartrate salt; Sigma, St Louis, MO, USA) by immersion in
an aqueous solution or by subcutaneous injection (Rollins-
Smith et al., 2002; Woodhams et al., 2006b). Tadpoles were
exposed to an aqueous solution of norepinephrine, and when
sampled, all were at developmental stages between stages 25
and 41 (Gosner, 1960). Metamorphs were sampled immedi-
ately after the tail was completely resorbed. After administra-
tion of norepinephrine, skin secretions were collected, partly
purified and quantified as previously described (Rollins-Smith
et al., 2006). Dry weight was measured for all A. obstetricans
peptides. The total quantity of peptides recovered per gram
body weight was determined for each sample.

In addition to total skin secretion comparisons across life
stages, the mixture of peptides locally present on different
skin surfaces of adult frogs was sampled directly for MS ana-
lysis by applying 80 µm carbon-imbedded conductive poly-
ethylene film (hereafter ‘peptide-absorbent film’; Goodfellow
Cambridge Ltd, Cambridge, UK) as previously described
(Woodhams et al., 2007). After norepinephrine induction of
peptides in adult L. pipiens (n = 10), film was applied locally
to the dorsal surface and dorsolateral ridge, ventral thigh and
pelvic patch, ventral foot webbing and ventral gular skin for
comparison of the relative intensity of peptide signals. Film
was also applied locally to the dorsal and ventral surfaces of
R. sierrae (n = 24) to detect constitutive expression of AMPs,
and relative intensities were compared by Student’s paired
t-tests. Constitutive AMP expression from adults of several
species has been described previously (Pask et al. 2012;
Woodhams et al. 2012).

Table 2: Skin peptides detected in larval and post-metamorphic
amphibians of 17 species

Species

Number of
tadpoles
examined
(Gosner, 1960
stage)

Number of
post-
metamorphs
examined

Proportion
of tadpole:
adult AMPs
detected

Alytes obstetricans 25 (25) 13 0.88

Bufo bufo 30 (25) 15 0

Bufotes viridis 20 (25) 0 –

Hyla meridionalis 15 (37–38) 0 –

Hyla versicolor 4 (25) 0 –

Lithobates
catesbeianus

27 (25–42) 33 0.73

Lithobates pipiens 9 (25–41) 42 0.14

Litoria ewingii 10 (Anstis,
2002; stage
41)

12 0

Litoria serrata 107 (25) 52 0

Pelobates fuscus 11 (25–40) 9 0

Pelodytes punctatus 12 (37–41) 3 0

Pseudacris regilla 4 (25) 0a 0

Rana arvalis 12 (25) 12 0

Rana iberica 11 (25–38) 4 0

Rana sierrae 25 (25) 40 0.25

Rana temporaria 60 (25) 13 0

Rhinella marina 0 3 0

Abbreviation: AMPs, antimicrobial peptides. Proportions are based on data pre-
sented in Table 3.
aPseudacris regilla AMPs were detected by RNA analysis (Robertson & Cornman,
2014). Litoria ewingii data are from Schadich et al. (2010).
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Tadpoles of all species were blotted with peptide-absorbent
film across the body and tail before norepinephrine induction
to determine whether peptide expression was constitutive or
required induction. Thus, constitutively expressed (ambient)
peptides were sampled from all tadpoles within seconds of
capture, before stimulation. Tadpoles were then sampled as
described above for induced peptide expression.

Analysis of skin peptides by mass
spectrometry
Skin peptide mixtures were analysed by MALDI-TOF MS fol-
lowing direct sampling with peptide-absorbent film (no purifi-
cation or concentration steps) or after norepinephrine-induced
peptide secretion, as previously described (Woodhams et al.,
2007). Norepinephrine-induced peptide mixtures eluted from
C-18 Sep-Paks were spotted onto the sample plate at 1mg/ml
before adding an equal volume of matrix. An Applied
Biosystems Voyager DE-STR spectrometer was operated in
reflector, delayed extraction and positive ion mode. For exter-
nal calibration, a series of peptide standards (Sigma-Aldrich)
was applied. Mass spectra were acquired across the range of
m/z (mass to charge ratio) 600–10 000 and analysed after
baseline subtraction and de-noising (smoothing) with Data
Explorer v4.4 (Applied Biosystems). All samples from A.
obstetricans were analysed by MALDI-TOF using an
Autoflex I time-of-flight mass spectrometer (Bruker Daltonics
GmbH, Bremen, Germany) equipped with a 337 nm nitrogen
laser. A 20 µl sample solution was diluted with 20 µl of 0.1%
trifluoroacetic acid, vortexed, and 1 µl was spotted onto a
‘Prespotted AnchorChip’ target prepared with α-cyano-4-
hydroxycinnamic acid as matrix (CHCA; Bruker). Instrument
calibration was obtained using signals from the HCCA matrix
at m/z 379.09 and a mixture of standard peptides composed of
bradykinin 1–7 (m/z 757.40), angiotensin II (m/z 1046.54),
angiotensin I (m/z 1296.69), renin substrate (m/z 1758.93), adre-
nocorticotrophic hormone clip 18–39 (m/z 2465.20) and som-
atostatin 28 (m/z 3147.47), all obtained from the peptide
calibration standard mix II (Bruker). Comparisons of peptide
profiles were made among life-history stages of each species.
Methods and MS–MS sequence confirmation of Rana sierrae
tadpole AMP temporin-1M are provided in the Supplementary
data as confirmation that the tadpole peptide has an identical
structure to that found in adults. This peptide is also known to
be antimicrobial and can inhibit the emerging pathogenic fungus
Batrachochytrium dendrobatidis (Bd) at concentrations down to
6.25 μM (Rollins-Smith et al., 2006).

Pace-of-life and immune function trade-offs
The ability to express defensive peptides at the tadpole stage
was determined and this trait mapped onto a phylogenetic
tree. Many of the peptides detected on tadpoles (e.g.
Supplementary Fig. S1) were previously shown to inhibit
bacteria and Bd (Rollins-Smith et al., 2006). We determined
whether this trait was exclusive to the amphibian lineage, or
appears among several lineages in association with pace of

life. For the 17 anuran species examined here and in previous
studies, we determined whether maximal tadpole size dif-
fered between species capable of expressing peptides as tad-
poles, and between species that typically overwinter
throughout their range by Student’s unpaired t-test. We used
Fisher’s exact test to determine whether the proportion of
species capable of expressing peptides as tadpoles differed
between fast and slow pace of life. We corrected for phyl-
ogeny by using a phylogenetic independent contrast with the
pic function in the ape package of R statistical software, in a
similar manner to Johnson et al. (2012). We performed a lin-
ear regression and phylogenetically independent contrast
analysis using the proportion of AMPs expressed as tadpoles
as the dependent variable. The independent variable was a
categorical variable indicating whether an amphibian species
typically overwinters. To determine whether occurrence of
an overwintering tadpole stage can predict the likelihood of
AMP production at the tadpole stage, we used a binary logis-
tic regression. Some genera, including Bufo, Bufotes and
Rhinella (family Bufonidae), did not have detectable AMPs,
and a limited number of AMPs from Hyla have been
described (Table 2; Erspamer et al., 1986; Conlon, 2011). In
a preliminary study, we did not detect skin peptides from
adult Hyla cinerea by MS (Table 1), although secretions had
antifungal activity (Woodhams DC, Rollins-Smith LA,
Voyles J, and Carey C, unpublished data).

Results
Antimicrobial peptides detected by direct
matrix-assisted laser desorption time-of-
flight mass spectrometry
The expression of AMPs on the skin of live amphibians was
detected by direct MALDI-TOFMS using samples from peptide-
absorbent film blotted onto skin (Woodhams et al., 2007).
Antimicrobial peptide signals were detected on all skin surfaces
of adult L. pipiens induced with norepinephrine. The strongest
relative intensity signals originated from films applied to the dor-
sal surface (Fig. 1). No significant differences were detected in
the relative intensities of AMPs from dorsal or ventral surfaces
of R. sierrae adults (temporin-1M, brevinin-1M, ranatuerin-
2Ma and ranatuerin-2Mb; Student’s paired t-tests, P-values
> 0.05). The skin of all R. sierrae adults tested was heavily
infected with the fungus Bd determined by qPCR (Briggs CJ &
Vredenburg VT, unpublished data). In tadpoles, constitutive
expression of peptides without norepinephrine induction was
detected only in L. catesbeianus. Specifically, we observed mass
signals for ranatuerin-2, -7, -8, -9 and ranalexin in this species.

Induced peptides examined by matrix-
assisted laser desorption time-of-flight
mass spectrometry
After peptide induction, mass signals indicative of previously
described AMPs (Table 3) were detected in skin secretions
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from metamorphs and adults of all five species tested and
from tadpoles of A. obstetricans, L. catesbeianus, R. sierrae
and L. pipiens (Fig. 2). Nearly identical profiles were observed
between adults and metamorphs of each species. A subset of
the post-metamorphic peptides was detected in secretions
from the tadpoles as shown in Fig. 2, and the specific peptides
detected in each species are listed in Table 3 (adult peptide
profiles are shown in comparison with those of tadpoles in
Fig. 2). In L. catesbeianus tadpoles, ranatuerin-2, -4, -6, -7, -8
and -9, ranalexin and palustrin-2CBa were found. Bradykinin
(non-antimicrobial) and temporin-1M or temporin-1P were
found in the secretions of tadpoles of R. sierrae and
L. pipiens. Of the eight skin peptides described for A. obstetri-
cans (Conlon et al., 2009a), tadpoles expressed all except
alyteserin-2c. The sequence structure of temporin-1M recov-
ered from R. sierrae tadpoles was confirmed by MS–MS
(Supplementary material, Fig. S1). Some peptides listed in
Table 3 were not detected in the present study and might
have been missing in the sampled individuals (Tennessen
et al., 2009) or might not be detectable by MALDI-MS
owing to poor ionization. In general, species with rapid
larval development (B. bufo, B. viridis, H. meridionalis,
H. versicolor, L. pipiens, L. ewingii, L. serrata, P. regilla,
R. arvalis, R. iberica, R. temporaria and R. marina) showed
few or no AMP signals typical of adults, suggestive of little
investment in skin peptide defenses before metamorphosis
(Table 2).

Pace-of-life and immune function trade-offs
Of the 17 species examined in this analysis, four grow to a
large size, develop slowly and usually overwinter as tadpoles
(Fig. 3A). One species that can overwinter, P. fuscus, did not
produce detectable AMPs in the tadpole stage, but peptides
were detected by the same method in metamorphs. The other
three overwintering species did produce detectable AMPs as

tadpoles. Tadpoles that usually overwinter throughout their
range reach a larger maximal size than those of typically
non-overwintering species (Fig. 3A; Student’s unpaired t-test,
t15 = 6.143, P < 0.001). Likewise, species with tadpoles cap-
able of expressing skin AMPs reach a significantly larger size
as tadpoles than species that did not express skin AMPs as
tadpoles (Fig. 3A; Student’s unpaired t-test, t15 = 3.021,
P = 0.009). A significantly higher proportion of slow pace-of-
life species (three of four) were found to express peptides as
tadpoles compared with fast pace-of-life species (one of 10;
Table 3; Fisher’s exact test, P = 0.041). The proportion of the
AMP repertoire expressed as tadpoles in comparison with
adults is on average 0.011 in non-overwintering species and
0.464 in overwintering species (Mann–Whitney U-test,
P = 0.032). This characteristic is not exclusive to a single
amphibian family (Fig. 3B), and a phylogenetic independent
contrast using the pic function in the ape package of R statis-
tical software showed that the trait of peptide expression at
the tadpole stage differs by pace of life even after phylogenetic
correction (F1,15 = 10.69, P = 0.00517). Thus, we propose
that an overwintering tadpole stage predicts the likelihood
that a species will produce AMPs as a tadpole (binary logistic
regression, P = 0.021, odds ratio = 36).

Discussion
Evolution of amphibian developmental
strategies
An amazing diversity of reproductive and developmental strat-
egies exists among amphibian species that have implications
for immune function and disease resistance (Todd, 2007;
Gomez-Mestre et al., 2012). For example, some species have
the capacity to overwinter in an aquatic tadpole stage, typic-
ally growing slowly to a large body size and requiring more
permanent bodies of water. This may lead to exposure to a
broad range of pathogenic organisms and greater resource
allocation into immune defenses (e.g. Johnson et al., 2012).
Other species, such as L. serrata and L. pipiens, can develop
quickly in ephemeral water bodies or slow-moving creeks and
may therefore devote fewer resources to immune function dur-
ing the tadpole stage. Our data provide further support for
the hypothesis of a trade-off between rapid growth and invest-
ment in immune defenses. We compare both among species
that differ in life-history strategy and between developmental
stages within a subset of those species.

Relative to adult frogs, tadpoles either completely lacked
or only expressed a reduced set of defensive skin peptides
(Fig. 2). This was particularly evident in rapidly developing
species that appear to invest little in tadpole AMP defense
(Table 3). We did not detect AMPs in tadpoles of 12 species
with short larval periods or in one species, P. fuscus, capable
of overwintering in the larval stage. In contrast, tadpoles with
a long larval period (A. obstetricans, L. catesbeianus and
R. sierrae) expressed a subset of adult AMPs with known cap-
acities for inhibiting amphibian pathogens, including Bd

1000 1700 2400 3100 3800 4500

Mass (m/z)

1428.2

1283.3

1341.1
4119.53001.0

1558.1

R
el

at
iv

e 
in

te
n

si
ti

es

Dorsal surface 

Ventral drink patch

Ventral gular skin 

Ventral foot webbing 
2530 2552 2574 2596 2618

2578.1

2583.5

2594.1

2564.0

Figure 1: Peptide profiles from four skin surfaces of adult Lithobates
pipiens upon induction of granular gland secretions. Representative
spectra of 10 replicates are shown.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Research article Conservation Physiology • Volume 4 2016

http://conphys.oxfordjournals.org/lookup/suppl/doi:10.1093/conphys/cow025/-/DC1


Table 3: Skin peptides detected from amphibian life-history stages by matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS), with citations provided for
peptide descriptions

Species Skin peptide Sequence

Mono-
isotopic
mass
(m/z)

Signal detected by
MALDI-TOF MS

Reference

Tadpole Metamorph Adult

Alytes
obstetricans

Alytesin pEGRLGTQWAVGHLM-NH2 1535.8 X X X Erspamer et al. (1972)

Alyteserin-2a ILGKLLSTAAGLLSNL.NH2 1582.1 X X X Conlon et al. (2009a)

Alyteserin-2c ILGAILPLVSGLLSSKL.NH2 1605.0 X X Conlon et al. (2009a)

Alyteserin-2b ILGAILPLVSGLLSNKL.NH2 1632.1 X X X Conlon et al. (2009a)

Alyteserin-1c GLKEIFKAGLGSLVKGIAAHVAS.NH2 2263.5 X X X Conlon et al. (2009a)

Alyteserin-1a GLKDIFKAGLGSLVKGIAAHVAN.NH2 2277.3 X X X Conlon et al. (2009a)

Alyteserin-1b GLKEIFKAGLGSLVKGIAAHVAN.NH2 2291.4 X X X Conlon et al. (2009a)

Alyteserin-1d GLKDIFKAGLGSLVKNIAAHVAN.NH2 2334.5 X X X Conlon et al. (2009a)

Lithobates
catesbeianus

Temporin-CBa
(ranatuerin-5)

FLPIASLLGKYL.NH2 1333.8 X X Goraya et al. (1998); Hasunuma et al.
(2010); Mechkarska et al. (2011)

Temporin-CBf FLPIASMLGKYL.NH2 1351.8 Mechkarska et al. (2011)

Temporin-CBb
(ranatuerin-6)

FISAIASMLGKFL.NH2 1396.8 X X X Goraya et al. (1998); Rollins-Smith et al.
(2002); Mechkarska et al. (2011)

Ranatuerin-7 FLSAIASMLGKFL 1396.8 X X X Goraya et al. (1998)

Temporin-CBd
(ranatuerin-8)

FISAIASFLGKFL.NH2 1412.8 X X X Goraya et al. (1998); Mechkarska et al.
(2011)

Chensirin-2CBa IIPLPLGYFAKKP 1455.9 X X Hasunuma et al. (2010)

Ranatuerin-9 FLFPLITSFLSKVL 1624.0 X X X Goraya et al. (1998)

Brevinin-1CBa
(ranalexin)

FLGGLIKIVPAMICAVTKKC 2104.2 X X X Clark et al. (1994); Vignal et al. (1998);
Rollins-Smith et al. (2002)

Ranatuerin-1CBa
(ranatuerin-1)

SMLSVLKNLGKVGLGFVACKINKQC 2649.5 Goraya et al. (1998); Rollins-Smith et al.
(2002); Mechkarska et al. (2011)

Brevinin-1CBb
(ranatuerin-4)

FLPFIARLAAKVFPSIICSVTKKC 2651.5 X X X Goraya et al. (1998); Mechkarska et al.
(2011)

Ranatuerin-1CBb SMFSVLKNLGKVGLGFVACKVNKQC 2669.4 X X Mechkarska et al. (2011)

Ranatuerin-2CBa
(ranatuerin-2)

GLFLDTLKGAAKDVAGKLEGLKCKITGCKLP 3186.8 X X X Goraya et al. (1998); Mechkarska et al.
(2011)

Palustrin-2CBa GFLDIIKDTGKEFAVKILNNLKCKLAGGCPP 3301.8 X X X Mechkarska et al. (2011)

Ranatuerin-2CBc
(ranatuerin-3)

GFLDIINKLGKTFAGHMLDKIKCTIGTCPPSP 3414.8 X X Goraya et al. (1998); Mechkarska et al.
(2011)

Ranatuerin-2CBd GFLDIIKNLGKTFAGHMLDKIRCTIGTCPPSP 3442.8 Mechkarska et al. (2011)
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Table 3: continued

Species Skin peptide Sequence

Mono-
isotopic
mass
(m/z)

Signal detected by
MALDI-TOF MS

Reference

Tadpole Metamorph Adult

Lithobates
pipiens

Bradykinin RPPGFSPFR 1059.6 X X X Sin et al. (2008)

Ranatensin-C TPQWATGHFM 1174.5 Erspamer et al. (1986)

Ranatensin-C ZTPQWATGHFM 1303.2 Erspamer et al. (1984)

Ranatensin QVPQWAVGHFM 1298.6 Nakajima et al. (1970)

Temporin-1P FLPIVGKLLSGLL 1368.9 X X X Goraya et al. (2000); Rollins-Smith et al.
(2002)

Peptide leucine arginine
(pLR)

LVRGCWTKSYPPKPCFVR 2136.1 Salmon et al. (2001)

Brevinin-1Pa FLPIIAGVAAKVFPKIFCAISKKC 2563.5 X X Goraya et al. (2000)

Brevinin-1Pd FLPIIASVAANVFSKIFCAISKKC 2569.4 X X Goraya et al. (2000)

Brevinin-1Pb FLPIIAGIAAKVFPKIFCAISKKC 2577.5 X X Goraya et al. (2000)

Brevinin-1Pc FLPIIASVAAKVFSKIFCAISKKC 2583.5 X X Goraya et al. (2000)

Brevinin-1Pe FLPIIASVAAKVFPKIFCAISKKC 2593.5 X X Goraya et al. (2000)

Ranatuerin-2P GLMDTVKNVAKNLAGHMLDKLKCKITGC 3000.6 X X Goraya et al. (2000); Rollins-Smith et al.
(2002); Chen et al. (2003)

Ranatuerin-2Pa GFLSTVVKLATNVAGTVIDTIKCKVTGGCRK 3178.8 Chen et al. (2003); Vanhoye et al. (2003)

Esculentin-2P GFSSIFRGVAKFASKGLGKDLARLGVNLVA
CKISKQC

3868.1 Goraya et al. (2000); Rollins-Smith et al.
(2002)

Litoria serrata Caerulein QQDYTGWMDF 1290.5 Rozek et al. (1998)

Maculatin-2.1 GFVDFLKKVAGTIANVVT 1878.1 X X Rozek et al. (1998)

Maculatin-1.1.1 FGVLAKVAAHVVPAIAEHF 1975.1 X X Rozek et al. (1998)

Maculatin-1.1 GLFGVLAKVAAHVVPAIAEHF 2145.2 X X Rozek et al. (1998)

Maculatin-1.2 GLFGVLAKVASHVVPAIAEHFQA 2360.3 Rozek et al. (1998)

Maculatin 3.1 GLLQTIKEKLESLESLAKGIVSGIQA 2723.6 X X Rozek et al. (1998)

Rozek et al. (1998)

Rana sierrae Bradykinin RPPGFSPFR 1060.6 X X X Rollins-Smith et al. (2006)

Temporin-1M FLPIVGKLLSGLL.NH2 1368.9 X X X Rollins-Smith et al. (2006)

Temporin-1M (free acid) FLPIVGKLLSGLL 1369.9 X X Rollins-Smith et al. (2006)

Ranatuerin-2Mb GIMDSVKGVAKNLAAKLLEKLKCKITGC 2929.6 X X Rollins-Smith et al. (2006)

Ranatuerin-2Ma GLLSSFKGVAKGVAKDLAGKLLEKLKCKITGC 3273.9 X X Rollins-Smith et al. (2006)
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(Rollins-Smith and Conlon, 2005). Among 17 species, those
with long-lived larval stages were most likely to produce
AMPs (Table 2), suggesting that slower pace-of-life species
invest more resources in AMP skin defense during the larval
stage than fast pace-of-life species. As we did not test for over-
all immune function, it is possible that fast pace-of-life species
have comparatively weak immune defenses or rely on alterna-
tive defenses during larval development, such as microbiota,
that may be less energetically expensive (Kueneman et al.,
2014). Although our sampling here of a few populations from
either field or laboratory settings represents a broad prelimin-
ary survey, we expect that further studies may refine these
results by testing members of additional families or across a
variety of environmental conditions and populations among
species.

Some authors suggest that diseases and parasites (patho-
genic fungi in particular; Green, 1999) are overlooked when
explaining the diversity of amphibian developmental strat-
egies (Todd, 2007). This may apply to trade-off strategies
within species that have resulted in the evolution of flexible
metamorphic timing. The timing of metamorphosis varies
widely depending on larval conditions, including aquatic
habitat (ephemeral or permanent), predation, density, com-
petition, nutrition, pollutants and other factors (Smith-Gill
and Berven, 1979; Werner, 1986; Alford and Harris, 1988).
Developmental strategies may optimize growth in the least
risky environment (Pechenik, 2006; Scott et al., 2007). In
general, our data support the broad hypothesis that there
may be a trade-off between larval growth and development
of immune function, specifically AMP defenses. Studies by
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Figure 2: Representative skin peptide profiles of tadpoles and adults of five anuran species. Adult and metamorph spectra matched closely,
and only adult profiles are displayed for clarity.
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Groner et al. (2014) provide some support for this hypoth-
esis, showing adjustments in skin peptide defense investment
depending on stressors experienced early in ontogeny.

Localized skin peptide expression
We found antimicrobial peptides constitutively present on
both dorsal and ventral surfaces of R. sierrae, and upon
induction, AMPs were detected on all skin surfaces of adult
L. pipiens (Fig. 1). A previous study showed that the
amount of peptides recovered from resting and active
(chased) L. pipiens was sufficient to inhibit Bd (Pask et al.,
2012). Given that the strongest signals detected by direct

MALDI-TOF on L. pipiens were associated with the dorsal
surface, other skin surfaces may be slightly more prone to
infection. The legs and feet of some amphibians have been
shown to be most prone to infection by Bd (North and
Alford, 2008), and this may also be influenced by the
ontogeny of keratinized skin, developing first in the feet and
hindlimbs at metamorphosis, or because these surfaces
come into contact with the contaminated substrate more
often than other skin surfaces (Marantelli et al., 2004;
Weldon and Du Preez, 2006).

There are several processes by which AMPs can be
excreted. Granular glands of amphibian skin may not be
able to discharge their AMP products fully onto the skin sur-
face by a holocrine process until after development of the
neuromuscular secretory apparatus and gland ducts in the
epidermis (Delfino, 1980; Faszewski and Kaltenbach, 1995;
Delfino et al., 1998, 2006; Lacombe et al., 2000). However,
mature gland products may also be secreted by a merocrine
process (either constitutive or induced exocytosis) and flow
between epidermal cell layers and through epidermal inter-
stices onto the skin surface before complete gland duct devel-
opment (Delfino et al., 1998; Terreni et al., 2003; Quagliata
et al., 2006). Some studies used transmission electron micros-
copy to examine discharge of granular glands (Delfino et al.,
2006). Other studies used northern blotting, in situ hybrid-
ization or RT-PCR to detect mRNAs encoding AMPs (Clark
et al., 1994; Reilly et al., 1994; Iwamuro et al., 2006;
Katzenback et al., 2014). As none of these studies demon-
strated secretion of active peptides from living tadpoles, we
chose to use direct MALDI-TOF MS to examine AMP
expression on tadpoles (Chaurand et al., 1999; Woodhams
et al., 2007). By this method, we were able to detect constitu-
tive expression of multiple AMP signals from the skin of
L. catesbeianus tadpoles.

Other components of amphibian skin
defense
The mucous layer covering amphibian skin is an ideal niche
for many opportunistic pathogens because it contains muco-
polysaccharides that are a potential nutrient source. Hence,
defense of the skin is crucial for protection from many
amphibian pathogens and involves both adaptive and innate
immune defenses, including mucosal antibodies, epithelial
barriers, phagocytic cells, AMPs, fatty acids, protease inhibi-
tors and other factors (Carey et al., 1999; Rollins-Smith
et al., 2009; Ramsey et al. 2010). In addition, symbiotic
microbes can contribute to skin defense and may also pro-
duce antimicrobial metabolites (Brucker et al., 2008; Harris
et al., 2009). Some of these components of amphibian
immune defense may be interacting synergistically or antago-
nistically with AMPs during metamorphosis (Myers et al.,
2012; Woodhams et al., 2014). Changes in skin defenses
during ontogeny, as shown here, may partly explain corre-
sponding shifts in skin microbiota (Kueneman et al., 2014,
2016; Krynak et al., 2015).
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Disease susceptibility at metamorphosis
Several studies suggest that chytridiomycosis and other dis-
eases can be most severe as amphibians undergo metamor-
phosis (Green et al., 2002; Bosch and Martínez-Solano,
2006; Carey et al., 2006; Garcia et al., 2006; Kriger and
Hero, 2006; Rachowicz et al., 2006; Langhammer et al.,
2014) or before they mature into adults (Abu Bakar et al.,
2016). Experimentally reducing skin peptides in juvenile
X. laevis caused increased susceptibility to Bd (Ramsey et al.,
2010) and resulted in lethal chytridiomycosis in new meta-
morphs of L. pipiens (Pask et al., 2012). The mouthparts of
larval amphibians can be infected by Bd, but tadpoles are
largely immune to chytridiomycosis (Berger et al., 1998;
Rachowicz and Vredenburg, 2004). The fungal pathogen Bd
is thought to use keratin in tadpole mouthparts and adult
amphibian skin. Upon metamorphosis, the fungus can spread
from the infected mouthparts to the keratinized skin and
lead to rapid mortality (Marantelli et al., 2004; Rachowicz
and Vredenburg, 2004). Pathogenicity factors, including pro-
teases that may degrade AMPs, are increased by exposure of
Bd to thyroid hormone, which peaks during metamorphosis
(Thekkiniath et al., 2013, 2015). Antimicrobial skin peptides
could theoretically play a vital role in protecting some
amphibians during this sensitive stage of development.
However, if the new metamorphs experienced stress, such as
limited food conditions, prior to metamorphosis, they might
have fewer stored AMPs in granular glands available for
defense. This might explain why newly metamorphosed
L. sphenocephala raised in outdoor mesocosms were slow to
develop an adult pattern of AMPs (Holden et al., 2015).
Population level variation, not measured in this study, may
also lead to variation in disease susceptibility at metamor-
phosis (Tobler and Schmidt, 2010; Bradley et al., 2015).

The composition of peptides differed among life-history
stages and species (Tables 2 and 3). Such variation in skin
peptide defense provides a potential mechanism for differen-
tial colonization by microbiota among species and life stages
(McKenzie et al., 2012; Kueneman et al., 2014, 2016; Krynak
et al., 2015) and susceptibility to infection from a variety of
pathogens leading to disease or malformation. A holistic
measure of the mucosome, or the combined host- and
microbiota-derived compounds in the mucus, can test function
against pathogens and predict disease susceptibility
(Woodhams et al., 2014). Many of the diseases impacting
amphibian populations are transmitted by pathogens or para-
sites in the aquatic environment that interact with the skin
mucosome, including ranavirus, Aeromonas hydrophila, Bd,
Saprolegnia ferax, Anurofeca richardsi, Amphibiocystidium
spp. and Ribeiroia ondatrae. Although the Gram-negative
bacterium A. hydrophila is not inhibited by amphibian skin
peptides tested to date (Rollins-Smith et al., 2002; Schadich
and Cole, 2009; Tennessen et al., 2009), both ranaviruses and
Bd can be inhibited (Rollins-Smith et al., 2002; Chinchar
et al., 2004). The ability of tadpole peptides to inhibit other
bacterial pathogens, protozoa or fungal infections, such as

S. ferax (Romansic et al., 2006), remains to be tested. The
contribution of larval skin defenses to differences among spe-
cies in infection by the malformation-inducing trematode
R. ondatrae (Johnson and Hartson, 2009) is also unknown.
Lithobates catesbeianus is significantly more resistant to
R. ondatrae infection than species such as P. regilla and
B. americanus, which lack AMP defenses as tadpoles
(Table 2; Johnson et al., 2013; Calhoun et al., 2016). Skin
peptides tested here do not appear to explain resistance of
H. versicolor and other Hyla species to R. ondatrae (Johnson
and Hartson, 2009; LaFonte and Johnson, 2013).

Ecologically, metamorphosis is a particularly vulnerable
time for amphibians. Locomotion ability at metamorphosis
lags below that of both tadpoles and adults, leaving meta-
morphs at greater risk of predation (Wassersug and Sperry,
1977). The type of predation, competition and environmental
conditions, in addition to infection status, influence size at
metamorphosis (Alford, 1999; Parris and Cornelius, 2004;
Vonesh and Warkentin, 2006; Groner et al., 2014), and size at
metamorphosis may influence subsequent survival (Pechenik,
2006; Scott et al., 2007). The timing of metamorphosis and
stress during early ontogeny may have a significant influence
on disease risk (Rollins-Smith, 1998; Groner et al., 2014). Pace
of life appears to trade off with AMP immune investment in
amphibian larvae. The repertoire of defensive peptides
expressed on the skin changes with amphibian development
such that at most a subset of the adult peptides occurs in tad-
poles. Immunologically, the adaptive immune system reorga-
nizes during metamorphosis, and innate skin peptide defenses
may compensate for adaptive immune suppression, allow for
restructuring of the microbiota upon metamorphosis and alter
colonization resistance of parasites and pathogens.

Supplementary material
Supplementary material is available at Conservation
Physiology online.
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