
 ResearchOnline@JCU

This file is part of the following work:

McArdle, Eugene (2017) SCOOT: an object-oriented text based

computer programming teaching tool for novices, with an emphasis

on ease-of-use. PhD thesis, James Cook University.

Access to this file is available from:

https://doi.org/10.4225/28/5ac6a9c4bfaff

Copyright © 2017 Eugene McArdle.

The author has certified to JCU that they have made a reasonable effort to gain permission and

acknowledge the owner of any third party copyright material included in this document. If you

believe that this is not the case, please email researchonline@jcu.edu.au

https://doi.org/10.4225/28/5ac6a9c4bfaff
mailto:researchonline@jcu.edu.au

SCOOT : An Object-oriented Text
Based Computer Programming Teaching
Tool for Novices, with an Emphasis on

Ease-of-use

By

Eugene McArdle

This thesis is submitted in partial ful�llment of the requirements for the

Degree of Doctor of Philosophy

School of Business

Discipline of IT James Cook University

Australia

31 October 2017

Statement of Access to Thesis

I, the undersigned, the author of this thesis, understand the James Cook

University will make this thesis available for use within the University Library

and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has signi�cant protection

under the Copyright Act and;

I do not wish to place any restriction on access to this work.

. .31 Oct 2017

Declaration On Ethics

The research presented and reported in this thesis was conducted in

accordance with the National Health and Medical Research Council (NHMRC)

National Statement on Ethical Conduct in Human Research, 2007. The

proposed research study received human research ethics approval from the

JCU Human Research Ethics Committee Approval Number H2911.

.31 Oct 2017

Declaration

I declare that this thesis is my own work and has not been submitted in any

form for another degree or diploma at any university or other institute of

tertiary education. Information derived from the published and unpublished

work of others has been acknowledged in the text and a list of references is

given.

Eugene McArdle

31 October 2017

Contributions of Others

Nature of

Assistance
Contribution

Names, Titles and A�liations of

Co-Contributors

Intellectual

Support

Proposal

Proofreading

Dr Jason Holdsworth, School of Business (IT),

JCU Cairns

Dr Phillip Musumeci, School of Engineering, JCU

Cairns

Advice with

Data Analysis

Dr Siu-Man Carrie Lui, School of Business (IT),

JCU Cairns

Assistance with

Survey

Structure

Dr Katrina Lines, School of Psychology, JCU

Cairns

Financial

Support
Scholarship APA Scholarship

Grant GRS Grant

Data

Collection

Assisted during

2 test sessions

Dr Jason Holdsworth, School of Business (IT),

JCU Cairns

Publications

Published

(1) McArdle, E., Holdsworth, J. & Lui, S.M. (2009). Usability Evaluation

of SOLA: An Object-oriented Programming Environment for Children. In T.

Bastiaens et al. (Eds.), Proceedings of World Conference on E-Learning in

Corporate, Government, Healthcare, and Higher Education 2009 (pp. 2922-2929).

Chesapeake, VA: AACE.

(2) McArdle, Eugene, Holdsworth, Jason, and Lee, Ickjai (2013) Assessing

the Usability of Students Object-oriented Language with First-year IT Students:

A Case Study. Proceedings of the Australasian Computer-Human Interaction

Conference Australasian Computer-Human Interaction Conference. , 25-29,

November 2013, Adelaide, Australia.

Acknowledgements

This dissertation would not have been possible without the help and support of

more people than I can possibly remember here.

First thanks must go to my primary advisor, Dr Jason Holdsworth, for his

consistent support and encouragement during the preparation of this dissertation,

particularly when it seemed impossible to �nish. Thanks also go to my other

advisors, Dr Carrie Siu-Man Lui and Associate Professor Ickjai Lee. Carrie's

help with the analysis and reporting of the statistics was essential, and Ickjai's

help with getting the dissertation to a �nalised state was invaluable.

I also wish to thank Dr Katrina Lines for her help in preparing the surveys

used in this research.

Finally, this work would not have been completed with out the unending

support and encouragement of my wife, Helen. Thank you for your incredible

love and patience. It's over now :).

Abstract

IT educators have developed many tools and techniques to help novices learn

to program computers, and yet learning to program is still hard. Some solutions

attempt to remove the initial language barrier by replace code entry with another

system, such as manipulating a graphical interface. There have been several

attempts to create a visual language which allows `novice' programmers to

quickly learn programming skills including Tynker, Scratch and Alice. Case

studies with Alice and other visual languages have shown a short learning curve,

such that users are often able to create running programs, of varying degrees

of complexity, within the �rst hour of exposure. Visual languages overcome

initial barrier of code entry for novice programmers, and when combined with a

good teaching environment and community they are a powerful tool for novices

to learn - a fact which is supported by numerous case studies. Initially these

visual languages were aimed at children, who would be more easily engaged by

the visual interface, however in recent years visual languages (particularly Alice)

have been implemented as part of introductory tertiary courses on programming.

This lead to several case studies using Alice and other languages at a University

level, where the focus is particularly on the transferability of the rapidly developed

programming skills. Some studies indicate that many students are overwhelmed,

confused and discouraged upon seeing their �rst `real' programming language,

whilst other studies indicate more successful transferability. The transferability

of programming skills from a children's language has not always been seen as

essential, but in light of the Queensland government's �Coding counts� initiative,

and the inclusion of these languages in tertiary courses, their usefulness must

be examined. This has coincided with a shift in how programming is taught at

university, with object-oriented (OO) concepts now being introduced far earlier

than in previous years. This dissertation argues that a text-based teaching tool

designed to teach OO computer programming along with some foundational

logical thinking skills is needed. The Student-Centric Object-Oriented Teaching

Tool (SCOOT) was designed as a stepping stone to full `commercial' programming

languages, with a focus on transferability of skills to those languages. SCOOT

was developed by selecting appropriate educational principles and examining

existing novice languages. Papert developed three principles for teaching, the

�Continuity principle�, the �Power principle� and the �Principle of Cultural

Resonance�. These design principles in�uence many areas of education, including

programming education. Research into the design of novice programming languages

also identi�ed common mistakes made when designing a programming language.

Several design principles to avoid these pitfalls have also been researched. Based

on modern coding principles and Papert's educational principles, the design

principles for SCOOT were developed. They are: Predictability (the interface

must behave in logical ways), Familiarity (new concepts must build on old

concepts) and Simplicity (the interface and commands must be as clear and

simple as possible). SCOOT's interface was designed to be as minimalist as

possible, in order to minimise extraneous cognitive load. SCOOT incorporates

basic programming skills, including conditional and iterative statements, all

within an OO framework, where all variables and methods are part of an

object. Simple inheritance is also provided, as are dynamic object editing

capabilities. The e�ectiveness of SCOOT was tested in a series of half-day

case studies involving university students, where participants learned some OO

programming theory and subsequently completed a series of programming tasks

using the SCOOT environment. All participants were novices to computer

programming either half way through their �rst semester, or with no experience

at all. The tasks completed by the participants included code writing, reading

and debugging components. The participants experiences with the SCOOT

environment were examined, using a series of constructs measuring perceived

ease-of-use, usefulness and enjoyment (based on the Technology Acceptance

Model, TAM). A similar series of sessions were conducted using C++, the

computer programming language used in the introductory programming course

at the University where this project was conducted. Steps were taken to ensure

that the interface for both SCOOT and C++ were similar in visual style and

complexity. The results showed signi�cant reductions in the time to complete

almost all tasks for SCOOT users, as well as signi�cant increases in their

performance in those tasks. SCOOT users also reported that they found SCOOT

signi�cantly easier to use than the users of C++. A correlation was also found

between perceived ease-of-use and performance in most tasks. The simplicity

of the SCOOT GUI did not introduce signi�cant learning barriers in addition

to the material. The degree to which users found the teaching tool easy to use

is related to their performance using the principles being taught. A simpli�ed

teaching tool can teach basic programming principles without the constraints

and overhead complexity found in typical introductory languages. A textual

teaching tool overcomes the issue of transferability of skills.

Contents

1 Introduction 1

1.1 Chapter Synopsis . 1

1.2 Background and Motivation . 3

1.3 Introducing SCOOT . 5

1.4 SCOOT - Aims and Objectives 6

1.4.1 Research Aims . 6

1.4.2 Research Objectives . 6

1.4.3 Contributions . 7

1.4.4 Constraints and Assumptions 8

1.4.5 Dissertation Synopsis . 9

2 Literature Review 12

2.1 Introduction . 12

2.2 Principles of Learning . 14

2.3 Programming Language Concepts 16

2.3.1 Basic Concepts . 16

2.3.2 Teaching Programming Concepts 20

2.4 A Brief History of Novice Languages 22

2.4.1 Novice Languages . 23

2.4.2 Historical Trends . 44

2.5 Proposal for a new teaching tool 51

2.6 Conclusions . 56

i

3 Framework and Language Design 59

3.1 Language Design Basics . 59

3.2 Lexers and Parsers . 60

3.3 SCOOT Infrastructure . 64

3.4 Lexer Tokens . 67

3.5 Language Components . 71

3.5.1 Create Object . 73

3.5.2 Add Attributes . 75

3.5.3 Remove Attributes . 76

3.5.4 Add Method . 77

3.5.5 Remove Method . 79

3.5.6 Get Attribute . 79

3.5.7 Get Object . 80

3.5.8 Set Attribute . 81

3.5.9 Modify Attribute . 82

3.5.10 Method Evaluation . 84

3.5.11 Compare attribute to value 85

3.5.12 Conditionals . 86

3.5.13 Loops . 88

3.5.14 Evaluate Expression . 90

3.5.15 Cancel . 92

3.5.16 Quit . 92

3.6 Interface Design . 92

4 Experimental Design 94

4.1 Introduction . 94

4.2 Design Decisions . 96

4.2.1 Learning Programming 96

4.2.2 The Experience . 97

4.2.3 Compare to C++ . 98

ii

4.3 Participants . 98

4.4 Environment . 99

4.5 Procedure . 100

4.5.1 Tasks . 100

4.5.2 Wave One - IT Students 101

4.5.3 Wave Two - General Population 102

5 Results 104

5.1 Introduction . 104

5.2 Quantitative . 104

5.2.1 Writing Tasks . 105

5.2.2 Reading Task . 108

5.2.3 Debugging Task . 110

5.2.4 Questionnaire . 112

5.3 Qualitative . 117

5.3.1 Writing Tasks . 117

5.3.2 Reading Task . 118

5.3.3 Demographic Trends . 118

5.3.4 Focus Groups . 120

6 Discussion 125

6.1 Summary and Outcomes . 125

6.2 General Conclusions . 127

6.2.1 Quantitative Observations 127

6.2.2 Qualitative Observations 129

6.2.3 Discussion . 130

6.2.4 Hypotheses . 133

6.3 Future Work . 134

6.4 Final Conclusions . 136

A Testing Activities 149

iii

A.1 Writing Task One . 149

A.2 Writing Task Two . 150

A.3 Reading Task . 152

A.4 Debugging Task . 164

A.5 Questionnaires . 173

iv

List of Figures

2.1 Unary If Statement. 19

2.2 Binary If Statement. 19

2.3 Selective History Of Novice Languages. 23

2.4 Alice 2.0 User Interface. 36

2.5 Scratch Interface. 40

2.6 IDLE (Basic Python IDE). 47

2.7 Notepad++ (Minimalist Editor, Supports C++ et al). 47

2.8 NetBeans (Popular Java IDE). 48

2.9 Visual Studio 2010. 48

2.10 SCOOT Interface. 50

2.11 Summary of Language Evaluation 52

3.1 SCOOT Interaction. 60

3.2 TreeMap Data Structure, Showing TreeMapNodes. 65

3.3 scootData and scootObject Class Diagrams. 65

3.4 scootObjects Breakdown. 66

3.5 Data Structures Used By SCOOT To Maintain Methods. 66

3.6 Conceptual Structure Of SCOOT. 72

4.1 Wave One Session Flow. 101

4.2 Wave Two Session Flow. 102

v

List of Tables

1.1 Results Of Hypothesis Testing. 8

2.1 Variable Declarations in Various Languages 17

5.1 Mean Time In Minutes For Writing Tasks (Wave One) 105

5.2 T-test Comparison For Writing Tasks (Wave One) 105

5.3 Mean Success Rate For Writing Tasks (Wave One) 106

5.4 t-test Comparison for Writing Task Success Rate (Wave One) . . 106

5.5 Mean Time In Minutes For Writing Tasks (Wave Two) 107

5.6 T-test Comparison For Writing Tasks (Wave Two) 107

5.7 Mean Success Rate For Writing Tasks (Wave Two) 108

5.8 t-test Comparison for Writing Task Success Rate (Wave Two) . . 108

5.9 Mean Time In Minutes For Reading Task (Wave One) 108

5.10 T-test Comparison For Reading Task (Wave One) 108

5.11 Mean Time In Minutes For Reading Task (Wave Two) 109

5.12 T-test Comparison For Reading Task (Wave Two) 109

5.13 Mean Number Of Questions Correctly Answered (Wave Two) . . 110

5.14 T-test Between Languages (Wave Two) 110

5.15 Mean Time In Minutes And Measures For Debugging Task (Wave

One) . 110

5.16 T-test Comparison For Debugging Task (Wave One) 111

5.17 Mean Time In Minutes And Measures For Debugging Task (Wave

Two) . 111

vi

5.18 T-test Comparison For Debugging Task (Wave Two) 111

5.19 Reliability Analysis (Wave One) 112

5.20 Reliability Analysis (Wave Two) 112

5.21 Mean Results For Constructs (Wave One) 112

5.22 T-test Comparison For Constructs (Wave One) 113

5.23 Correlation Between Task Performance And Constructs (Wave

One) . 114

5.24 Mean Results For Constructs (Wave Two) 115

5.25 T-test Comparison For Constructs (Wave Two) 115

5.27 Preliminary Questionnaire Correlations (Wave Two) 116

5.26 Correlation Between Task Performance And Constructs (Wave

Two) . 116

5.28 Demographic Data (Wave One) 118

5.29 Mean Intent to Continue Using Or Recommend (Wave One) . . . 118

5.30 T-test Comparison For Intent Or Recommendation (Wave One) . 119

5.31 Demographic Data (Wave Two) 119

5.32 Mean Intent to Continue Using Or Recommend (Wave Two) . . . 119

5.33 T-test Comparison For Intent Or Recommendation (Wave Two) . 120

vii

Chapter 1

Introduction

1.1 Chapter Synopsis

Learning computer programming is not an easy thing to do [Powers et al., 2007,

Chao, 2016]. Papert, an in�uential researcher in education and computing,

identi�ed several areas of expertise that would be improved and enhanced

by learning programming [Feurzeig et al., 1970, Papert, 1980]. These include

mathematics, logical analysis and thinking skills, problem solving skills, and

design principles. Learning to program computers also demysti�es the computer

for end users. As computers become more prevalent in society it is necessary

for people to have an elementary understanding of computers and computing.

The majority of the skills learned in programming are not domain speci�c, and

can be applied to many other areas of learning.

Part of the di�culty in learning computer programming stems from the fact

that it is not a single skill. Rather it is the combination of several di�erent skills

including problem solving, algorithmic design, program design and program

implementation [Garner, 2004]. Program implementation itself is a combination

of knowledge of the programming language being used, and knowledge of the

development software (referred to as an Integrated Development Environment,

or IDE) being used. This dissertation focuses on the program implementation

1

and IDE aspects of programming. Issues related to learning problem solving,

and algorithmic design skills can be more e�ectively addressed through teaching

curricula.

Many universities currently use a commercial language, such as Java, C++

or C#, at an introductory level. Many educators, however, are unsatis�ed with

the use of a commercial language as a teaching tool [Ivanovi¢ and Pitnerl, 2011].

There is also some consensus on the need for a new introductory programming

language [Black et al., 2010]. Other universities uses languages designed

explicitly for teaching novices, such as Python, while others are using visual

languages such as Alice.

When examining the di�culties faced when learning a programming

language there are many potential hurdles which can impact a student's

learning experience. In a comprehensive taxonomy of approaches to teaching

programming [Kelleher and Pausch, 2005] identify several core problems which

di�erent languages attempt to solve. Brie�y these problems include (taken from

[Kelleher and Pausch, 2005]): Expressing Programs, Structuring Programs, and

Understanding Program Execution. This dissertation focusses on the issue of

expressing code, and several solutions are noted in their paper. Some languages

attempt to simplify the entering of code, either by simplifying the language

(Turing, GRAIL) or enforcing strict coding standards to avoid errors (GNOME,

Cornell). Other languages �nd alternatives to typing programs, sometimes

through graphical or physical interfaces (Alice 2). This work introduces a

new object-oriented textual teaching tool designed for novices called SCOOT

- Student-Centric Object-Oriented Teaching-tool. SCOOT is proposed as a

bridge to more commercial programming languages. GRAIL, a procedural

novice language developed in 1999, was created explicitly to be a stepping stone

into other programming languages. The need for an OO language with the same

design approach has recently been echoed in [Black et al., 2010]. This language

needs to be text-based, in order to provide transferable skills, object-oriented,

and designed as a gateway into other, more commercial programming

2

languages. It is proposed that SCOOT could meet this need by serving as a

stepping-stone to a commercial grade OO programming language such as Java.

While there is debate concerning the introduction of object-oriented (OO)

programming principles [Braught and Wahls, 2008, Gal-Ezer et al., 2009,

Goldwasser and Letscher, 2008, Lister et al., 2006a, Reges, 2006], this

dissertation takes the view that introducing objects �rst enables students

to �t procedural programming techniques into an existing paradigm, rather

than needing to relearn core concepts. The majority of modern OO novice

languages are designed for children, and as such may su�er from a lack of

transferable skills due to over-visualisation.

1.2 Background and Motivation

Before a solution can be evaluated, the goals of the solution must be

identi�ed. This dissertation assumes that programming students need to learn

skills which can be transferred to commercial programming languages. The

transferability of skills learned through highly engaging visual environments is

under question [Powers et al., 2007, Brown, 2008, Lorenzen and Sattar, 2008,

Rader et al., 1997] and so these solutions may not solve the speci�c problem of

turning novice programmers into skilled programmers.

Many languages have been developed either explicitly for novices, or with

a focus on being easy to learn. Some common examples include Python,

Turing, Scheme and (very early on) Pascal. Introductory programming

courses at university typically use one of the more recent languages, or

a commercial language such as C++ or Java. [Ivanovi¢ and Pitnerl, 2011]

suggests that there is growing discontent within the education community with

using commercial grade languages for this purpose. Educators are also unhappy

using languages designed for novices which are inconsistent with common

programming practices.

A panel discussion [Black et al., 2010] recently stressed the

3

need for a new programming language to be developed to teach

object-oriented (OO) programming principles to novices. It should

be noted that there is currently a discussion amongst IT educators

regarding when OO principles should be introduced. Some educators

[McIver and Conway, 1999, Ivanovi¢ and Pitnerl, 2011] argue that OO

principles are built on more traditional procedural programming principles,

and should therefore be introduced later in a programming course.

Other educators [Braught and Wahls, 2008, Goldwasser and Letscher, 2008,

Lorenzen and Sattar, 2008, Bloch, 2000, Bloch, 2003] argue that this simply

establishes one programming paradigm (procedural), only to replace it with

another (OO). This replacement causes the student to �relearn� much of what

they have already learned, putting it into a new and broader context. There are

several issues to consider here, but this dissertation agrees with the educators

who are convinced that introducing objects �rst will ease the process of learning

programming for novices at a university level.

GRAIL is an example of a language designed for novices, with similar

goals to those identi�ed in [Black et al., 2010], though from a procedural

paradigm. The developers of GRAIL noted that the majority of novice

languages either focus on engaging their users, and masking the complexities

of programming, or eventually become too powerful for novice users to

truly bene�t from them [McIver and Conway, 1996]. To solve this problem

McIver and Conway proposed GRAIL as a �zeroth� programming language

[McIver and Conway, 1999]. GRAIL was designed explicitly for novice

programmers, focusing on usability and transferability of skills. More

importantly, it was not designed to be a full programming language in its own

right - it would only exist as a stepping stone to other programming languages.

There are many languages designed to introduce programming concepts,

with a wide range of interfaces and designs. Some of these languages are

examined in Chapter 2.

4

1.3 Introducing SCOOT

SCOOT is a newly developed Object-oriented teaching tool, designed to

enable novice programmers to learn programming concepts without the

overheads of a commercial programming language, and without the potential for

non-transferable skills taught by visual environments. When designing SCOOT

the �eld of education was examined for inspiration, and in particular the work of

Seymour Papert, developer of one of the �rst children's programming languages,

LOGO. In his seminal work, Mindstorms [Papert, 1980], Papert identi�es three

core principles which must be applied to any method of teaching in order for it

to succeed. In Papert's work these were the �Continuity Principle�, the �Power

Principle�, and the �Principle of Cultural Resonance�.

A concept satis�es the continuity principle if it builds on a student's current

knowledge in predictable and expected ways, and does not contradict their

current knowledge. It satis�es the power principle if a student is empowered

by it, that is that they can see immediate rewards or bene�ts for learning the

material. Finally it satis�es the principle of cultural resonance if it enables the

student to move on to more advanced or complex applications of the material,

and provides a larger social context for the material. These principles are

discussed in more depth in Chapter 2.

In terms of a tool to assist with learning computer programming these

principles mean that the tool must behave in ways which the users expect,

provide immediate feedback and results, and enable the user to learn skills and

principles which can later be transferred to a commercial grade programming

language. These principles form the basis for the design principles of SCOOT.

In this research the need for a textual OO teaching tool designed for novices,

which behaved in-line with these goals, was identi�ed. No language or tool was

found which satis�ed all these criteria, which led to the development of SCOOT.

SCOOT is a textual OO teaching tool, with a simple English-like syntax.

It introduces users to a set of interpreted commands (providing immediate

5

feedback to users), and the syntax and programming constructs are designed

to teach OO principles which are common, and easily transferred to other

OO languages. These three features (English-like syntax, interpreted, and

common code constructs and syntax) satisfy the Continuity Principle, the Power

Principle and the Principle of Cultural Resonance respectively.

1.4 SCOOT - Aims and Objectives

1.4.1 Research Aims

The development and testing of SCOOT aims to determine the usefulness of a

teaching tool, designed explicitly to teach object-oriented programming concepts

to novices. It also aims to see if a textual teaching tool can reduce its complexity,

while still teaching enough programming concepts to be useful. It is argued

that an OO teaching tool designed for novices as a stepping stone to other

languages will allow users to learn programming concepts and skills more easily

than currently available options. The core hypothesis of this dissertation could

simply be stated as:

To assess the usefulness, and impact on learning outcomes, of a text based

teaching tool designed to teach novices the basics of object-oriented computer

programming.

1.4.2 Research Objectives

The core hypothesis is broken down into six hypotheses which can be measured

through testing. Due to teaching requirements, SCOOT was compared to the

programming language used in the introductory programming course at the

University where this project was conducted. At the time of testing (2009)

this language was C++. The interface of SCOOT is minimalistic in design, as

discussed in Chapter 2, and so a customisable, minimalistic IDE (Notepad ++)

was used for testing purposes.

The �rst three look at programming performance:

6

� H1 - SCOOT is seen by novice programmers as easier to use than C++,

programmed in a customised version of Notepad++.

� H2 - SCOOT is seen by novice programmers as more useful than C++,

programmed in a customised version of Notepad++.

� H3 - SCOOT is seen by novice programmers as more enjoyable than C++,

programmed in a customised version of Notepad++.

The remaining three look at user experience, since research indicates that user

experience is critical for software tools, including educational environments

[Calisir and Calisir, 2004, Trigwell and Prosser, 1991, Davis, 1989] :

� H4 - When given a simple programming task, users of SCOOT are able

to write a correct solution more quickly than users of C++.

� H5 - When given a simple piece of code, users of SCOOT are able to

correctly understand it more quickly than users of C++.

� H6 - When given a piece of code with errors in it, users of SCOOT are

able to identify and correct the errors more quickly than users of C++.

SCOOT was developed to meet the need for a teaching tool designed to teach

object oriented, textual computer programming to novices, and preliminary

testing has yielded positive results in terms of user experience and demonstrated

programming comprehension. The results of testing these hypotheses are shown

in Table 1.1.

1.4.3 Contributions

The development of SCOOT incorporated knowledge from computer science and

education, and focused on creating a text based tool for teaching OO principles

to novices. This project o�ers the following contributions:

� SCOOT, a teaching tool which meets an identi�ed need, has been

developed and initial testing has shown improvements in all areas of

7

Table 1.1: Results Of Hypothesis Testing.
Hypothesis Result

H1 - SCOOT is seen by novice programmers as easier to
use than C++, programmed in a customised version of

Notepad++
Supported

H2 - SCOOT is seen by novice programmers as more
useful than C++, programmed in a customised version of

Notepad++

Not
Supported

H3 - SCOOT is seen by novice programmers as more
enjoyable than C++, programmed in a customised version

of Notepad++

Not
Supported

H4 - When given a simple programming task, users of
SCOOT are able to write a correct solution more quickly

than users of C++
Supported

H5 - When given a simple piece of code, users of SCOOT
are able to correctly understand it more quickly than users

of C++
Supported

H6 - When given a piece of code with errors in it, users of
SCOOT are able to identify and correct the errors more

quickly than users of C++
Supported

programming skill, as well as reported improvements in user experience.

Testing of SCOOT produced results which indicate a connection between

user experience with a learning tool, and positive learning outcomes.

There also seems to be support for the bene�ts of learning a `zeroth'

programming language for students of computer programming, and

evidence that a text based language, with a simple and consistent syntax

may avoid the pitfalls of a visual language.

� This dissertation examines a potential weakness in visual programming

environments, and proposes a simple text-based tool as a stepping stone

to more commercial programming languages.

1.4.4 Constraints and Assumptions

The restrictions encountered in the course of this study are as follows:

� Development assumption - While discussion continues regarding the

introduction of objects before procedural concepts, it was decided to

8

proceed with an object-oriented tool for novices.

� Testing constraint - Due to teaching requirements, and limited resources

at a regional university, SCOOT had to be compared to the programming

language used in the introductory programming course at the University

where this project was conducted. At the time of testing (2009) this

language was C++, which is not an ideal language for comparison since

SCOOT is speci�cally designed for teaching and C++ is a commercial

grade language.

� Objects-First constraint - The �rst wave of testing was conducted

with participants from the �rst year programming course, and due

to restriction on their curriculum they had completed a semester of

procedural programming before participating in the experiment. This

means that the �rst wave of testing does not introduce objects �rst.

1.4.5 Dissertation Synopsis

Chapter Two of this dissertation is a review of existing literature in the �eld of

novice computer programming languages, and teaching computer programming.

This chapter examines core programming problems that have been identi�ed,

and their proposed solutions. It also looks at educational and programming

concepts focussed on in this work. An overview of the objects �rst debate

is also given and several key novice programming languages are examined

and trends in language design are identi�ed. Several novice languages are

discussed, including Turing, Pascal, Scheme and Alice. Alice was originally

designed as a children's language, and so has a highly visual interface. To aid

the examination of visual languages, similar visual languages were examined

for reference. Papert's educational principles (Continuity, Power and Cultural

Resonance) were then used to examine these languages to see what worked

and what did not. This chapter then identi�es the need for SCOOT. The

sum of what worked well in other languages was used as the basis for

9

SCOOT's command structure. Cognitive load theory (CLT) suggests that the

e�ort required for any task is made up of intrinsic load (which cannot be

avoided) and extraneous load, which is added by the tools or system being

used [Chalmers, 2003, Feinberg and Murphy, 2000]. In order to control any

additional load added by the user interface the interface of SCOOT was designed

to be minimalistic. Finally common programming constructs are examined,

and their importance or value for a novice bridging language is discussed. This

provides the basis for deciding which language components would be supported

by SCOOT and which would not.

Chapter Three then discusses the fundamentals of language design, lexers

and parsers in order to discuss how SCOOT was implemented. Creating SCOOT

required a new set of commands and syntax. The set of keywords and the

syntax of commands are the parser and lexer rules of a language interpreter,

respectively. A language generation tool (ANTLR [Parr and Quong, 1995])

was used to de�ne these rules. A Java engine was then developed to take

the processed input and produce relevant responses for the user. A detailed

discussion of lexers, parsers and their implementation is given in this chapter.

The components of SCOOT syntax and behaviours are given and discussed.

Chapter Four explains how SCOOT was tested, containing details of the

design, recruitment and running of the test sessions. In order to test SCOOT it

was compared to another language. At the time of testing the programming

language taught in the �rst year subjects was C++, with objects being

introduced in second semester. The timing of the testing allowed for the

introduction of objects in the testing sessions before they were learned in

the course, so that the performance students learning SCOOT for the �rst

time could be compared to students who had a semester of experience with

C++. During later rounds of testing C++ continued to be used for the

sake of consistency. It is also known that the ability to write code is not

necessarily an indicator of comprehension [Winslow, 1996] and so code reading

and debugging tasks were incorporated into the testing to more accurately

10

measure understanding [Martin, 1996].

Finally, in Chapter Five the results of the testing are given, and a discussion

of the implications is found in Chapter Six.

11

Chapter 2

Literature Review

2.1 Introduction

The key abilities of a computer programmer are problem solving skills,

understanding syntactic rules with unfamiliar names and understanding how

programs execute [Kelleher and Pausch, 2005]. Learning all these abilities

simultaneously is why studying computer programming is challenging, and

why many researchers since the 1960's have tried to simplify the process. In

addition to the variety of abilities involved, the very act of learning a computer

programming language is a�ected by at least three distinct components: the

language itself, the IDE, and the support structures provided externally to the

learning environment. IDEs vary in complexity from a simple text editor, to

a full-scale commercial IDE like Visual Studio [Microsoft,]. Some languages

also have a well developed support system, which provide extra resources

and motivation for novice programmers. Scratch [Malan and Leitner, 2007]

is one example of this, and there is an active on-line community for Scratch

programmers to share their creations, and comment on others work. Note that

this research project does not extend to include such support structures but

there is a great deal of work being done in this area. [Diwan et al., 2004]

introduces a tool to encourage �rst-year computer science students to

12

explore programs collaboratively, and [Ivanovi¢ and Pitnerl, 2011] compares two

e-learning tools for teaching Java. Massive Online Open Courses have also been

been introduced covering a variety of subjects. A critique of two such courses in

Computer Science was recently conducted [Ben-Ari, 2011]. These studies focus

on the impact of course structure and teaching tools on the e�ectiveness of novice

programming courses. They are therefore outside the scope of this research,

which focuses instead on languages and their respective interfaces. Other recent

alternatives to traditional teaching methods include live-coding [Rubin, 2013]

and interactive test-driven labs [Janzen et al., 2013]. Another promising area

of research is the use of partially completed examples for students to �nish, as

implemented in CORT [Garner, 2004]. Work is also being done to encourage

good program development processes [Caspersen and Kolling, 2009].

Next, an overview will be given of the educational principles used in this

project to understand how programming is taught. Programming language

concepts will then be introduced, along with a discussion of traditional and

modern approaches to the order in which these concepts are introduced to

students. This is followed by a brief overview of several key novice programming

languages, developed between 1968 and 2007, and the chapter closes with

a proposal for a new text-based, object-oriented programming teaching tool

named SCOOT. The proposal includes conclusions developed in terms of

the goals and design principles of the SCOOT commands, having examined

several key trends in novice programming languages. From an educators

perspective, the purpose of a programming teaching tool is to improve a

student's understanding of core programming principles. If a new tool does

not develop skills which are bene�cial for learning future then it is not a useful

teaching tool. The core focus of this project is in the acquisition of skills which

can be transferred to commercial computer programming languages.

13

2.2 Principles of Learning

Educational Principles

Seymour Papert, a psychologist specialising in children and education,

was involved in the development of LOGO, one of the �rst �educational�

programming languages [Papert, 1980]. Papert developed a series of principles

for teaching mathematics, which can be applied to any �eld of teaching for any

age group. These principles are: ([Papert, 1980])

� Continuity Principle;

� Power Principle;

� Principle of Cultural Resonance.

Continuity Principle

The Continuity Principle states that the material being learned must be

continuous with well-established personal knowledge, from which a student

inherits a sense of value. For example, a student will �nd it more di�cult

to understand something with which they have no familiarity than to extend a

familiar �eld of knowledge. In order to e�ectively teach computer programming

it is necessary to build on a student's current understanding of related

concepts, such as objects (from the real world), functions and variables (from

mathematics), in order to minimise di�culties in learning, and reduce the

learning curve.

This principle was applied to the design of SCOOT by ensuring that

the syntax and semantics of SCOOT's command were consistent with the

grammatical rules and principles of English. Phrases and keywords were chosen

which had meanings consistent with the programming principles being used and

learned. Additionally we made every e�ort to ensure that SCOOT command

were internally consistent, and did not introduce confusion, either by having

14

similar concepts use di�erent syntax, or by having dissimilar concepts using the

same syntax.

Power Principle

In order to engage students, and convey a reason to learn, the material must

provide them with immediate rewards of some kind. The knowledge must allow

them to engage in activities which were previously impossible for them.

SCOOT is an interpreted language, and the current interface evaluates each

line as it is entered by users (with some exceptions). This direct connection

between entering a command and seeing the response was made in order to

implement this principle, and provide immediate feedback to users. Languages

like C++ or Java require several lines of code to be written before even the most

basic program can be run. Within SCOOT a �rst time user can enter a single

line of code and see an immediate response. The foundational goal of SCOOT

is to teach OO principles, which in itself aligns with the Power Principle.

Principle of Cultural Resonance

Material that builds upon previous knowledge, and provides immediate rewards,

must also be seen to be relevant and meaningful in future situations. The

material must also be relevant and meaningful within a larger social context,

that is it must have some use beyond the classroom. It is outside the scope of a

piece of software to convey this degree of relevance, which can only be passed on

through a human educator, or guide. In terms of a �teaching program� this area

of relevance will be shown through the teaching style employed, and cannot be

controlled in the software system.

This principle reinforces the premise that a tool which teaches programming

skills must teach skills which can be transferred to a commercial grade

programming language. If those skills are of no use when moving to more

advanced languages then the tool has failed to meet the requirements of this

principle. SCOOT was designed in order to apply this principle to a novice OO

15

programming tool

In the course of developing a teaching tool for programming, it is sensible

to study other environments, and the teaching principles they employ. It is

also necessary to study the learning patterns of new programmers, in order to

identify particular hurdles and di�culties. This knowledge can then be used to

support the design of SCOOT.

2.3 Programming Language Concepts

When designing a tool for teaching computer programming it is essential to

determine which programming concepts to provide. Here some of the common

concepts in programming are discussed, followed by a discussion of the order in

which these concepts may be encountered in an introductory course.

2.3.1 Basic Concepts

Variables Central to any computer programming language is the concept

of a variable, that is a named value which contains some information. Depending

on the language the creation of a variable can vary considerably, as shown in

Table 2.1. Some languages require the type of information to be explicitly

de�ned by the programmer, while others will dynamically determine the type

of data based on how it is used. Other languages only allow the creation of

variables within an object, while others allow global variables.

As can be seen in Table 2.1 there are a variety of ways in which variables

can be declared in di�erent languages.

Collections Many programming languages allow for multiple pieces of

data to be accessed through a single variable name, this is commonly called

a collection. Collections range from simple array structures found in languages

like C++, through to much more powerful feature-�lled structures like lists in

16

Table 2.1: Variable Declarations in Various Languages
Language Variable declaration Notes

Visual Basic dim num As Integer Automatically assigns default value
on creation, type is optional (a
default type will be applied)

C++ int num = 0 Type is required, initial value is
optional

Python num = 0 No type required, Python
interpreter identi�es the best type

to use based on value

Python. Collections are an essential component of any programming language

which allows users to write programs beyond basic data manipulation. Some

languages, including C++, Turing, and Pascal require that all members of a

collection be of the same data type, while other languages like Python relax

this requirement, allowing for more powerful collection structures. More recent

languages such as Java and Python provide useful functions as part of their

collections, and this is especially true of Python where common collection

operations including sorting and searching have been catered for within the

language.

Functions A function, also known as a procedure, is a segment of code

which can be run (or called) at various times within a program without the

need for repeating the code. Functions are an essential part of program

design, and are common in almost all programming languages. Most languages

allow for a function to produce a single piece of information (say a word or

number) but some languages, including Python, allow for multiple pieces of

data to be returned from a single function. Other languages such as C++

provide alternative mechanisms for returning multiple pieces of data, such as

allowing inputs to be passed into the function through a memory reference.

More object-oriented languages (such as Java) minimise the need to produce

more than one piece of data through the data access provided through the

object-oriented model.

17

It is also worth noting that many programming languages have a global

scope allowing functions to a�ect each other, know as side-e�ects. Unintentional

side-e�ects are the source of many errors and for this reason SCOOT, like Turing,

does not permit them.

A method is a function declared within an object, while a function may exist

without any object to contain it. Since methods are bound to the object itself,

they are also known as type-bound procedures. In this dissertation the two

terms will be used in this way, except when discussing Alice in Section 2.4.1

below, where the designers have their own de�nitions of those terms.

Classes Classes, and their instantiations (called Objects) are the core

concept in any object-oriented programming language. A Class is essentially

the blueprint, and an Object is a particular variable based on that blueprint.

An object is a data structure, accessed through a single identi�er, which may

contain several pieces of information describing it (for example, a �Car� object

may contain variables to store make, model and year) and a set of methods

which control its behaviour (the colour of the car may be changed, or it could

move to another location). Some languages provide support for objects while

not being explicitly object-oriented, such as C++ or Python. Other languages

enforce the object-oriented paradigm at every level - like Java, which only allows

variables and functions to be declared within an object.

Conditionals Any program beyond a simple calculation will require the

computer to be able to make decisions based on variables. This is a conditional

statement, which means that certain lines of code will only be run if certain

conditions are met. There are two standard forms of conditional statements:

�if� and �if/else�. An �if� statement, sometimes know as a �unary if�, makes a

decision about whether to run certain lines of code, otherwise it will skip those

lines (Figure 2.1).

18

True
Decision

Operation

Conditional
Operation

Operation

False

Figure 2.1: Unary If Statement.

An �if/else�, or �binary if� statement, provides for two alternate sets of code,

where only one will be run, and the other will be skipped (Figure 2.2).This may

be due to the continuing di�culty Pascal has as a commercial grade language

being used for educational purposes [Kruglyk and Lvov, 2012]

False Conditional
OperationDecision

Operation

Operation

TrueConditional
Operation

Figure 2.2: Binary If Statement.

A third alternative is to allow for multiple paths, either with several �if/else�

structures or a simpler �switch� statement, supported by some languages. A

switch statement allows a nested if statement with multiple paths to be written

in a way which is more readable, as long as all conditions test the same variable.

Depending on the language there may also by type or comparison restrictions

on the use of switch statements as well.

Loops Another programming concept which requires a decision to be made

is the loop, which allows for a set of commands to be repeatedly executed until

19

some condition is met. The standard loop structure is a �while� loop, which

repeats while the looping condition is true. The test in a �while� loop is at

the start of the loop, commonly known as a �pre-test loop�, which is not ideal

for certain situations. Loops which would perform better if the test comes at

the end of the commands can be implemented using a �do-while� loop. This

operates the same way as a �while� loop, but test the loop condition at the end,

instead of before, known as a �post-test loop�. A �do-while� loop will run at least

once, no matter what, but that is not the case with a �while� loop. A common

alternative to the �while� loop, speci�cally designed for counting loops, and

accessing collections, is the �for� loop. Not all looping structures are available

in all languages, though most modern commercial languages provide for the

while and for loop structures. Some languages (such as Python) do not support

a post-test loop at all, and so there is no do-while structure in those languages.

Some Python texts suggest that a post-test loop can be implemented through

the use of an in�nite loop with a break statement within an if-statement at the

end. Most professional programmers would not agree with the use of in�nite

loops with a conditional break statement being encouraged, especially in an

introductory language.

2.3.2 Teaching Programming Concepts

The 1950's saw the rise of the imperative approach to problem solving (solving

a problem with a set of sequential steps) and the 1960's saw the introduction

of the object-oriented (OO) approach (solving the problem by creating a

model). FORTRAN, in the mid 1950's was the �rst imperative language to gain

widespread acceptance [Backus and Heising, 1964]. Due to hardware limitations

at the time the imperative approach was successful, and with the introduction

of subroutines (also called functions or procedures) languages which used this

approach became known as procedural programming languages. As computer

hardware capabilities increased the OO approach became feasible and languages

such as C++ were developed, adding support for objects to a pre-existing

20

procedural language. Other languages, such as Java, were designed from scratch

with the OO model in mind.

This brief history of the progression of the dominant programming

approaches, from imperative, through procedural, to OO, re�ects the model

many programming courses followed until the last decade or so. Simple

stand-alone commands were introduced, along with the base concept of

variables. These statements would then begin to be chained together into

a simple top-bottom algorithm of several steps. Conditional and iterative

structures would then be added to the student's repertoire, allowing for

branching programs which still followed a mostly top-bottom �ow.

After these concepts were established functions would be added, allowing

students to create their �rst truly procedural programs. At some point concepts

such as containers may also be covered, depending on the language being taught

and the centrality of containers to that language. Only when all these concepts

have been covered would the concept of an object be introduced, as a kind of

�data-type� which allowed programmers to have a container with several pieces

of data, as well as functions which control the use of that data.

While this is a logical progression, there is a signi�cant shift in the design

approach to programming when moving from a procedural model to an OO

one. This shift often causes serious issues for students, and is part of why

debate continues regarding when objects should be introduced.

Recently there has been a push to introduce OO

programming �rst [Cooper et al., 2003, Braught and Wahls, 2008,

Goldwasser and Letscher, 2008, Lorenzen and Sattar, 2008], establishing

objects as a framework for containing data and functions, which may contain

sequential, conditional or iterative code. The logic behind this approach is

that the shift from an OO approach to a procedural approach is less jarring to

students, since object methods will contain procedural-style code. There is a

great deal of debate in this area [Lister et al., 2006a, Reges, 2006], and as yet

the research does not strongly point one way or the other.

21

The argument against introducing objects early is that the concept of objects

is intrinsically di�cult, and moving them earlier in a course simply moves the

hurdle to the beginning of the process of learning programming, adding to an

already di�cult task [McIver and Conway, 1999]. Introducing it later allows for

a stronger foundation to be laid, which the concept of objects can be built upon.

On the other hand, studies have shown that an appropriate teaching

method allows for the introduction of OO concepts earlier than traditional

teaching methods, as long as information being taught builds on currently

known concepts [Goldwasser and Letscher, 2008, Lorenzen and Sattar, 2008,

Bloch, 2003, Bloch, 2000]. This ties in with Papert's Continuity Principle. In

this approach it is argued that the core di�culty of the transition to OO design

is not intrinsic to the concept, but is a product of having taught procedural

programming methods �rst.

It is our argument that the process of learning objects after procedural

concepts involves having to unlearn certain concepts before the new material can

be learned. The core elements of procedural programming are still needed, as

object methods will still often include procedural elements, but the fundamental

design of programs changes dramatically. This contradicts the Continuity

Principle, and therefore does not line up with our design principles.

SCOOT is therefore designed to teach OO programming principles, and all

variables and methods must be created with respect to an object.

2.4 A Brief History of Novice Languages

As can be seen in Figure 2.3 there have been several novice languages developed

since the 1960's, and this is by no means an exhaustive treatment. This section

discusses several novice languages, which are notable because of the lessons

which can be learned from them.

22

2.4.1 Novice Languages

Figure 2.3: Selective History Of Novice Languages.

Within the realm of novice languages there are many di�erent approaches,

depending of what 'problem' of learning programming the designer is attempting

to solve. An excellent survey of the main problems, and languages which aimed

to solve them, is found in [Kelleher and Pausch, 2005]. The languages discussed

in this section primarily focus on simplifying the entry of code, the problem this

project is focussed on. The languages were chosen as representatives of the two

major solutions to this problem, those solutions being:

� Text-based - Languages which keep a text-based interface, which has been

designed to be easier to learn.

23

� Visual - Languages which replace the entry of code with a visual interface.

These are often designed with children in mind, and the development of

simple games or animations used as the motivation for learning. Within

this category there are also two major sub-categories. They are:

� Block - Di�erent programming elements are represented by di�erently

shaped blocks, indicating where they can be used and how elements

can be combined.

� Metaphor-based - Programs follow a particular design metaphor

(such as a card game, or trains following a track), designed to be more

concrete for novices than the abstract concept of programs running

on a computer.

Text-Based Languages

LOGO LOGO is one of the most famous programming environments designed

for children and currently exists in many di�erent forms, some simply mimicking

the original version and others being nothing more than the turtle graphics

extension to LOGO which helped make it so popular [Layman and Hall, 1988].

It was created primarily as a tool to teach mathematical skills in the classroom,

and not as a tool to teach programming [Blackwell and Bilotta, 2000]. However,

the developers did not see programming as a means to an end (that is,

teaching programming but wanting people to learn mathematics) but were

instead motivating the learning of programming by proposing that it would

help enhance a user's understanding of mathematical concepts [Howe, 1982,

Feurzeig et al., 1970].

Since this was the core motivation, the language structures of LOGO,

initially a primarily textual language, were not particularly english-like, but

were instead more mathematical in structure. Case studies using LOGO in

the classroom had generally positive results, and many educators found an

24

improvement in many skills (mathematics, logic, problem solving) in their

students, arguably as a result of using LOGO [Howe, 1982].

However LOGO is not without its detractors, and its faults. In

[Layman and Hall, 1988] it is pointed out that while LOGO may be a good

tool for teaching certain related skills, there is no �rm evidence that it succeeds

in teaching transferable programming skills. Additionally other concerns have

been raised with certain programming habits, which are discouraged or outright

avoided in the commercial programming community, being acceptable or even

forced in some versions of LOGO. Examples given in this critique include

separation of a variable name from its value as shown below (in some versions,

including Logotron), using numbers as variable names (impossible in any other

language) and encouraging, sometimes requiring, the use of global variables.

MAKE �SIZE :SIZE + 1

The above example of LOGO code would be interpreted as �Make the value of

the variable named SIZE equal to its previous value plus one�. This adds a level

of precision allowing users to di�erentiate between the name of a variable and

its value, adding complexity to a concept which already causes young learners

some di�culty [Layman and Hall, 1988].

More recent studies, for example [Blackwell and Bilotta, 2000] �nd problems

with the syntax of LOGO. In a short term study comparing error rates of novices

learning either LOGO or GRAIL, the LOGO group produced code containing

signi�cantly more errors. Not all recent studies are negative however. A

recent study comparing StageCast Creator (SCC) to MicroWorlds Logo (MWL)

[Louca, 2005] found that, while novice programmers found MWL harder to

learn, they also demonstrated skill more akin to �real programming� than the

SCC students. During the design process this included a focus on the program

structure, rather than its features or interface. During coding the MWL students

wrote the code they had planned, which was then debugged and �xed until it

worked. The SCC students wrote code a line at a time, with each line being

25

tested and deleted if it did not work. SCC students, however, did not seem to

understand their individual lines of code, and described their program by its

interface and behaviour rather than by the code they had written.

Pascal Pascal is one of the �rst programming languages designed with a focus

on teaching, and is based on the ALGOL 60 language. In addition to providing

a simpler and more consistent syntax than ALGOL 60, it also provided better

data structuring facilities.

In [Martin, 1996] teaching experiences with both Pascal and Turing

were compared. Most student di�culties with Pascal were syntax related,

either with common syntax errors being repeated, or with di�culty using

the program headers, and begin/end blocks required by Pascal. A more

commercial grade criticism of Pascal as a programming language is found in

Kernighan [Laboratories and Kernighan, 1981]. He criticises the power and

implementation of Pascal as a programming language, and is not concerned

with its use in teaching. He raises several concerns, mostly related to the power

and capability of Pascal, and conclude that Pascal is not �full� enough to be

considered a �real� programming language.

Pascal would seem to have fallen into a trap which is common to many

teaching languages, that is the desire to be a �real� language. Any good

programming language will need to provide several core data and coding

structures, and allow for a variety of interactions and combinations of those.

This will inevitably lead to a reasonable degree of syntactic complexity in the

language, which will make it less �friendly� to novice programmers. Pascal is

discussed here as an early example of a mistake that continues to be made in

many current novice programming languages, that of providing too much power

and sacri�cing simplicity.

Pascal, along with other novice languages, has attempted to �nd a middle

ground between the two design goals (�commercial language� and �teaching

language�) and sadly seems to be too complicated to be the latter, and not

26

powerful enough to be the former. There have been several more recent

languages in the Pascal family, including Oberon-2 and Delphi which focused

on Object-oriented programming, but none are currently used signi�cantly

at the university level. This may be due to the continuing di�culty Pascal

has as a commercial grade language being used for educational purposes

[Kruglyk and Lvov, 2012] An Australian study conducted in 2002 showed only

one university using a Pascal derivative (Delphi) with plans to stop using it that

year [De Raadt et al., 2002].

This dissertation proposes the need for a teaching tool designed explicitly as

a stepping stone to more commercial languages. This tool should have a limited

set ofunderstandable commands, a simple syntax, and should not be targeted at

commercial grade application development. While Pascal is no longer commonly

used, or even discussed, in the �eld of novice languages, it is essential to recognise

that using a commercial language to teach novices will encounter the same issues,

without careful curriculum design (and possibly restricting information, which

is not a good approach).

Scheme Scheme is a functional programming language which became popular

as a teaching language in the 1980's and 90's. There have been several interfaces

developed for it, and attempts to make it a more widely used teaching tool.

Examples include the DrScheme environment [Findler et al., 2002] and the

TeachScheme! Project [Felleisen et al.,] in the early 90's.

In a case study involving �rst year university students, Scheme was used

as their �rst programming language, and the class then transitioned into Java

half way through the �rst semester [Bloch, 2000]. The author initially had

strong reservations about using an �introductory� language, since he felt that

the transition would negate any bene�t to the students. However he found that

most students handled the transition better than he expected. This is a useful

indication that an introductory programming language, designed to instil users

with basic transferable programming skills, would be of general bene�t.

27

In [McIver and Conway, 1996] it is noted that Scheme falls into the trap

of oversimpli�cation. In an attempt to ensure a simple syntax and program

structure there is only one type of data within scheme and one real operation.

The data type is a list, and that list can be evaluated. While this leads to

a simple language, it is often di�cult to put concrete real-world programming

problems into such a framework. As such students often only see a speci�c set

of list-oriented problems while learning to program with Scheme, which limits

the transferability of the skills acquired.

Of greater concern for us, and in direct contradiction to Papert's Continuity

Principle [Papert, 1980], is the syntax of Scheme. In an attempt to create an

unambiguous syntax for Scheme, the developers have made the entire language

pre-�x notation. As a simple example, the calculation to convert Fahrenheit to

Celsius is shown below, in in�x notation (which most people are familiar with):

(5/9) * (fahrenheit - 32)

in Scheme this would be written as:

(* / 5 9 (- fahrenheit 32))

This is an unusual syntax for most novice programmers, unless they have a

high level of familiarity with mathematics. If a language is designed to teach

transferable skills to novice programmers then, ideally, it should only teach those

skills, and limit the amount of extraneous material. No mainstream commercial

grade languages uses the pre�x notation Scheme enforces, and students are

unlikely to have had previously experience with it. It is recommended that an

introductory language should focus on teaching those skills which will be of use

in future programming languages and environments.

Turing Turing was designed as a �life-cycle� language, intended to be

useful for teaching children to program, while still being powerful enough

for serious software development [Holt et al., 1987, Holt and Cordy, 1988]. It

is described as being like Pascal+, adding features such as dynamic arrays,

28

modules and variable length strings to the simple language structure of

Pascal. It has been proposed as suitable as an introductory language for

teaching object-oriented programming to undergraduates [Holt, 1994] and fared

favourable in a comparative study comparing it to Pascal [Martin, 1996].

This study compared college students using Pascal to high-school students

using Turing. Turing students had higher level of success in correcting syntax

errors, but struggled more with syntax issues when writing their own code. In a

critical paper identifying the common �aws of novice programming languages,

Turing is identi�ed as committing three of the seven [McIver and Conway, 1996].

These three are �Less is More�, �Excessive Cleverness� and �Violation of

Expectations�.

Firstly, �Less is more�. In order to limit confusion Turing enforces the rule

that functions must have no side e�ects, which can be frustrating for seasoned

programmers. Secondly, �Excessive Cleverness�. Turing provides some features

which allow for very clever manipulation of data sets and memory structures,

but it is let down by a confusing syntax (made confusing as it tries to be overly

simple for the sake of consistency). Thirdly �Violation of expectations�. Turing

uses the �%� symbol to indicate the start of a comment, when the same symbol

has an established meaning for any student of mathematics.

Turing, like Pascal, seems to have become too advanced and powerful to be

genuinely considered as an introductory teaching language, as is is too complex

for many novices.

Python Developed in 1991 Python is an interpreted OO language designed to

be easy to learn due to its simple syntax [Scripps and Sanner, 1999]. It provides

all basic programming language constructs, including variables, functions,

objects, loops, conditionals. It also provides for collections of data using

either lists or dictionaries. Lists are similar to arrays in other languages, and

dictionaries are essentially associative arrays.

Python has been used in �rst year university courses and several case studies

29

including [Miller and Ranum, 2005] have had a very positive experience using

Python. They found that its simple interpreted syntax removed the unnecessary

initial overhead of programming found in other languages like C++ or Java. It

also allowed students to see a clear correlation between their commands and the

computer's response, since it runs one line at a time.

Another study [Goldwasser and Letscher, 2008] has had similar results with

Python as an introductory language, noting that while the transition to C++

was somewhat di�cult, most students were able to transit to Java with relative

simplicity. Similar results have been found using Python with high school

students [Grandell et al., 2006].

Studies have shown that while the syntax and interface of Python allow for

extremely fast pick-up of programming concepts, there are ways in which Python

is not an ideal introductory language. Most of the di�culties encountered as

educators relate to lists, and the incredible power they give to programmers.

A list, as mentioned already, is similar to an array, but di�ers in several key

ways. Firstly there is no requirement that all elements of a list be of the same

data type. Secondly, lists in python are intrinsically dynamic in size. Finally

many common list operations (sorting, �nding the smallest element and many

more) are provided by the language using a single command. There is no need

for programmers to explicitly �type� a variable, Python is a dynamically typed

language, and it is even possible to return several variables from a single function

at once (Python implicitly creates a tuple and returns a single object from its

functions).

All of these features are excellent in a commercial grade programming

language, and programmers �nd them extremely useful. However, these

features are not common to all programming languages, and the current result

is that students transitioning into second semester using Java �nd common

programming languages unnecessarily complex. They do not know why they

have to specify the types of their variables, why a function cannot return more

than one piece of information, or how to perform basic array operations such as

30

�nding the smallest element, average or even sorting.

Python is a very easy language to learn, however some of its structures are

too unique, and do not provide a full set of transferable skills to end users. The

power of expression of the language is simply too high, and needs to be lowered

in a novice language.

GRAIL GRAIL, developed by Linda McIver and Damian Conway, de�nes

itself as a �zeroth� programming language [McIver and Conway, 1999]. It is a

language designed explicitly as a introductory programming language, and is

not intended to become a commercial grade language. For this reason it is

made up of a very simple set of commands, with quite limited power, designed

in accordance with four key design principles. They are:

� Syntactic predictability;

� Mimetic compatibility;

� Syntactic a�ordance, and;

� Minimalism.

The �rst principle is a re�nement of the commonly desired principle of syntactic

consistency. It is de�ned by Conway and McIver [McIver and Conway, 1999] to

state that while similar concepts should share syntactic similarity, is is important

that di�erent concepts do not. A simple example is found in the programming

language Pascal, where several blocks of code (loops, subroutines etc.) are

bracketed by the keywords begin and end. These keywords are used in many

situations, making it impossible for a reader to know (when reading only the

end statement) which block is being closed. Compare this to the function and

end function bracketing implemented in GRAIL, shown below.

The second principle ties neatly into Papert's Continuity Principle

[Papert, 1980] , discussed in Section 2.2. Syntax used in a language will

carry inherent meaning for most novice programmers, and developers of novice

environments should build on those rather than try to change them. An example

31

given by McIver is the use of the asterisk (*) for multiplication, when almost

any student of mathematics will automatically use the �x� character.

The principle of syntactic a�ordance encourages the use of syntax structures

which encourage novices to write correct code. An example given in

[McIver and Conway, 1999] compares an early function de�nition in GRAIL:

function identi�er (paramlist opt) returns typename

statements

return expression

end function

with a redesigned version:

function identi�er (paramlist opt) returns typename

statements

end function returning expression

This second form combines the �returning� of data with the end of a function,

and removes the need for the student to remember to put the return statement

last, since it now must be placed last. This new structure was also found to

help novices separate the concepts of speci�cation of a return (returns) with

the invocation of the return (return in the �rst version, returning in the last).

The �nal principle de�ned is to ensure that the �zeroth� language stays

exactly that. It should not o�er powerful comprehensive commands, or multiple

ways to perform a single operation (as is often the case for commercial grade

languages such as C++). A minimal syntax with limited power will provide

a language which encourages novice programmers in the learning of core

programming principles while not overwhelming them with arcane syntax or

formatting requirements.

In terms of language type, GRAIL is a text-based imperative language, which

explicitly avoids object-oriented principles. In [McIver and Conway, 1999]

32

McIver argues that learning the object-oriented paradigm will always present a

hurdle to any programmer, regardless of prior experience. She therefore opposes

the introduction of objects �rst, since this approach simply moves the hurdle to

the beginning of a novice programmers learning experience when �they are least

equipped to deal with it�.

This dissertation takes the view, supported by

case studies [Cooper et al., 2003, Braught and Wahls, 2008,

Goldwasser and Letscher, 2008, Lorenzen and Sattar, 2008, Bloch, 2000,

Bloch, 2003], that learning any new concept, including object-oriented

programming, will always present hurdles. However the evidence suggests that

the greatest hurdle faced by programmers moving from a procedural language

to an OO paradigm is not the OO paradigm itself, but is instead the unlearning

of the prevailing procedural paradigm.

In fact it is proposed that the transition from the OO paradigm to a

procedural one will present far fewer conceptual hurdles for novice programmers

than the reverse transition (procedural to OO). This is because when a novice

moves from OO to procedural paradigm they are taking part of what they

already know (for example, their methods would have contained essentially

procedural code) and making it more prevalent. Whereas a student moving from

procedural to OO is taking an entirely new concept (an object, which contains

both data and functions) and is required to re-frame their entire knowledge of

programming so that it becomes a subsection of an entirely new paradigm. It

could even be argued that in a procedural program the program itself can be

viewed as an object, and the internal procedural code and subroutines are its

methods.

For this reason, a tool is proposed which adopts the OO paradigm as the

central concept while employing the design principles and interface of GRAIL.

In such a system all variables and functions would be elements of an object,

but the commands would be easier to learn than a standard commercial OO

language.

33

Visual Languages

KidSim / Cocoa / StageCast Creator StageCast Creator (SCC) �rst

began life as a graphical programming environment under the name �KidSim�

around 1994. Under Apple Computers Advanced Technology Group it was later

renamed Cocoa, and �nally Creator after the project moved away from Apple

Computing. The principal design idea of the original environment was to �move

programming closer to human thought, rather than trying to move how we think

closer to computers� [Smith et al., 1996]. While this is an extremely interesting

idea, certainly from an educational perspective, it has not reached into the

world of commercial programming with much success. Studies with children,

however, have yielded very positive results with participants quickly picking

up how to use the environment and beginning to create their own simulations

[Cypher and Smith, 1995, Smith et al., 1994, Louca, 2004, Louca, 2005].

SCC combines two di�erent alternatives to code entry, this has been

identi�ed as the core hurdle facing novice programmers. The two approaches

are Programming By Demonstration (PBD) and Graphical Rewrite (GR) rules.

GR rules allow the programmer to de�ne a set of �before� and �after� rules. A

sprite will check the list of rules and, if it �nds that it matches a �before� rule,

it will change its state to match the �after� rule. PBD allows the user to put

the system into a �record� mode and perform a set of actions. Those actions

will then be saved and can be re-executed later.

A di�culty encountered while researching SCC was the developer's use

of the term programming. Along with making extraordinary claims about

the success of the environment, for example, �Most kids learn to program

within 30 minutes� [Smith et al., 2000, Smith et al., 1996] they also make some

references to programming which do not line up with this work's de�nition of the

term. At one point the developers describe a spreadsheet as �the most widely

used programming technology� [Smith et al., 1994]. This indicates a signi�cant

disparity between this works de�nition of programming (the implementation of

algorithms in order to control the computer) and that of the SCC developers.

34

An early trial of KidSim, taking place over the course of a year, found

that most students were successful at creating an interactive project, and at

describing what it did [Rader et al., 1997]. However when questioned about

�xing, or changing, their programs, many students seemed to have a limited

understanding of the programming concepts underpinning the programs they

had written. Students showed a general reluctance to change anything, and

could not seem to understand even simple changes (such as changing the

direction a sprite moved). A common process which was observed in the

development of their simulations was :

1. Decide on a simulation to make;

2. Make something similar;

3. Change their plan to match what they had made.

While this kind of development is not uncommon in any creative endeavour, it

seemed to be born out of an inability to alter their programs, rather than a real

�decision�.

A more recent study, comparing SCC to Lego MicroWorlds indicated

that the two di�erent environments fostered two di�erent programming styles

[Louca, 2005]. The sessions were not guided, and students were free to write

and develop code as they wished. The MicroWorlds students focused on

program structure, thought about code constructs to use, naturally followed

an iterative development process (Write, Test, Debug) and saw their code as

a representation of phenomena, not as a simulation. SCC users on the other

hand saw programming as �making games�. They focused on the story behind

the simulation, and instead of debugging code which did not work they simply

deleted it and replaced it with something similar. This study noted that neither

of these results is necessarily �bad�, simply that educators should identify their

desired outcomes and choose a programming environment accordingly. More

research into how a novice programming language may impact, or foster, a

particular development style is needed.

35

Figure 2.4: Alice 2.0 User Interface.

An even more recent study, which compares SCC, VB and HANDS, showed

that while students saw it as easier than either of the other languages it was

not their preferred choice for future use, nor was it seen as the most powerful

[chuen Lin et al,]. While an equal number of students liked programming in

SCC as in VB, it was still the second most favoured language (coming in second

to VB). This would indicate that while SCC is certainly easier to use there is

still a high level of interest in traditional, text-based programming languages.

Alice Alice is a visual programming language developed at Carnegie Mellon

University, and has seen several revisions including Alice 98, Alice 2, Alice

2.2, Storytelling Alice and most recently Alice 3 [Mellon, , Brown, 2008,

Kelleher and Pausch, 2005, Kelleher et al., 2007]. As can be seen in Figure 2.4

the programming environment provided by Alice has several main windows.

At the top, on the left hand side of the screen is a list of all the objects

currently in the �world� the user is working on. Below that are listed the

properties, methods and functions of the currently selected object. �Properties�

are pieces of information about the object (for example, size, position),

�methods� are things the object can do (for example, move to a new position or

perform some animation) and functions allow programmers to get information

36

out of an object. The distinction between a method and a function, in Alice, is

that a function makes the object do something (perhaps some calculations)

and then returns a piece of information, whereas a methods never returns

information. Commercial programming languages such as C++ and Java do

not make such a distinction between value returning, and non-value returning

functions, and this may be a source of confusion during a language transition.

A personal experience with this was encountered recently when teaching an

introductory course using VBA. VBA separates functions into 'subs' which do

not return value, and 'functions' which do. Students displayed confusion about

what could be done, and what could not, in a sub. In extreme cases students

believed that a sub could not print to the screen, get data from the user, or

change the value of any variable at all. They therefore couldn't understand why

they existed, since they �couldn't do anything anyway�.

In the centre of the screen, beginning at the top, there is a small window

displaying graphically the contents of the world, and beside that is the event

editor. Events are how Alice responds to user input, or triggers actions. An

event could be the program starting (�When the world starts�) or the user

pressing a key or interacting with the mouse.. Below those two panels is the

code editor, showing the method or function the user is currently editing. In

Alice programs are built by dragging pre-programmed methods and functions

from the list on the left side of the screen into the editor. Any options that need

to be set (for example, time, direction, count) are modi�ed through the use of

drop-down menus.

Alice is widely hailed as a revolution in the teaching of

programming [Adams, 2007, Dougherty, 2007, Lorenzen and Sattar, 2008,

Rodger et al., 2009, Tedford, 2008, Dann et al., 2008], due to its easy to use

and engaging interface. Storytelling Alice, in particular, is widely acclaimed

for the success educators have had engaging students, particularly girls, in

programming [Kelleher et al., 2007]. This is signi�cant, since the ratio of

girls to boys in introductory programming courses is on the decline. Some

37

researchers suggest that Alice is suitable for introductory programming courses

at a tertiary level [Lorenzen and Sattar, 2008, Dougherty, 2007]. However there

is some cause for concern over the e�ectiveness of Alice as an introductory

programming language [Brown, 2008, Powers et al., 2007, Mullins et al., 2009].

It is currently unclear just how successful students are at transitioning from

Alice to a more commercial programming language such as Java. One study at

Bridgewater State College [Lorenzen and Sattar, 2008] brie�y notes that �they

transitioned well into Java�. Minor frustrations with the text editor used in

Java were noted, but otherwise no real indication was given of the success of this

transition. On the other hand a similar study at Converse College [Brown, 2008]

identi�ed serious and signi�cant issues faced by students on transitioning from

Alice to Java. The two core issues were of syntax, that is the transition from a

drag-and-drop environment to a text entering one, and of concepts, which stems

from Alice's heavy use of 3D graphical objects in programming.

The issues of syntax are signi�cant, and in this study had taken some

time into the following course to resolve (and had limited the material which

could be taught as a result). Another study [Powers et al., 2007] indicated that

the weaker students met with success while using Alice, but when they were

introduced to Java they mentioned that they �felt lied to�. They felt that what

they had done in Alice wasn't �real� programming, and lost a great deal of

con�dence as a result. The second issue identi�ed in the Bridgewater study

[Lorenzen and Sattar, 2008] is one of concept. In Alice all programs revolve

around a graphically represented 3D world. This means that all the code, all

the objects, and all the behaviours are easily visible, and therefore become

conceptually concrete. That is to say, programmers can see the changes their

code changes make, and do not have to conceptualise the ideas. However,

anything beyond the most basic programs (or programs speci�cally written for

a 3D system such as a game) require the programmer to be able to handle

abstract concepts. This is a skill that must be learned by any programmer, and

it does not seem to be when using Alice.

38

There is no doubt that Alice is widely successful, in particular at attracting

people who may not have a prior interest in programming. However,

despite its popularity, it is not the ultimate solution to all problems with

teaching programming, and should not be treated as such. To quote Brown

[Brown, 2008]:

Alice, like so many CS ideas before it, is no silver bullet.

Alice has its place, and as an introductory programming environment to engage

children it is extremely e�ective. Unfortunately, from a programming education

perspective, there appear to be serious issues with the transferability of the skills

learned when moving to a more commercial grade programming language. There

are languages which attempt to bridge the gap between visual programming

skills, such as those learned in Alice, and text based skills required in C++

or Java [Cheung et al., 2009]. However, this may simply add another step for

programming educators who may be unwilling to introduce two introductory

languages before moving onto a commercial language. Alice 3 was developed

with a focus on transferability to other languages such as Java. How successful it

will be remains to be seen, though a recent review of the literature suggests that

using Alice is bene�cial, while noting that there are 'few experimental results

on the e�ectiveness of Alice programming language to introduce students in

learning how to program� [Costa and Miranda, 2017].

Scratch Scratch is a visual programming environment, designed for younger

children, with an impressive library of online support tools, including an

active online community [Maloney et al.,]. It is designed to create media-rich

interactive projects, and all Scratch projects can contain both media (images,

sounds) and scripts. The development team had previously worked closely with

the Lego Company on Lego Mindstorms, and were inspired by the way children

would experiment with Lego blocks, seeing what �tted together and what

didn't [Mitchel Resnick and Eric Rosenbaum, 2009]. This �block� metaphor

forms the basis for the visual layout of Scratch, which heavily relies on shapes

39

Figure 2.5: Scratch Interface.

to indicate which commands can be combined. The block metaphor has become

more popular in novice programming environments, especially those aimed at

children, including Scratch Jr, Blockly and AppInventor

Users create commands in a drag-and-drop interface, which allows them to

�snap-together� brightly coloured blocks to create their scripts. Each object is

represented by a block of a particular shape, which clearly indicates to the user

where that block can be used, as seen in Figure 2.5.

Scratch removes the need for users to �x syntax errors entirely, since like

Cornell [Teitelbaum and Reps, 1981] users cannot create syntactically incorrect

code [Kelleher and Pausch, 2005]. Another feature of Scratch, intended to

minimise user overload, is a limited syntax set. To help implement this while

still o�ering reasonable power, certain command sets are hidden from the user

until the Scratch environment detects that they may be needed [Maloney et al.,]

(for example, a set of instructions to control a LEGO WeDo robotics kit will

be hidden until the appropriate USB device is connected to the computer).

While all sprites in Scratch are technically objects (encapsulating attributes

and behaviour) there are no explicit classes, and no capacity for inheritance.

Scratch developers therefore refer to it as an object-based language, not an OO

one [Maloney et al.,].

40

In an 18 month trial of Scratch at an after school centre fairly positive results

were gained, though it must be noted that the sessions were mostly unguided

and unstructured. Of the 536 projects created, 220 used looping structures, 111

used conditionals and 111 did not use any scripts at all. When asked about

their experiences with Scratch most students described programming in Scratch

as more like an arts subject (painting or sculpting) than anything scienti�c

[Maloney et al., 2008]. While there is certainly an artistic/creative component

to programming, most commercial grade languages require a more analytical

and scienti�c approach. It would seem to indicate that Scratch, like Alice and

StageCast Creator, is an excellent tool for introducing children to the idea

of programming, or using computers creatively, but it may not be an ideal

introduction for novices looking to learn professional programming.

Another trial study, proposing the introduction of Scratch as suitable for a

�rst year university course, found that 76% of students felt that learning Scratch

helped them understand what was happening when they transitioned to Java

[Malan and Leitner, 2007]. Only 2% felt it had a negative impact and 16%

felt it had no e�ect at all (though all 16% had prior programming experience).

While this certainly builds the case for a �zeroth� programming language to be

used as a stepping stone into higher level commercial programming languages

at the university level, it is proposed that a tool designed to teach textual

programming skills and code entry would be of more bene�t than a highly

graphical environment designed for much younger students. A more recent study

[Sáez-Lòpez et al., 2016] showed the positive impact a language like Scratch

can have on children when programming is incorporated across the school

curriculum.

Greenfoot [Kölling, 2010] is another development designed as an alternate

to Alice, which may well enable children familiar with Scratch to become more

comfortable with code over pure visualisation. Greenfoot combines a visual

interface (comparable with Alice) with Java. Novices are protected from the �le

structure of Java, while learning its commands and syntax. Positive results with

41

Greenfoot have been seen recently in a re-designed introductory programming

course [Jonas, 2013].

While there are advances being made in the use of visual languages, the

focus of this research is on the e�ect a textual language for novices has, rather

than a tool where the entry of code is optional[Bloch, 2000].

HANDS HANDS is a graphical programming environment designed explicitly

for children with a heavy focus on usability as its core design principle

[Pane, 1998]. It uses a card-game metaphor in order to aid children in viewing a

program running on the computer (a highly abstract concept) as a more concrete

one. A �game� consists of a table which has several player around it each with

their own hands of cards (active instructions) as well as a pile of other cards

(inactive). Cards placed on the table are visible to all players, to demonstrate

the concept of information sharing.

HANDS developer Robert Pane based the interface design on research

conducted into psychology in order to make the environment as �usable� as

possible. It was his contention [Pane and Myers, 2002, Pane, 1998] that a more

usable system would aid in the learning process and improve novice programmer

acceptance and learning.

Researchers in Taipei [chuen Lin et al,] ran a comparative study comparing

HANDS to StageCast Creator and Visual Basic. The results of this study

indicated that students saw HANDS as the least powerful language of the three,

as well as the least popular and the least likely to be used in the future for

other programming tasks. More research into novice programmer attitudes to

environments is needed, but a trend appears to be surfacing in terms of attitudes

to highly visual environments. If the end goal is to teach computer programming

then it does not make sense to waste time teaching a language which many

students will eventually feel is not real programming.

Recent Work Recent work in the �eld of programming education shows that

there is an increasing awareness of a fundamental problem with the teaching

42

of OO principles. The problem is that OO principles are widely taught

and yet no OO language exists which is an obvious �rst-choice for novices

[Black et al., 2010]. In the past educators have used commercial languages

such as C++ and Java, but these languages are often too big and powerful

for novice users, and the education community is often unsatis�ed with their

use as a teaching tool [Ivanovi¢ and Pitnerl, 2011]. Simpler languages like

Python are becoming popular choices, but some programming educators are

wary of a language which does not conform to industry standards in some

ways (including type de�nitions and list operations). Other attempts to solve

the problem introduce new environments, designed to simplify the learning

process. An example of this is Calico [?], a programming framework allowing

the use of several languages, including Python, Ruby, Scheme and a new

Scratch-inspired language called Jigsaw. Calico is designed as a transitional

tool, so users could become con�dent building their programs in the visual

Jigsaw language, and then transition into Python, Scheme or Ruby as desired.

While the concept behind Calico is strongly in line with the goals of this project,

given its focus on simplifying the transfer of programming skills, a textual

language must still be introduced at some point [Black et al., 2010]. While

many environments and languages exist to teach computer programming to

novices, and especially children, there is very little rigorous measurement of their

e�ectiveness [Stolee and Fristoe, 2011]. In a recent study of the Kodu Game

Lab it was shown that many core programming concepts can be expressed in a

visual language, and that many novice programmers used those concepts in their

games. Earlier studies on visual languages, however, have indicated that use of a

concept is not equivalent to comprehension of that concept [Rader et al., 1997].

Work is being done to improve the assessment of comprehension amongst novices

[Kunkle and Allen, 2016]. Additional work has been done in examining the use

of block languages (such as Scratch), and in possible ways to transition students

from these block languages to more commercial text based languages. Two

key approaches at the current time are to provide a bi-modal language (such

43

as Flip [Good and Howland, 2015, Howland and Good, 2015]) or to provide

an intermediate language to bridge the two approaches (as suggested by

[Kölling et al., 2015]).

2.4.2 Historical Trends

Several historical novice languages have been discussed above, ranging from the

1960's until now. Three trends in novice language design will now be discussed,

and the above languages examined in terms of each of these three scales.

The three scales being examined are :

� Interface;

� Simplicity of Expression;

� Object-orientation

Alignment with Papert's Educational Principles These three trends are

being examined in order to determine how the languages align with Papert's

principles [Papert, 1980]. The purpose of SCOOT is to introduce novices to

skills and concepts which can be transferred to other languages. This is in line

with the Power Principle (enabling users to learn concepts that will enable them

to do something they previously could not) and (in a limited sense) the Principle

of Cultural Resonance, as the material �ts into a bigger picture (though this

lacks the social context, as discussed in Section 2.2). Additionally SCOOT was

designed to be familiar, in terms of is language constructs. This was done

speci�cally to align with Papert's Continuity Principle. It is out intent to

discover if there is a need for an Object-oriented textual programming language

with a high level of simplicity of expression.

Interfaces - Textual vs Visual Regarding the user interface of novice

languages there is a very clear trend towards visual languages, with very few

examples of recently developed textual novice languages (for example, GRAIL).

44

This trend away from textual interfaces is often motivated by the view that

code entry is the biggest hurdle to programming, therefore it must be avoided.

Alice, in its initial release, allowed for text-based code entry, though this was

removed in later releases in favour of an entirely graphical system. This has

been a source of several issues, to the point that Alice 3.0 allows for code entry

again. The majority of novice languages, especially those developed for young

users, have a highly graphical interface. Languages such as Scratch, HANDS

and StageCast Creator are almost entirely graphical in terms of their interface,

while Pascal, Turing, Scheme, Python and GRAIL are at the opposite end of

the spectrum. LOGO, which is ironically most famous for its Turtle graphics,

was initially an entirely text based language, with Turtle graphics being simply

an extension.

In the past decade the �eld of novice programming languages has seen

visual languages designed for children used at a university level [Brown, 2008,

Mullins et al., 2009]. This means any examination of novice programming

languages must examine the characteristics of children's languages as well,

as there are now languages in both camps. Putting aside all di�erences of

programming paradigm (imperative, procedural, OO), there seem to be two

distinct approaches to designing novice programming languages. On one side

there are those who argue that the purpose of teaching computer programming

should be for its own sake. That what matters most (in terms of the language or

system being designed) is that users develop an understanding and appreciation

for programming itself. This may be applied to certain tasks (for example

simulations, mathematics or games) but at their core these systems try to

impart some skills which will aid users in learning a more commercial language.

The other side argues that programming should only be seen as a means to

an end. It is used to produce simulations, demonstrate physics principles, or

for entertainment or educational purposes. These systems make concessions in

terms of language structure, interface and so on that the other set of systems

would not be willing to make, so that the system is more accessible, usable and

45

fun.

How designers see the purpose of teaching programming (for its own sake,

or a means to an end) will directly impact the core problems that systems

will attempt to solve, and their approach in doing so. It is necessary to be

aware of the di�erent approaches when examining the range of solutions, so

that a proper perspective of the �eld may be achieved. While the motivation

behind the development of a programming language is often hard to discern,

it is an important aspect to consider when discussion their use for teaching

novices. Some languages such as SCC, Scratch and recent versions of Alice focus

on the idea of engaging children in computer use, and on using computers to

create multimedia projects. Other languages, including Turing, Pascal, Python

and GRAIL, have been designed explicitly to teach the skill of programming.

This does not mean that an engaging language such as Scratch cannot teach

programming skills. However it does mean that certain core programming

practices (including code entry or even seeing code) may be removed, as is

the case with HANDS, SCC and several versions of Alice.

In terms of SCOOT's design it was essential that the focus be on the

programming concepts being learned, for this reason we conclude that there

is a need for SCOOT to be a textual language, allowing novices to learn code

entry the way it is commonly done, in line with both the Power Principle and

the Principle of Cultural Resonance [Papert, 1980].

Other than the actual coding interface, there is another interface that must

be considered, that being the IDE used by the programmer. Some languages

(Alice, Scratch) tightly link the interface to the language, while other languages

(C++, Java, Python) have more than one possible interface, ranging from the

simple (IDLE (Figure 2.6), Notepad++ (Figure 2.7)) to the complex (NetBeans

(Figure 2.8), Visual Studio (Figure 2.9)).

Cognitive Load Theory (CLT) has been used recently in evaluating

several di�erent computer learning environments, including mobile app

development [Raina Mason et al., 2015], VR simulators for surgical training

46

Figure 2.6: IDLE (Basic Python IDE).

[Andersen et al., 2016], as well as novice programming environments

[Uysal, 2016, Moons and De Backer, 2013]. CLT, as it applies to any

tool used to perform a task, de�nes two kinds of �load� applied to any user

while using the tool. They are �intrinsic load�, that load which is simply

part of the task being performed, and �extraneous load�, that load which is

additionally created by the use of the tool [Feinberg and Murphy, 2000]. The

.

Figure 2.7: Notepad++ (Minimalist Editor, Supports C++ et al).

47

Figure 2.8: NetBeans (Popular Java IDE).

Figure 2.9: Visual Studio 2010.

greater the overall load the more di�cult it is to perform the task. Note that

in many cases it is di�cult to clearly determine the line between intrinsic and

extraneous load, especially when dealing with a programming language and

environment. When examining teaching tools an additional kind of load must

be considered, called 'germane' load [Andersen et al., 2016]. Germane load

refers to the cognitive load of learning as a mental process. In the case of

an introductory educational programming tool the intrinsic load is based on

the complexity of the concepts being learned, the germane load is based on

the process of learning itself, and any cognitive load caused by the use of the

interface is categorised as extraneous.

It is also necessary to distinguish the process of learning programming from

the process of programming itself. Once a programmer has familiarity with

48

language constructs and syntax many of the features of a high-end IDE become

valuable tools, and in many ways decrease cognitive load because they can focus

on solving the problem rather than smaller details of syntax and structure.

However, learning requires a focus on those lower level concepts, and so the

features of many modern IDE's are not as helpful, and should therefore not be

considered as bene�ts of IDE's [Uysal, 2016]. Introducing a novice to a complex

concept (programming) and a complex environment/tool to do it could be seen

as a violation of the Continuity Principle. As programmers become more capable

the features of a more powerful IDE become understandable, predictable and

even necessary, however the best was to abide by the Continuity Principle is to

have a cognitively light interface, allowing the novice to focus on the task at

hand (learning to program)

In terms of a software interface to teach computer programming, it is

essential to minimise the extraneous load in order to allow the user to focus

on the learning at hand. A recent study [Uysal, 2016]evaluates several novice

environments using measure of cognitive load, and an evaluation of SCOOT will

be conducted with this approach in the future.

As has already been discussed, the act of learning programming is quite

di�cult already, that is it has a relatively high intrinsic and germane load

[Uysal, 2016]. It was therefore decided that the interface for SCOOT be

as simple as possible. As has been shown in Figure 2.6 the IDLE interface

for Python is extremely simple and minimalistic. It was also desirable

to more clearly de�ne the di�erence between user-generated inputs and

SCOOT-generated outputs. For this reason there is a command input �eld,

as well as an output �eld. Additionally there is a history window showing all

commands which have been entered into SCOOT, and a �Compute� button

used to execute input commands. Layout of the SCOOT interface is shown in

Figure 2.10.

49

Figure 2.10: SCOOT Interface.

Simplicity of Expression The degree of �ne control to give to a programmer

is often balanced by the availability of short, powerful commands. As an

example the code to manually sort a collection of integers would be several

lines in a typical language (approx. 20 depending on the algorithm). The same

function could be carried out with a built in function of Python, or by importing

appropriate libraries in other languages such as C++ or Java. Simplicity of

expression, that is keeping commands simple, is a tricky question in novice

language design. One on hand, novices can become overwhelmed with complex

code, thus more powerful commands (reducing their simplicity) seems ideal.

However it is our goal as educators to train programmers, not students who

simply use pre-de�ned functionality without any real knowledge of its function.

A balance is therefore required, allowing for simple use of basic data structures,

but without excessive coding overheads. In alignment with the Continuity

Principle the ideal novice language does not hide fundamental concepts and

principles from the user, but does shield them from the low-level complexities of

computer operations (such as memory allocations, hardware devices or output

streams).

Most languages discussed above provide a reasonable level of control, without

overloading novices too heavily. Languages which have attempted to become

more powerful, such as Pascal and Turing, often create additional syntactic

complexity which becomes a stumbling block for novices. In a similar way

50

Scheme, through its use of pre�x notation, is immediately more complex to

a novice who has never seen that particular form of expression. Languages

such as Alice, Scratch and GRAIL provide a reasonable balance between the

two extremes, while Python provides some functionality which is almost too

powerful for novices. It should be noted that any commercial language will

always include features not intended for novices, and these are typically not

addressed in introductory curricula. However, this particular concern with

Python is based on the fact that more powerful constructs have replaced simpler

ones, rather than simply being an alternative. This is unlike many commercial

grade languages such as Java, where more powerful data structures are available

in extended libraries, but fundamental structures are still present.

Object-Oriented As discussed in Section 3.2.2 it is our view that teaching

objects after procedural concepts violates the Continuity Principle unnecessarily.

In order to align with this principle we argue that a novice language which

focusses on object-oriented principles is needed. Several novice languages

discussed above include objects, or are entirely object based. As we look further

back in time the languages tend to be less and less object based, which is

reasonable since the idea of teaching objects �rst is relatively new. Pascal, as

has been mentioned, has several object-oriented derivatives, and Alice, Scratch

and StageCast Creator are all highly object oriented. Scheme does not natively

support objects, but there are many implementations which allow for their use,

and GRAIL was explicitly designed to avoid objects altogether.

2.5 Proposal for a new teaching tool

As can be seen in Figure 2.11 there is no one language which meets all the

criteria of object-oriented, textual and with a high simplicity of expression. The

development of a new prototype teaching tool for computer programming called

SCOOT (The Student-Centric Object-Oriented Teaching Tool) is proposed.

SCOOT would have a limited set of instructions, simple english-like syntax,

51

Figure 2.11: Summary of Language Evaluation

using text-based code entry and a minimal user interface, designed explicitly to

teach object-oriented programming skills to novices. The syntax of SCOOT will

be designed along the same lines as a zeroth programming language, that is a

stepping stone into other languages, and this tool is not intended to be used for

any purpose beyond introducing novices to programming. In this way SCOOT

will not fall into the same trap as Pascal and Turing.

The most commonly addressed problem in teaching a computer

programming language is the complexity of the language itself. Novice

programmers may know what they want the computer to do, but are unsure of

how to tell the computer how to do it. Moreover, most novice programmers don't

know how to �x syntax errors or logic errors that emerge from their programs.

There is a range of solutions to this problem [Kelleher and Pausch, 2005], such

as design principles that keep the language simple, clear and consistent, or

remove the textual language altogether, as is the case with visual languages and

PBD systems.

Research into visual and PBD languages suggests that this approach may

remove the initial hurdle of language complexity, only to introduce a larger

hurdle later on when novices attempt to learn another, more commercial

52

programming language, such as Java or C++ [Powers et al., 2007, Brown, 2008,

Rader et al., 1997]. Since this project is focused on teaching transferable

programming skills, it was decided that a visual approach, or any approach

which removes the entering of code, was inappropriate. It was therefore decided

to identify a set of design principles which would guide the development of a

new language, in order to minimise the learning curve.

As discussed above, GRAIL [McIver and Conway, 1999] developers Linda

McIver and Damian Conway de�ned a set of language design principles which

re�ect the goals of this study, and a modi�ed version of their principles were

followed for the design of SCOOT. These principles were chosen because of their

close alignment with Papert's principles [Papert, 1980] and due to the developers

focus on a zeroth programming language. The modi�ed principles used in the

development of SCOOT are:

� Predictability;

� Familiarity;

� Simplicity.

Predictability Predictability means that similar concepts share a similar

syntax, and that separate concepts do not share similar syntax. SCOOT

attempts to ensure that similar structures follow similar patterns, while staying

unique. For example, both conditional and iterative blocks begin with a test,

followed by the beginning of the block (either an if or a while instruction) and

end with a unique command, terminating either the conditional or iterative

block.

Conversely the instructions for adding either an attribute or a method to an

object are distinct, attempting to highlight to the user that an attribute is a

piece of information the object has, while a method is a behaviour the object

performs.

53

Like GRAIL, SCOOT's syntax and semantics are isomorphic, indicating

a one to one correspondence between form and meaning. In programming

syntax this means that each command has a single conceptual meaning, and

the corollary (that di�erent commands have di�erent meanings) is also true .

In SCOOT this means that each syntactic component has a single meaning and

a single construct has a single associated syntax. More powerful languages

[Holt et al., 1987] often o�er several ways to do the same task, which are

extremely useful for a professional programmer. However these options add

confusion to an already di�cult task for novice programmers. By limiting

the �exibility of the commands novices can gain familiarity and con�dence

with core programming concepts, before being exposed to an otherwise

overwhelming language. The uses of isomorphism in novice and children's

environments is supported elsewhere [Weintrop and Wilensky, , Haiman, 1985,

Sapounidis et al., 2015].

Familiarity This is the Continuity Principle (Section 2.2) in action. The

syntax of SCOOT was designed explicitly to have an English-like structure, with

each command being similar to an English sentence. In the same way, English

commands are used for arithmetic expressions, thus avoiding the di�culty of

introducing novice programmers to the multiplication and division symbols used

in most languages (�*� and �/� respectively).

Simplicity SCOOT's purpose is to introduce OO programming concepts

to novices. It is not going to be the new C++, and it is not designed to be used

as a long term teaching tool. Its purpose is solely to serve as a simple, limited

introduction to core programming concepts. There is a great deal which modern

languages can do that SCOOT cannot. This is a deliberate design decision, in

order to limit the complexity of SCOOT commands. To simplify the command

list of SCOOT, its power has also been limited. This simplicity of design a�ects

the control and data structures available, the language semantics and syntax,

and the interface design.

54

Programming Concepts As mentioned above a teaching tool with a simple

syntax, and limited power and functionality is proposed. While developing

SCOOT it was decided to remove the need to de�ne the data type from variable

creation (as in Python), and only to allow variables to be created within an

object (as in Java). This was done to simplify the variable creation process, while

reinforcing the centrality of objects as the heart of SCOOT. When considering

collections, it was decided that since the purpose of SCOOT is not to be a

fully-featured language, but to provide an introduction to basic programming

constructs, there would be no support for collections of any kind in SCOOT.

This means that there are no arrays, or array-like structures, of any kind.

While these are an essential tool in many programming problems, the purpose of

SCOOT is to be an introductory tool to teach OO concepts, and it is expected

that any user will move to a more advanced language before using structures

like arrays.

All object behaviours are implemented as functions and like variables,

functions can only be created within an object, enforcing the OO basis of the

tool. Support for input and output arguments has not been implemented in the

current version of SCOOT. Most languages separate the de�nition of an object

from its instantiation (a �class� is the template for an object, an �instance� of a

class is the object itself). It was decided for the scope of SCOOT not to separate

those two aspects, but instead to combine de�nition and instantiation (as in

JavaScript), to remove initial confusion for the users. Because of the interpreted

nature of SCOOT, it was also decided to allow on-the-�y modi�cations to an

object's structure (behaviour and methods). This is not common in modern

programming languages but seemed appropriate given the interpreted nature of

the tool.

When looking at conditional statements it was decided to keep the concept

as simple as possible in SCOOT, and so only a simple �if� statement is available.

Since collections do not exist in SCOOT, and since simplicity was a core design

principle, only a single pre-test �while� loop has been implemented. There are

55

no alternative looping structures in SCOOT.

2.6 Conclusions

This dissertation is based on the premise that the goal of teaching computer

programming is that students are able to program computers using textual

input. This would also result in an easier learning curve when moving to a

commercial grade programming language such as C++ or Java.

Discussion

A teaching tool which attempts to reduce the impact of distractions from

programming (for example user interface or unfamiliar syntax) while still

maintaining a text-based command entering approach has been created. It is

expected that this approach will result in a tool which is simple to learn and easy

to use, while teaching transferable skill to novice programmers. The goal of this

project is to provide novice programmers with skills which can be transferred

to more commercial programming languages. In keeping with Papert's Power

Principle (immediately providing bene�t to the user) and Principle of Cultural

Resonance (what is being learned must �t into a larger framework) code entry

is the problem being focussed on. This dissertation also focusses on developing

core programming skills, and so is not interested in a tool which does too much

work for users. The bene�ts of introducing objects-�rst to novice programmers

have also been discussed.

Usability, and related aspects of the user-interface, are critically important

when designing software used to teach. [Squires and Preece, 1996] notes that

�Thinking of usability and learning as separate [...] leads to super�cial evaluation

of educational software�. Usability and learning outcomes are also linked in [?]

who assert that �there is a need to help evaluators consider the way in which

usability and learning interact�. They also point out that poorly designed or

frustrating interfaces will impact negatively on learning, and stress the need

56

for the interface to avoid any distractions from the material being learned.

Learners complaining about web-based training often cite the confusing menus

and unclear buttons which scare them o�.

Research into Enterprise Resource Planning software in Turkey noted

a strong link between usability of the systems and user satisfaction

[Calisir and Calisir, 2004], perceived usefulness and ease-of-use have been

strongly linked to user acceptance of technology [Davis, 1989], and research

into university courses indicate a link between student experience and positive

learning outcomes [Trigwell and Prosser, 1991]. It is clear from this wide

spectrum of research that the perceived usability, usefulness and ease-of-use

of any software will be directly linked to how that software is accepted and

experienced by users. For educational software this may in turn positively

impact their learning outcomes. This link has not been positively shown

however, and at least one short term study has found no correlation between

perceived usability and learning outcomes [Sim et al., 2006].

It can be seen from the research that a negative link between usability

and learning outcomes exists, that is poor usability features are detrimental

to the users learning outcomes. While no positive link has yet been found, it

is entirely possible that it does exist. While it is not possible within the scope

of this project to measure any meaningful learning outcomes, more research

should be done in this area to see if any of the measures used in this study

indicate a positive correlation between student experience of the software and

their learning outcomes.

Project Hypotheses

This project examines users learning to program using SCOOT and C++

in terms of their experience and learning outcomes. It must be noted that

measuring learning outcomes is not a concrete exercise, and that any learning

outcomes recorded in this project were only from a very short exposure to the

programming language or tool being used.

57

With that in mind the core hypotheses of this research project are :

H1 - SCOOT is seen by novice programmers as easier to use than C++,

programmed in a customised version of Notepad++.

H2 - SCOOT is seen by novice programmers as more useful than C++,

programmed in a customised version of Notepad++.

H3 - SCOOT is seen by novice programmers as more enjoyable than C++,

programmed in a customised version of Notepad++.

As has been previously stated, C++ is a commercial programming language

and SCOOT is designed for teaching, so we expect a positive result for H1.

However,

we cannot assume that this will be the case and so it must be checked, no

matter how likely it may seem. It is also interesting to see if learning OOP with

SCOOT produces better learning outcomes than learning OOP with C++. Due

to the short-term nature of the experiment, and the ever present di�culty in

accurately measuring �learning outcomes� this was determined to be outside the

scope of this research. However, any trends within the measures taken will be

discussed. Issues of time restrictions aside, the hypotheses regarding learning

outcomes are :

H4 - When given a simple programming task, users of SCOOT are able to

write a correct solution more quickly than users of C++.

H5 - When given a simple piece of code, users of SCOOT are able to correctly

understand it more quickly than users of C++.

H6 - When given a piece of code with errors in it, users of SCOOT are able

to identify and correct the errors more quickly than users of C++.

The mechanical details of measurements taken for all hypotheses are

discussed in Chapter 4.

58

Chapter 3

Framework and Language

Design

3.1 Language Design Basics

It is necessary before discussing language design to clarify terms used when

discussing aspects of a computer programming language. It is essential to

di�erentiate between the language itself, and the programming environment.

The language itself is the set of rules, keywords and control structures which can

be used. Common commercial examples are Java or C++. The programming

environment is the actual tool that a programmer uses to create programs,

and may incorporate compilers, debuggers and other utilities. Examples

of a programming environment (referred to as an Integrated Development

Environment, or IDE) include Visual Studio, or NetBeans. The SCOOT tool

incorporates a language with its own programming environment, and so the

design decisions made will incorporate decisions about the language itself, and

decisions made about the programming environment. These decisions will be

discussed separately in the following sections.

Section 3.2 describes the tools used to de�ne the components of the language,

59

Figure 3.1: SCOOT Interaction.

and 3.3 discusses the internal structure of SCOOT. Section 3.4 identi�es the

keywords (or tokens) de�ned for use in SCOOT, and section 3.5 describes each

component of the language. Finally section 3.6 describes the design decisions

made about the programming environment users will use when programming in

the SCOOT environment.

3.2 Lexers and Parsers

In order to understand the design of the commands within SCOOT, it is �rst

necessary to understand the tools used in the development of the language. The

two core components of the SCOOT engine are the lexer and the parser. Each

serves a role in the process of taking user input, and responding appropriately.

The interaction between the user and the SCOOT engine is shown in Figure

3.1. As can be seen the user input is processed by the lexer and then the parser,

both of which are de�ned by the ANTLR tool and the SCOOT rule set. Once

user input has been parsed the SCOOT engine will produce output in response,

which is displayed to the user. All of the operations within the SCOOT engine

are invisible to an end user.

60

Lexer

The lexer is used to take user input (as a series of characters) and break it down

into recognisable tokens (or words). The lexer contains a list of all acceptable

tokens, and user input is matched to that list. The list will contain all the

de�ned keywords of the language, and will provide �variable� tokens to allow

for the unique object (or attribute) names and values that users will use within

their programs. The easiest way to illustrate this is by example. Consider a

command which allows the user to set the value of a variable. The user may

enter :

Set <variable name> to <value>

In order for the SCOOT engine to be able to process this input, several tokens

must be de�ned. First of all the two keywords �Set� and �to�, and secondly a

means to handle both the variable name, and the value. Assume (for simplicity's

sake) that the both the variable name and the value will be words. In order to

handle the two keywords two tokens will be de�ned as below :

assign = �Set�

valueof = �to�

That is the two tokens are named assign and valueof and their values are Set

and to respectively. To handle the variable name a more technical solutions is

needed:

letter = (�a�..�z�|�A�..�Z�)

word = (letter)+

Here 3 tokens are de�ned. The �|� symbol means �or�, and the �..� means that

the accepted value is between the two given values, inclusive. That is a letter is

a single lowercase letter (between a and z) or an uppercase one. The �+� denotes

that one or more instances of the character in brackets is required. That is a

word is any pattern of letters, at least one character long. If these four tokens

were de�ned in the lexer, then the user input :

61

Set apples to three

Will be broken down into the following pattern of tokens:

assign word valueof word

This pattern of tokens will then be passed to the parser for examination and

handling.

Parser

The parser is responsible for taking a set of tokens as input, and producing

the appropriate output. Within the parser will be a set of �rules� which match

certain patterns of tokens. Attached to each rule is some behaviour to perform

(in the form of code to execute). The combination of a rule, and its associated

behaviour, is a grammar. User input is compared to each rule in order, until

either a match is found, or there are no rules left. This means that the rules must

be de�ned in such a way as to avoid confusion between them, a task made easier

by SCOOT's use of the Pred-LL(k) parser ANTLR (see the following section for

more discussion). It is also necessary for language designers to handle incorrect

input, which matches no valid rule. Continuing with the example, in order to

handle the above input the following rule must be de�ned :

setvalue : assign variable:word valueof value:word

Note that the phrase �variable:word � means that the parser will look for a word

token, and will give it the variable name variable. Once this rule has been

matched the values of the two words will be stored in the appropriate variables

(in this case, variable = �apples� and value = �three�). These values can now

be used (if desired) in the behaviour associated with the rule.

62

As a simple example, the following Java code could be used :

{

System.out.println(�The number of �

+ variable.getText() + � has been set to �

+ value.getText());

};

Which would display the text �The number of apples has been set to three� on

the screen. Note that this contrived example does not actually set the value of

a variable called apples to three, it simply produces output.

Predictive Parsing

Parsers allow the interpretation of human-readable statements. When

examining a statement the parser analyses the characters of the statement from

left to right and constructs a derivation. A parser which constructs leftmost

derivations is an LL [Parsons, 1992] parser, and a parser which constructs

rightmost derivations is an LR [Parsons, 1992] parser. The leftmost derivations

constructed by the LL parser are evaluated from left to right, (top to bottom in

a tree structure) allowing for recursive descent. Parsers lookahead k tokens and

the larger the value of k, the more complex the tables, and the more powerful

the grammars become at recognising statements. The particular LL and LR

parsers which allow dynamic values of k are called LL(k) and LR(k) parsers

respectively.

Due to the variable nature of some tokens, it is possible to �nd a situation

where the di�erence between two rules cannot be seen [Parr, 1997]. It is

possible to de�ne a set of rules for de�ning this di�erentiation in the lexer using

predicates. These predicates are applied before parsing, and allow the parser

to determine the di�erence between keywords, and ID's. Predicates also allow

for an earlier di�erentiation between rules, reducing the complexity overhead

of using LL(k) parsers. In order for this to occur, however, the compiler

63

generator tool being used must support predicates [Parr and Quong, 1995].

Careful de�nition of these predicates and grammars will allow a natural

language interface to be created for a pre-existing programming language using

predictive-LL(k) parsers [Parr, 1993].

Two modi�ed versions of LR(0) parsers, which are more powerful than LR(0)

but not as good as LR(1), are SLR and LALR [Parsons, 1992] parsers. LALR is

a popular version of LR(0) which uses extra �lookahead� contextual information

for table generation. Predictive-LL(k) parsers allow simpler compiler writing,

while being powerful enough to describe languages which could only be

previously captured by using LALR.

The remainder of this chapter will discuss the tokens de�ned within the

lexer in SCOOT, and then examine in detail the grammars of the language.

A justi�cation for certain programming constructs will be given along with

the SCOOT commands associated with each, and an overview of the internal

behaviour of SCOOT in each case.

3.3 SCOOT Infrastructure

In order to implement objects as required in SCOOT it was decided to create

three classes, each of which implements a di�erent aspect of an OO environment.

All details of this implementation are hidden from programmers. Using the

Java API, a TreeMap of instances of the scootObject class, named scootObjects,

is used to maintain information about all the objects within SCOOT. TreeMap

is a sorted tree structure, and allow e�cient access to elements based on a key

value. All objects in SCOOT are identi�ed by their Name, and the TreeMap

implementation will allow access to objects in the same way. A simple TreeMap

is shown in Figure 3.2. A TreeMap can store any object in its value �eld,

and only requires that all keys be unique and comparable (i.e. they can be

legitimately compared to one another).

64

− value : Object

TreeMap
topNode

TreeMapNode

TreeMapNode TreeMapNode

TreeMapNode

TreeMapNode

TreeMapNodeTreeMapNode

− key = "D"

− key = "B"

− key = "A" − key = "C" − key = "E"

− key = "F"

− key = "G"

− value : Object

− value : Object − value : Object − value : Object − value : Object

− value : Object

Figure 3.2: TreeMap Data Structure, Showing TreeMapNodes.

As shown in Figure 3.3, a scootData object contains a Name and a Value, and

a scootObject object contains a Name and a TreeMap called Data. The Data

TreeMap contains all the scootData objects associated with this scootObject.

The TreeMap of scootData objects is keyed on the Name of the data element.

Figure 3.4 shows the scootObjects TreeMap for a simple state with one object

(named Rectangle) containing 3 pieces of data (Height, Width, and Colour).

Figure 3.3: scootData and scootObject Class Diagrams.

When the implementation of methods was planned, it was decided to

logically separate the methods from the objects they belong to. This was done in

order to improve memory use in a scenario where several objects share a complex

method. The method will be stored in a single location, with a TreeMap of

all the objects it can be called by, whereas if methods were stored relative to

their objects, there would be several copies of an essentially identical method.

A TreeMap of scootMethod objects called scootMethods, which uses the Name

of the method as the key, is used to store all the scootMethod objects within

65

Figure 3.4: scootObjects Breakdown.

SCOOT. As shown in Figure 3.5, a scootMethod is de�ned by four variables:

� Name - used to store the name of the method,

� Types - a TreeMap containing the names of all scootObjects this method

belongs to,

� Steps - the full method listing, containing all the SCOOT commands for

this method, and

� Count - the number of steps in the method.

Figure 3.5: Data Structures Used By SCOOT To Maintain Methods.

66

There is no imposed limit on the number of scootObjects or scootMethods

that can exist, or on the number of scootData objects that can be attached to

each object. All rules, unless otherwise stated, execute their associated code

when matched if the Boolean value doingParse is set to true, otherwise the

input stream is copied into a variable called Input, and the steps counter is

incremented. This is used for de�ning methods, loops and conditionals as will

be discussed later. In addition to this, if a rule accesses an object, an attribute

or a method that does not exist, an exception will be generated.

3.4 Lexer Tokens

When creating the grammar rules which would be used to de�ne SCOOT, it

was necessary to de�ne the set of pre-de�ned tokens (or keywords), which would

have special and particular meaning within the language. A comprehensive list

of these tokens is given here in EBNF notation.

Symbol Meaning

→ Associates a token name on the left with the matching string,

on the right.

| Indicates alternate forms, such as upper or lower case

∗ Indicates that the preceding tokens in brackets may not

occur, or may occur many times

+ Indicates that the preceeding tokens in brackets must occur

at least once, but may occur many times

? Indicates that the preceeding tokens in brackets occurs at

most once, or not at all

Lexer Tokens

The tokens for matching letters, digits and IDs are:

67

LETTER → (′a′..′z′ | ′A′..′Z ′)

DIGIT → (′0′..′9′)

ID → LETTER(LETTER |DIGIT)∗

To explain, a LETTER is a single character, either lowercase or uppercase.

A digit is a single numerical character between �0� and �9�, while an ID is a

LETTER character, followed by zero or more LETTERs or DIGIT s.

The tokens for matching mathematical operators are:

PLUS → +

MINUS → −

MUL → ∗

DIV → /

MOD → %

POW → �

LPAREN → (

RPAREN →)

INT → (DIGIT)+

Note that the above list includes LPAREN and RPAREN, allowing these

characters to be entered by users. Pairs of brackets required for the +, * and ?

metasymbols are not a�ected by this.

The tokens for matching key words are:

68

ISA → is a

ISAN → is an

HASA → has a

HASAN → has an

A → A

69

AN → An

GET → Get

SET → Set

OF → of

TO → to

PERFORMS → Performs

EV ALUATE → Evaluate

ENDMETHOD → EndMethod

COMPARE → Compare

IF → If

COMPR → (‘equal|less than|greater than)

THENDO → then do

ENDCOND → End If

WHILE → Repeatwhile

ENDLOOP → EndRepeat

QUIT → Quit

CANCEL → Cancel

REMOV E → Remove

FROM → from

ADD → Add

SUB → Subtract

MULTIPLY → Multiply

DIV IDE → Divide

BY → by

SEMI → ;

70

These tokens allow a set of rules (grammars) to be de�ned which form the

basis of the commands available within SCOOT.

3.5 Language Components

Deciding which core programming constructs should be included in SCOOT

was a major part of the project. In order to make these decisions the purpose

of SCOOT was examined, and constructs selected which would best serve to

introduce OO concepts to novices. While each programming language has its

own syntactic and semantic rules, there are many underlying concepts which are

common across all languages. In SCOOT these constructs are introduced in a

way that will allow novices to easily become familiar with the concepts, without

the complexity of learning a commercial programming language. Figure 3.6

shows a conceptual outline of the structure of programming constructs within

SCOOT.

71

Figure 3.6: Conceptual Structure Of SCOOT.

In this section each programming construct introduced in SCOOT will be

justi�ed, as will the form of the SCOOT commands which users will enter.

The parser rules used to match the input commands are also given, as well

as an explanation of how SCOOT internally processes the instructions. Once

all included programming constructs have been discussed, and their respective

parser rules de�ned, interface design will be brie�y discussed.

When designing the command semantics and syntax of SCOOT, each

di�erent phrase was checked to ensure it made sense, both inside the context

of SCOOT, and in terms of the English phrases being used. SCOOT is heavily

72

based on the syntax and structure of the English language, and so learners from

a non-English background may not bene�t from the �English-like� nature of the

language.

3.5.1 Create Object

The ability for programmers to create and de�ne their own objects is essential to

any OO programming environment. Without this ability the programmers could

only manipulate pre-de�ned sets of objects, which reduces the degree to which

the environment engages them. It was therefore decided that programmers must

be able to de�ne their own objects.

In SCOOT an object declaration (the speci�cation of what composes an

object) is not separated from its instantiation, and so it was decided that in

the initial prototype, programmers would only be able to copy an existing

object. In order to remain consistent with inheritance rules from commercial

OO languages, all methods and attributes, including values, are copied from the

original object. Note that since the code for an objects methods is copied, those

methods can now be executed with respect to this object. In this way, a small

degree of polymorphic behaviour is demonstrated, since methods with the same

name can operate on di�erent objects, but perform the same tasks.

Since all objects created by a user must be based on another object, an empty

class (with no attributes or methods) called Object is built into SCOOT.

Programmers will use this as the base for their new objects, unless an object

is based on another class. This formalises a trend in many commercial OO

programming languages, where all objects are related to a standard base class

(as in Java).

It is worth noting here that inheritance in SCOOT is a simple a�air, designed

only to introduce the concept of a derived object extending a base object. As

such certain aspects of SCOOT's inheritance are not standard. For example

a programmer can modify a base class after an inheritance has occurred, and

this will not modify the derived class. Inheritance in SCOOT is akin to object

73

extension, rather than pure inheritance.

The SCOOT command to declare a new object, remembering that all new

objects will be based on pre-existing objects, is :

A <new object name> is a <old object name>;

The SCOOT command used for copying an object had to clearly express that

the new object is based on an existing object, since in an OO paradigm, all

objects are related.The phrase �is a� was chosen as a suitable semantic phrase,

indicating the relationship between an existing object and the new. For example,

�A Rectangle is a Shape;� would create a new object called Rectangle with the

same attributes and methods (if any) of the object Shape. In order to maintain

consistency with standard English, both the initial �A� and the �a� in �is a� can

both be replaced with the word �an� for grammatical correctness (for example,

�An Oval is a Shape;�). It should be noted that grammatical correctness is not

enforced.

This input will be matched by the parser grammar:

A newObject:ID ISA oldObject:ID SEMI

Before creating a new object a check is performed to ensure that a scootObject

does not exist with the Name of newObject. Once this is done, a new TreeMap

is created, and the elements of the Data TreeMap of the object with the Name

of oldObject are stored in an array. This is because a standard TreeMap copy

is shallow, and any change to the new scootObject will a�ect the old one. The

elements of this array are then used to populate the temporary TreeMap, and a

new scootObject with the Name of newObject and the Data of oldObject is added

to the scootObjects TreeMap. Once this is done, the scootMethods TreeMap is

thoroughly searched, and any scootMethod which could act on the object with

the Name of oldObject is updated so that it also operates on the scootObject

with the Name of newObject. This search e�ort reduces the overhead of method

storage.

74

3.5.2 Add Attributes

If programmers can create their own objects, it is also necessary that they be

able to store information in those objects, and so users are able to add attributes

to their objects. It was decided that in order to allow programmers to have a

greater level of control, they would be able to dynamically add attributes to

SCOOT objects. In a commercial language such as Java they would have to

create a class which extended the base class in order to achieve this, but in a

command based system like SCOOT there is no need for such limitations.

The ability to dynamically add their own attributes will allow programmers

to interact with SCOOT more easily, since an object need only be partially

de�ned in order to be used. In the same way, since attributes can be easily

added to an object, a more complete set of attributes can be added at a later

time, when the programmer is ready or has identi�ed a new use for the object.

The SCOOT command to add an attribute to an object is :

A <object name> has a <attribute name>;

Determining the syntax for the addition of an attribute was fairly

straightforward, a common English way of describing an object was identi�ed.

When describing the fact that an object has a certain attribute, the English

phrase �A rectangle has a length� or �A rectangle has a width� is easily

understandable. For this reason, this phrase was chosen to describe the fact

that an object now has a new attribute to describe it. To add the attributes

length and width to the object rectangle the programmer enters �A rectangle

has a length;� followed by �A rectangle has a width;�

This form is a simple English phrase which we believe will be understood by

novices, and so is ideal for use in SCOOT. No previous rules have been de�ned

for adding to an object, so internal consistency is not a consideration here. As

in Section 3.5.1 both the opening �A� and the �a� in � has a� can be replaced

with the word �an�.

A new parser grammar is de�ned to handle this input:

75

A object:ID HASA attribute:ID SEMI

When this grammar is matched, after basic error checking, the scootObject

whose Name is object is accessed, and a scootData object whose Name is

attribute and Value is NULL will be added to objects Data TreeMap.

3.5.3 Remove Attributes

Editing previous commands is impossible within SCOOT, and in early testing

of SCOOT many programmers made mistakes in adding attributes to their

objects. These errors involved misnaming them or sometimes getting confused

about which object they wanted to work with. It was therefore decided to

allow programmers to dynamically remove attributes from SCOOT objects. As

mentioned above in Section 3.5.2, this is not a feature commonly available in

commercial programming language, but is used here to minimise the potential

negative impact of an interpreted programming environment.

The SCOOT command to remove an attribute of an object is simply:

Remove <attribute name> of <object name>;

So, in order to remove the attribute Colour from Rectangle the programmer

would enter:

Remove Colour of Rectangle;

This structure reinforces the important OO concept that the attribute (Colour)

exists only with respect to the object (Rectangle).

The parser grammar to match this input is:

REMOVE attrName:ID OF objName:ID SEMI

When this grammar is matched the scootObject whose Name is objName is

accessed, and the scootData object whose Name is attrName will be deleted

from objects Data TreeMap.

76

3.5.4 Add Method

Functions are a common concept in programming, and object methods are used

in OO languages to de�ne a function which operates on the object which called

it. In order to introduce these ideas into a novice teaching tool, without worrying

about such concepts as function overwriting/overloading, it was decided to allow

programmers to add their own behaviours to objects. This is simply another

means by which programmers can de�ne their own objects. For simplicity,

methods do not take input, they only provide output. Since no input parameters

are accepted, method overloading is not incorporated into the prototype of

SCOOT. The ability to specify input parameters, and hence overload methods,

will be analysed as an addition to SCOOT in future work.

The SCOOT command to add a method to an object is :

A <object name> performs <method name>;

If internal consistency was the only concern, it would make sense for the

syntax to be consistent with that for adding an attribute. However the phrase

�A Rectangle has a DoubleSize� does not clearly convey the meaning that

DoubleSize is a method of the Rectangle object, and does not linguistically

di�erentiate between a method and an attribute. Therefore, in the interests of

readability and understandability the syntax will not be directly linked to that

of adding an attribute. It is still desirable to clearly indicate the link between

the object and the method, and if possible signify ownership of the method

by the object. To that end, to add a method called DoubleSize to the object

Rectangle the programmer will enter �A Rectangle performs DoubleSize;�

This syntax clearly indicates that DoubleSize is something that happens, not

simply an attribute, and that it is owned by the object Rectangle. In this way

the syntax remains consistent with the programmer's experience with English,

while not con�icting with standards already established in SCOOT. To �nalise

the input of the method the programmer enters:

End Recipe;

77

This is the �rst use of the keyword Recipe and may be confusing to users.

For this reason two concessions have been made in the interests of improved

usability:

1. When a programmer begins entering a Recipe as described above SCOOT

will inform them that they have begun entering a Recipe and to enter

¨End Recipe;¨ to �nish entering the Recipe, and

2. A revised form of the statement will be developed for use in a future

version of SCOOT, which will take the form ¨End DoubleSize;¨ to �nish

entering the Recipe called DoubleSize.

To handle the commands needed to add methods to objects, two new

productions are needed. Firstly :

A object:ID PERFORMS method:ID SEMI

When this production is matched the values of object and method are stored

in variables within the parser, the parser variable doingParse is set false, and

the counter methSteps is initialised. All input commands after this will be

compared to the parser rules, to ensure correct form, and added to the Input

variable, while steps is incremented. No input after this command is executed,

until the input matches the production:

ENDMETHOD SEMI

Once this production has been matched, a new scootMethod object is created,

and the Name of object is added to its Types TreeMap. The Name of the

scootMethod is method and the value of Steps is copied from Input. In order

to ensure that this method can operate on di�erent objects e�ectively, any

references to object in the command will be converted to the internal keyword

OBJECT. The value of the scootMethod 's Steps is calculated from the value of

the parsers steps and the value of methSteps. Once the scootMethod has been

78

created, it is added to the scootMethods TreeMap, and Input is cleared. SCOOT

will then continue handling input like normal.

3.5.5 Remove Method

The ability to remove a method for an object on the �y is provided due, again, to

the limitation of not being able to edit commands in the SCOOT environment.

The SCOOT command to remove a method is:

Remove <method name> from <object name>;

This reinforces the �ownership� of the method by the object, while remaining

di�erent from the syntax to remove an attribute. This was done intentionally

to reinforce the concept that an attribute describes an object, while a method

determines its behaviour. If a programmer wishes to remove the method

DoubleSize from the Rectangle object they can simply enter the command

�Remove DoubleSize from Rectangle;�.

This input will be handled by the grammar:

REMOVE methName:ID FROM objName:ID SEMI

When this grammar is matched the scootMethod object whose Name is

methName will have objName removed from its Types TreeMap.

3.5.6 Get Attribute

Accessors and mutators are those functions that allow programmers to

respectively set and get the value of an object's attributes. They are a common

and important aspect of OO programming languages, and so play an important

role within SCOOT. Storing information within an object is only useful if the

data can be accessed at some point, and that is the functionality provided

here. Note that in a commercial programming language the programmer would

be required to write the accessor functions themselves. However, given the

introductory nature of SCOOT it was decided that providing built in accessors

to all object data would make object inspection easier.

79

The SCOOT command to view the value of an attribute is:

Get <attribute> of <object>;

In order to keep the language within the bounds of what a novice programmer

can be expected to be familiar with, and to establish certain programming

standards, these functions are accessed using the keyword Get. In commercial

OO languages, functions which return the value of an attribute are commonly

referred to as get functions. To �nd out the value of the attribute Colour of

the object Rectangle the programmer enters �Get Colour of Rectangle;�. This

syntactical format is similar to the language a novice programmer will be familiar

with, while at the same time introducing the concept of set and get functions.

This input will be handled by the grammar:

GET attribute:ID OF object:ID SEMI

When this grammar is triggered SCOOT will access the scootObject whose

Name is object and display the Name and Value of the scootData object named

attribute.

3.5.7 Get Object

Late in the development of SCOOT it was decided that an object accessor, that

is a single function which displays all the attributes of an object with their

respective values, would allow programmers to easily gain an awareness of what

comprises an object, and of its current state. Inquisitive programmers are now

able to explore objects more easily.

To view the full contents of an object, the SCOOT command:

Get <object name>;

is entered. By keeping the format and style of similar or connected commands

consistent, unnecessary complications are avoided and the learning curve of the

language is reduced. When it was decided to add an object accessor function,

80

the syntax was naturally derived from the already established format for the

attribute accessor. Therefore, when programmers wish to view the full state of

the Rectangle object they enter �Get Rectangle;�. By remaining consistent with

the use of the keyword Get, a common usage of this keyword will be established

in the minds of the programmer, thereby reducing the di�culty of learning the

use of SCOOT.

The parser grammar:

GET object:ID SEMI

will handle this input. SCOOT will access the scootObject whose Name is object

and display the name and value of all scootData objects in the TreeMap Data

attached to that scootObject.

3.5.8 Set Attribute

Without the ability to manipulate and examine an object there is no interaction

on the programmer's part, and the interactions of the objects within SCOOT

would be meaningless. By providing mechanisms to allow programmers to

manipulate the objects in the environment, the programmer becomes engaged

and more advanced constructs can be de�ned. As in 3.5.6, this functionality

would need to be coded by the programmer in a commercial language, but is

provided here automatically for all object attributes to ease the learning curve

for novice programmers.

The following SCOOT command will specify the value of an attribute, named

with respect to an object.

Set <attribute> of <object> to <value>;

As described in 3.5.6, SCOOT was designed to establish common programming

practices in the minds of novice programmers. In many commercial OO

languages a function which speci�es the value of an attribute is referred to as a

�set function�. Since the language is logical in English, and since it is consistent

81

with previously established programming practices, and with SCOOT's syntax,

SCOOT uses the keyword Set to specify the value of an attribute. To set the

Colour of Rectangle to �Red�, the programmer enters �Set Colour of Rectangle

to Red;�.

Since a numerical value will be recognised as a number, and a textual value

as a word, two separate grammars are needed to handle this instruction. They

are:

SET attribute:ID OF object:ID TO value:ID SEMI

SET attribute:ID OF object:ID TO value:INT SEMI

The grammar for setting attribute to a speci�c value is divided into two separate

sub-grammars, one for handling value as a string, and the other for handling

a number. If value is a number, it is �rst converted to a string, then both

grammars proceed by accessing the scootObject whose Name is object and

setting the Value of the attached scootData object named attribute to the value

of value.

3.5.9 Modify Attribute

Simply being able to specify the value of an attribute is not enough, users must

be able to modify the value of a numerical attribute using basic arithmetic

expressions. The earliest version of SCOOT only allowed for simple addition,

and the language used was extremely ungainly. The desire for internal

consistency (speci�cally with the �Set� command) led to the phrase (for

example) �Set Width of Rectangle to Width of Rectangle + 2;�, which all

programmers found messy. By re-prioritizing the need for consistency with

familiar English, and expanding the pool of operations, the following four

commands were developed.

These four commands will, respectively, add, subtract, divide or multiply

the value of the attribute, using the given numerical value:

Add <number> to <attribute> of <object>;

82

Subtract <number> from <attribute> of <object>;

Multiply <attribute> of <object> by <number>;

Divide <attribute> of <object> by <number>;

Note that although the commands are not identically structured, at the cost of

some internal consistency, the familiarity to similar phrasing in spoken English

was the highest priority here. With this new format the previous example, of

increasing theWidth of Rectangle by 2 would now be written as �Add 2 to Width

of Rectangle;�

It is also possible to add two values together using the input:

Set <attribute 1> of <object 1> to <attribute 1> of

<object 1> + <attribute 2> of <object 2>;

This form allows two separate attributes, possibly from two separate objects,

to be added together. In the prototype of SCOOT tested in this study a direct

value copy is not possible, nor are other arithmetic expressions between objects.

This simple extension will be incorporated in a future version of SCOOT.

The above commands will result in one of the following grammars being

called:

ADD addValue:INT TO attrName:ID OF objName:ID SEMI

SUB subValue:INT FROM attrName:ID OF objName:ID SEMI

MULTIPLY attrName:ID OF objName:ID BY multValue:INT SEMI

DIVIDE attrName:ID OF objName:ID BY divValue:INT SEMI

SET attrName:ID OF objectName:ID TO compElement(continued next line)

PLUS rightAttrName:ID OF rightObjName:ID SEMI

For each of these grammars a few basic error checks are conducted, speci�cally

to ensure that the values in question are numerical. Once that is con�rmed the

appropriate mathematical operation is conducted, with the resulting integer

value being copied into the value �eld of attrNames entry in objNames Data

TreeMap. For the �fth grammar, an additional step is performed to get the value

of rightObjNames attribute rightAttrName, and ensure it too is numerical.

83

3.5.10 Method Evaluation

Since SCOOT objects have methods attached to them, it is necessary to provide

a simple mechanism to invoke these methods. Including this feature is essential

in order to allow programmers to understand the nature of objects in an OO

environment, and excluding it makes the ability to add methods to objects

meaningless.

Within SCOOT, methods (called Recipes) are a set of steps to be carried out,

identi�ed by the name of the recipe, and the object. In order to reinforce the

notion that a method executes with respect to an object, and not independently,

the programmer enters:

Evaluate <method name> of <object name>;

This command reinforces two key concepts: �rstly, a method (or recipe) exists

only with respect to an object and secondly, unlike an attribute a method must

be evaluated (or run).

This input will trigger the grammar:

EVALUATE method:ID OF object:ID SEMI

Firstly, standard checks are performed to ensure that the scootMethod method

exists and operates on the scootObject object. Then a new StringBu�er is created

based on the Steps of the scootMethod, and this is used as the basis for a new

instance of the parser and lexer. Since the value of Steps was altered to include

the keyword OBJECT rather than the name of the object it was acting on, that

change must be undone here. The String used to instantiate the StringBu�er

is altered so that it contains the Name of scootObject object in the place of

OBJECT. The �rst step is then fed into the parser, and as long as there are

more steps to perform, SCOOT will parse the input stream. Once the method

has been fully parsed, control is returned to the programmer.

84

3.5.11 Compare attribute to value

In order to provide two foundational programming constructs, conditionals and

loops (see Sections 3.5.12 and 3.5.13) it is necessary for programmers to be

able to compare the value of a particular attribute to a set value. In the

prototype version of SCOOT it was decided to separate the comparison from

the actual conditional/looping phrase, which is di�erent from many commercial

programming languages. This was done to establish the notion that the

comparison is separate from the conditional or loop itself. For this reason all

conditional or looping blocks need to be preceded by a comparison statement.

The form of this statement is:

Compare <attribute> of <object> to <value>;

This form is consistent with the syntax developed thus far for SCOOT, and

makes grammatical sense in English. The form of the conditional statement

was selected as a blend of consistency with common programming languages,

and familiarity with the English language. Note that the result of the Compare

statement may be equal, less than or greater than. For example, the command

�Compare Width of Rectangle to 5;� would result in the value �true� being

returned, if Width of Rectangle was 5. For String comparisons the result will

be based on a lexicographical comparison (for example, �Red� is greater than

�Blue�).

As in 3.5.8, di�erent parser rules are required to handle numerical or textual

input. User input will be handled by the appropriate grammar below:

COMPARE compElement TO value:ID SEMI

COMPARE compElement TO value:INT SEMI

where

compElement→ ID OF ID

A comparison tests if the two arguments, one an attribute of an object and

the other a value, are equivalent. The comparison can take a string or an integer

85

as the value to compare. By choosing to type convert an integer to a string,

the value comparison code is in fact shared. The compElement rule �nds the

value of the attribute in question and stores it in the parser variable lhs. This

value is then compared to the value of value, and the result is displayed within

the SCOOT environment and stored in the parser variable compResult for later

access. When a conditional or loop statement is executed, the result of the

comparison can be obtained by inspecting compResult. For use in a loop the

comparison string is stored in the parser variable comp, since this value should

be constantly updated.

3.5.12 Conditionals

Conditional statements are a key component of all programming languages.

Even the most OO program will contain fragments of procedural code within

it. The three core components of procedural programs are :

1. Sequence (one step after the other, in order);

2. Selection (having one or more blocks of code which are only evaluated

under certain circumstances);

3. Repetition (a block of code which is evaluated until some condition is met,

with that condition being checked at certain points in execution).

In order to enable novice programmers to understand that some code can

be made conditional i.e. that some operations (or object actions) can be

dependent on results (or objects attributes), SCOOT will allow programmers to

use conditional statements. These can be used directly from the translator, or

included in a programmer de�ned method. In order to limit the complexity of

the system it is not possible to use nested conditionals, or the more convenient

case statements found in many modern languages.1 In SCOOT a conditional

statement is a simple test as shown in Section 3.5.11, followed by commands

that will be executed if the input condition matches the output of the test.

1Other languages, including Python, also do not support a case/switch construct.

86

Once the comparison has been performed, the programmer can begin a

conditional block by entering:

If equal then do;

<other commands go here>

The commands that follow will be evaluated if the result of the preceding

comparison was �equal� (that is, if the two values being compares are in fact

equal). Once this is done the conditional block must be terminated by entering:

End If;

Once again, this form was chosen for its similarity to modern programming

languages, as well as its consistency (or lack of inconsistency) with SCOOT

syntax, and its clear meaning in English. The need to �rmly denote the end of

a block (rather than just to do so via formatting, or a single character) was to

enforce the notion of code blocks having a �xed beginning and ending. Once

this is established, programmers can easily adapt to less formal declarations

such as those found in Python.

The initial command will be matched by :

IF condition:BOOL THENDO SEMI

When a conditional block is begun, doingParse is set to false, and the parser

variable ifCondition is set to the value of condition. The ifSteps counter is

initialised, the value conditional is set to true and the result of the previous

comparison is copied into condResult. Input after this point is checked, to

ensure it is valid SCOOT input, but not executed. Instead it is copied into

Input and the counter ifSteps is incremented for each line.

ENDIF SEMI

Once the conditional block has been ended, the values of doingParse and

conditional are reset, and the result of the comparison compared to the input

87

condition stored in ifCondition. If the two Boolean values are equal a new

StringBu�er is created based on Input, and the number of steps in the block

calculated from ifSteps and steps. Each statement in Input is then parsed and

evaluated. After completion, Input is cleared.

3.5.13 Loops

Another common programming construct included in SCOOT is the loop

construct. This construct allows an operation to repeatedly take place until

a speci�ed condition is met. Like the conditional statements, loops are not

unique to object-oriented environments, but are common across all imperative

programming environments. Unlike many languages, however, SCOOT only

supports one variety of loop, that being a pretest while loop. This decision was

made for two reasons:

1. To reduce the complexity of the loop structure for users by avoiding

complications associated with multiple forms,

2. Taking advantage of a pretest condition to emphasise preparation

occurring before any actual repetitive object actions

Once a comparison has been performed the start of a block which loops until

the condition is not met (note the use of the word while) can be declared by

entering:

Repeat while less than;

Again, the test condition used here could also be �greater than� or �equal �.

This syntax is consistent with the form of the Do While loops found in other

languages, and is clear English, so confusion is minimised. Once the looping

block is opened, programmers enter rules of the standard format until the

looping block is completed. To close the looping block the programmer simply

enters:

End Repeat;

88

The advantage of using the keyword Repeat over the more common programming

phrase Loop lies in the familiarity of the word. To a computer programmer a

loop is a basic construct, but to a novice it is not so obvious. However telling

a novice that something repeats will have a far greater level of e�ectiveness in

communicating the same idea. As in many languages, a poor choice of loop

condition may result in an in�nite loop. SCOOT does not yet handle this

situation well.

Compare payRate o f Employee to 55000 ;

Repeat whi l e l e s s than ;

Add 1000 to payRate o f Employee ;

End Repeat ;

The command to begin a loop will match:

WHILE condition:BOOL SEMI

When a looping block is begun doingParse is set false, looping is set to true,

loopCondition is set to condition, loopSteps is initialised and loopResult is set

equal to the result of the previous comparison. As with a conditional, input is

tested and stored in Input, and the number of lines entered stored in loopSteps.

ENDLOOP SEMI

Once the loop has been ended the values of doingParse and looping are reset,

and the SCOOT command for the comparison is appended to the end of Input.

If the conditions are equal a new StringBu�er is created based on Input, and

this is used as the basis for a new parser. When the end of Input is found, the

looping condition is evaluated again, and if required the process of recreating

the StringBu�er and parser will occur again, until the input and test conditions

are not equal.

89

3.5.14 Evaluate Expression

In SCOOT it was desirable to make mathematical syntax as recognisable as

possible. For this reason it was decided that only a very minor addition would

be imposed on programmers, that is the use of the keyword Evaluate, as used in

method evaluation. In this way programmers can enter an arithmetic expression,

within brackets, in standard in�x notation:

Evaluate <arithmetic expression>;

For example, in order to evaluate the arithmetic expression 3 * (7-2), users

simply enter �Evaluate (3 * (7-2));�. Mathematical evaluation in SCOOT

allows for multiple levels of nested parentheses, the basic operations of addition,

subtraction, multiplication and division, as well as the ability to perform

exponentiation and modulo operations.

Productions used to evaluate an arithmetic expression.

numExpr → LPAREN sumExpr RPAREN

sumExpr → prodExpr ((PLUS |MINUS) prodExpr) ∗

prodExpr → powExpr ((MUL |DIV |MOD) powExpr) ∗

powExpr → atom (POW atom)?

atom → INT | expr

Rules to handle arithmetic expressions are described below.

expr → (numExpr)→ numExpr

| (ID OF ID)→ evalMeth

Mathematical evaluation is done as outlined in [Parr and Quong, 1995] by

using a ParseTree to store the operations. All non-mathematical tokens are

90

excluded from this tree, through the use of a special ANTLR token. Each

operation is added to the tree, with each operator becoming a parent with two

children, the operands. This tree is then parsed using a simple TreeParser,

which evaluates each operation in order to resolve a �nal output, which will

be displayed within the SCOOT environment. The order of operations is

guaranteed through ANTLR's look-ahead(k) mechanism.

To give an example, Evaluate (3 * (7-2)); would be tokenized as

EVALUATE LPAREN a:INT MUL LPAREN b:INT MINUS c:INT RPAREN RPAREN

SEMI, where a=3, b=7 and c=2. This would then be processed as follows:

EVALUATE LPAREN a:atom MUL LPAREN b:atom MINUS c:atom RPAREN

RPAREN SEMI

EVALUATE LPAREN a:powExpr MUL LPAREN b:powExpr MINUS c:powExpr

RPAREN RPAREN SEMI

EVALUATE LPAREN a:powExpr MUL LPAREN b:prodExpr MINUS

c:prodExpr RPAREN RPAREN SEMI

EVALUATE LPAREN a:powExpr MUL LPAREN d:sumExpr RPAREN RPAREN

SEMI where d = 7-2

EVALUATE LPAREN a:powExpr MUL d:numExpr RPAREN SEMI

EVALUATE LPAREN a:powExpr MUL d:powExpr RPAREN SEMI

EVALUATE LPAREN e:prodExpr RPAREN SEMI where e = 3 + (7-2)

EVALUTE LPAREN e:sumExpr RPAREN SEMI

EVALUATE e:numExpr SEMI

This numExp will then be evaluated using a parseTree to calculate the result

as 8.

Evaluation of a literal mathematical expression is the only place in SCOOT

where the asterisk is used for multiplication, in all other cases is is handled by

the keywords described in section 3.5.9. The ability to evaluate mathematical

statements will be removed in future versions of SCOOT, as it is not tied to the

core purpose of teaching OO principles.

91

3.5.15 Cancel

When programmers are entering a block of commands (either a method, a loop

or a conditional) it is possible that they will either change their minds, or become

aware of some error they have already made. In this case programmers can

cancel the block entirely (methods will not be created, loops and conditionals

will be erased) simply by entering the command:

Cancel;

This will be handled by the grammar:

CANCEL SEMI

When this grammar is triggered the value of doingParse, looping, conditional

and Input are all reset, and control returned to the user. All input entered since

beginning the current block is lost, and must be re-entered.

3.5.16 Quit

To quit SCOOT, and leave the environment the programmer simply enters:

Quit;

Which will be handled by:

QUIT SEMI

This will cause SCOOT to close.

3.6 Interface Design

In Section 2.4.2 Cognitive Load Theory (CLT) as it applies to a novice

programming language was discussed. Based on this discussion a minimal

interface for SCOOT was designed, including as few menus and buttons as

possible, in order to minimise the extrinsic load of using the tool. This allows

92

more mental energy to be focused on the task of learning computer programming

principles. As has been previously stated, this is in alignment with Papert's

Continuity Principle.

93

Chapter 4

Experimental Design

4.1 Introduction

As discussed in Chapter Two the three core hypotheses being tested are :

H1 - SCOOT is seen by novice programmers as easier to use than C++,

written in a customised version of Notepad++

H2 - SCOOT is seen by novice programmers as more useful than C++,

written in a customised version of Notepad++

H3 - SCOOT is seen by novice programmers as more enjoyable than C++,

written in a customised version of Notepad++

In order to test this the three distinct constructs of perceived ease-of-use,

perceived usefulness and perceived enjoyment needed to be measured. These

construct were chosen because SCOOT was designed with a focus on usability.

By increasing usability it was our goal to reduce extraneous load so users can

focus on learning programming, and not the tool. Minimising unnecessary

learning lines up with Papert's Continuity Principle, that new material must

build on old in predictable and expected ways. Confounding this with additional

complexity is not ideal.

Testing of H1-H3 was conducted using a questionnaire which participants

completed after they had completed a series of tasks using either C++ or

94

SCOOT. The questions were derived from constructs found in [Davis, 1989] and

[Davis et al., 1992] which measure perceived usability, perceived usefulness and

perceived ease-of-use. User responses were measured using a Visual Analogue

Scale (VAS), which provides a rapid way to measure attitudes [Hoare, 1986], and

has been used for over 80 years to measure subjective phenomena [Hayes, 1921].

A VAS is a 100mm long line, drawn on the page. In the questionnaire used

for this study the line was horizontal, but vertical variations exist. Each line

is associated with a statement, for example, �I �nd it easy to get C++ to do

what I want it to do�. The line is marked with �Strongly Disagree� at the

left-most end and �Strongly Agree� at the right-most end. The centre point of

the line is also identi�ed, but not labelled. Participants then mark along the

line to indicate their response, which is then measured to an accuracy of one

millimetre, rounding down.

Three hypotheses related to learning outcomes are also being tested, but

due to limitations of the experiment they are not central to the project. These

three hypotheses are :

H4 - When given a simple programming task, users of SCOOT are able to

write a solution more easily than users of C++.

H5 - When given a simple piece of code, users of SCOOT are able to

understand it more easily than users of C++.

H6 - When given a piece of code with errors in it, users of SCOOT are able

to identify and correct the errors than users of C++.

Each of these hypotheses are an attempt to gauge the users understanding

of computer programming principles.

For H4 the phrase �more easily� means :

1. take less time to arrive at a correct result;

2. more users arrive at a correct result.

H5 was tested by asking questions about the code, so it is expected that SCOOT

users will answer more questions correctly than C++ users.

95

H6 was tested by counting the number of errors correctly identi�ed, and how

many were incorrectly identi�ed.

4.2 Design Decisions

4.2.1 Learning Programming

The �rst objective when testing the tool is to determine if students have learned

anything about programming from their experience. It needs to be stated here

that there are limitations on the ability to test this with real accuracy, due to

the limited time available to conduct the research. This study was also limited

due to the educational requirements of the department, as it is not possible to

teach some students with the new tool, and observe their progress over several

years compared to others who did not use it. However, it can be seen if a short

experience with the tool instils some understanding of programming in a simple

test environment.

To assess the degree to which a user has �learned� to program it was decided

that they should complete three tasks :

� Code Writing;

� Code Reading;

� Debugging.

These three tasks we commonly used in written examinations of programming

courses at the researchers university, and so the same strategies were used

to measure comprehension of coding concepts here. As discussed in Section

2.4.1 the fact that a programmer can use a code construct may not indicate

that they understand it. In an attempt to more accurately gauge their

understanding participants also completed reading and debugging tasks, since it

is in those tasks that weak understandings may be exposed [Rader et al., 1997,

Lister et al., 2006a, Brown, 2008, Robins et al., 2003].

96

Due to the lack of run-time error handling is SCOOT there is no examination

of run-time errors in this experiment. This weakness in SCOOT will be corrected

in a future version, and an examination on the impact an introductory tool has

on the management of run-time errors will be conducted.

4.2.2 The Experience

As described in Section 4.1, this dissertation is focusing on measuring the user's

perceptions of both SCOOT and C++, speci�cally with regards to usability,

ease-of-use and usefulness. A questionnaire modi�ed from [Davis, 1989] and

[Davis et al., 1992] was completed by all participants at the end of their

respective sessions. In order to gather data to test H4-H6 data needed to be

gathered during each task the participants completed. Time to complete each

task was measured for all participants, and individual measures of correctness

were taken for each task.

Writing Tasks For each writing task it was noted whether students had

successfully completed the task or not. For those that had not their errors

were examined, but no useful data could be gathered. To get useful data here it

would be necessary to understand what the programmer is thinking, and trying

to do, which is impossible when simply reading their code. A more formal forum

for code discussion would be needed to try to learn anything from their errors,

though recent work in [Kunkle and Allen, 2016] may change this in future work.

It was �nally decided to simply note which participants completed the tasks,

and which did not.

Reading Task Measuring understanding in this task was done by presenting

users with a series of questions about the value of variables at various points

during execution. Assessing understanding with exam-style questions has been

used elsewhere [Lister et al., 2006b] and this approach was followed here. We

believe that this was an objective measure.

97

Debugging Task Three measures were taken for this task.

1. Number of errors found by each participant(False negatives);

2. Number of errors incorrectly found by each participant (False positives).

The second measure was needed since during the pilot study it was noted that

participants would identify syntax errors in poorly written, but valid pieces of

code, and this re�ected a misunderstanding of what a syntax error actually was.

4.2.3 Compare to C++

In order to have a frame of reference for the data gathered from SCOOT users, it

was necessary to be able to compare those results with users of a more commonly

used language. Since the �rst wave of participants were recruited from the

student population of the �rst year programming course, it was decided to use

C++ as the language in the base group, since that is what all participants would

be familiar with. C++ is an object-oriented language, and had been used as

the introductory language in the �rst year courses at James Cook University for

several years.

4.3 Participants

Participants were initially recruited from the �rst year university programming

course at JCU Cairns. Testing a novice programming language

on �rst-year university students is not uncommon [Dougherty, 2007,

Lorenzen and Sattar, 2008, Powers et al., 2007, Garner, 2004]. It was decided

to recruit at the start of the second semester, since students would have been

introduced to the basics of programming at this point, but would not have

learned any OO concepts.

However the number of participants recruited from this course was far less

than expected, and so participants were recruited from the broader university

population, and eventually from the general public. Even with this group of

98

participants numbers were far lower than desired, due (most likely) to the time

required of participants.

Since most participants recruited had no computer programming experience

it was necessary to give all participants an introduction to all aspects of OOP.

This, along with a tutorial session to ensure all participants could use the

programming environment, meant that a session took �ve or six hours, rather

than the initially planned two.

There were two separate waves of testing. One with the IT students, and the

second about six months later with students from the university at large, and

some members of the general population. Within each wave, participants were

broken into two groups: a test group, using SCOOT, and a control group using

C++. Due to the time taken by each session, and the fact that all sessions were

run by the principal researcher, each of these sessions ran on separate days.

Splitting each wave into test/control group was done �rst by availability.

Any participant who was only available for one session was placed in that group.

Remaining participants were then randomly assigned to the groups, in such a

way as to keep numbers as close to equal as possible.

4.4 Environment

Within each wave of testing, both the C++ and SCOOT sessions were run in

the same room, with the same facilities. Each user was on a separate computer,

and was randomly assigned a number, which was used to identify all their work.

Access to SCOOT was done over the Internet, using Java Web Start technology.

Student's work in SCOOT was saved to local �les on their computer, which were

then collected by the primary researcher, and named with their number.

In order to reduce the impact of the di�erence between interfaces (with

C++ being far more complex) a customised version of Notepad++ was used

by C++ participants. This meant that both groups entered code, and then

pressed a button to compile/execute. The modi�cation to Notepad++ also

99

made backups of the users code every time they compiled, which were again

collected and renamed by the primary researcher.

All recruitment, sessions and tutorials were conducted by the primary

researcher.

4.5 Procedure

4.5.1 Tasks

While the individual sessions had di�erences, due to participant familiarity with

programming, all groups completed the same set of tasks. There were two

writing tasks, one building on the other, as well as a reading and debugging

task. All tasks given to the participants are provided in Appendix A.

Writing Task One The �rst writing task called for participants to design

and create two objects, each containing two or three attributes. Instructions

about the names of the classes and attributes were given, as were their initial

values. This writing task covered fundamental OOP ideas - Object creation and

construction.

Writing Task Two The second writing task required participants to add

methods to the classes created above. One method simply modi�ed the value of

an attribute, the second required an if statement before modifying a di�erent

attribute, and the third was required to use a loop to repeatedly execute the

�rst method until a condition was met. Any participant who was unable to

complete Task One was given a working solution at the beginning of Task Two.

They were also given an explanation of how the provided solution worked, which

elements went where and why. This task covered more complex OOP concepts,

speci�cally methods and their construction. It also covered the core procedural

skills necessary to build more useful objects - conditionals and iterations.

100

Code Reading Task The code reading task provided participants with a

short program in the appropriate language, and a series of questions about the

execution of the code. Participants were required to identify values of certain

attributes at certain points during the program.

Code Debugging Task The �nal task presented participants with a piece of

code, in the appropriate language, which contained syntax errors. Participants

were required to identify lines with errors, state what the error was and suggest

how to correct it by writing a correct line of code. The code given to both the

SCOOT groups and the C++ groups contained the same number of errors (six).

4.5.2 Wave One - IT Students

Figure 4.1: Wave One Session Flow.

Since all participants had a familiarity with programming concepts (including

variables, functions, conditionals and iterations in C++), both sessions began

with a quick (ten minute) recap of what they knew, and an introduction to

OOP (30 minutes). Since students already knew C++ there was no need for

101

the base group to be introduced to the language, but the SCOOT group had

never seen SCOOT before. The SCOOT group was therefore given a 30 minute

introduction to SCOOT, being shown how to use the interface and how to

perform the necessary tasks (object creation, de�nition, methods, loops and

conditionals).

After this both groups completed the writing, reading and debugging tasks.

Participants worked alone for these tasks. Once a participant had completed

all tasks they completed a short questionnaire, and once all participants had

completed the questionnaire a discussion group was held to discuss students

experiences and thoughts. Task completion took around an hour and a half,

and the questionnaire and discussion group was another 30 minutes.

4.5.3 Wave Two - General Population

Figure 4.2: Wave Two Session Flow.

102

Since participants in this wave had little to no known programming knowledge

a longer introduction session was needed in both the C++ and SCOOT groups.

This session introduced the appropriate language/tool, as well as the basic

concepts of computer programming. Each session lasted around an hour and a

half. After that there was a break for lunch, which was provided by the school.

After lunch participants completed a short (three question) survey about

their expectations before the tasks. They then completed the tasks as in wave

one, including the �nal questionnaire and discussion group. Task completion

took closer to two hours in this wave, with another 30 minutes or so for the �nal

questionnaire and discussion group.

103

Chapter 5

Results

5.1 Introduction

Here the results of the testing process are presented. Firstly the results from the

programming tasks are shown. This includes the writing, reading and debugging

tasks. Secondly the responses to the questionnaire are given, including a

reliability analysis and t-tests for each construct. Finally the correlations that

were found between the tasks measures and the constructs are given, as well as

the correlations between the results and the preliminary questionnaire. Within

each of these sections the two waves of testing are presented separately, with

Wave One being participants with programming experience, and Wave Two

being those without. This is done as the two groups have very di�erent levels

of prior programming practice, and so they cannot be compared to each other.

5.2 Quantitative

As described in Chapter 4 the time taken to complete each task was recorded, as

were measures of correctness. Due to the nature of the task some of these were

entirely objective (for example, whether a participant completed the task) and

some were highly subjective (for example, how close to �correct� a non-working

104

solution was). The more subjective observations will be discussed in Section

5.3, here only the objective measurements are discussed.

5.2.1 Writing Tasks

The time to complete (TTC) in minutes each of the two writing tasks was

recorded, along with a count of how many people completed the task.

Wave One

Table 5.1: Mean Time In Minutes For Writing Tasks (Wave One)

Table 5.2: T-test Comparison For Writing Tasks (Wave One)

As can be seen from Tables 5.1 and 5.2, there is a signi�cant di�erence between

the C++ group and the SCOOT group for the time to complete task one, and

the success rate for task one. A dramatic di�erence is seen in TTC for task one,

with the C++ group having a mean time of 54 minutes, compared to the SCOOT

group's 11 minutes. The t-test shown in Table 5.2 shows that this di�erence in

groups is signi�cant at the 99% con�dence level. It should be noted that due

to the design of SCOOT, there is far less overhead when creating objects when

compared with C++. To create an object in SCOOT with three attributes,

105

Table 5.3: Mean Success Rate For Writing Tasks (Wave One)

Table 5.4: t-test Comparison for Writing Task Success Rate (Wave One)

accessors and mutators for each and assign values would take 7 lines of code,

while the C++ code would be closer to 30 lines. It is unsurprising, therefore,

that such a di�erence exists. It is also unsurprising that no such di�erence is

evident for task two's TTC, since this task took pre-written objects and added

behaviours. This task is similar in terms of number of lines needed for both

C++ and SCOOT.

Of the 9 C++ participants, 2 completed the �rst writing task within the

time given. The SCOOT group fared better, with all 8 participants completing

the task. For the second writing task, 4 participants from each group completed

in time. Assigning a binary measure of one for success, and zero for failure, the

results shown in Tables 5.3 were produced. Table 5.4 again shows that the

di�erence between groups for the �rst writing task is signi�cant at the 99%

con�dence level.

It is interesting that a signi�cant di�erence exists between C++ and SCOOT

for the number of people to complete the �rst programming task, but not the

second. This indicates that SCOOT enabled participants to create objects more

easily, adding attributes and methods, while not signi�cantly impacting their

106

ability to use more complex ideas such as conditionals or loop syntax.

Wave Two

Table 5.5: Mean Time In Minutes For Writing Tasks (Wave Two)

Table 5.6: T-test Comparison For Writing Tasks (Wave Two)

Tables 5.5 and 5.6 show that there is again a signi�cant di�erence between the

C++ group and the SCOOT group for both the time to complete task one, and

the success rate for task one. The C++ group had a mean time of 60 minutes,

while the SCOOT group took around 12. The t-test shown in Table 5.6 shows

that this di�erence is signi�cant at the 99% con�dence level.

Of the 5 C++ participants, 2 completed the �rst writing task within the time

given, and again all 7 SCOOT participants completed the task. For the second

writing task, no C++ participants were successful, and 2 SCOOT participants

completed in time. Assigning a binary measure of one for success, and zero for

failure, the results shown in Tables 5.7 were produced. Table 5.8 again shows

that the di�erence between groups for the �rst writing task is signi�cant at the

99% con�dence level.

It is interesting that a signi�cant di�erence exists between C++ and SCOOT

for the number of people to complete the �rst programming task, but not the

second. This indicates that SCOOT enabled participants to create objects more

107

Table 5.7: Mean Success Rate For Writing Tasks (Wave Two)

Table 5.8: t-test Comparison for Writing Task Success Rate (Wave Two)

easily, adding attributes and methods, while not signi�cantly impacting their

ability to use more complex ideas such as conditionals or loop syntax.

5.2.2 Reading Task

The objective measure taken for all participants of the reading task was the

time to complete.

Wave One

Table 5.9: Mean Time In Minutes For Reading Task (Wave One)

Table 5.10: T-test Comparison For Reading Task (Wave One)

108

As can be easily seen from Table 5.9 there is a di�erence of around 7 minutes

between groups for the TTC the reading task. Table 5.10 shows that this

di�erence is signi�cant at the 95% con�dence level. This indicates that SCOOT

is more easily read and understood than C++. Measurement of success for the

reading task were conducted di�erently within the two waves of testing, and

were more subjective than desired for Wave One. For this reason the measures

of participants understanding of the reading task for Wave One are discussed

later in Section 5.3.2 as part of the qualitative results discussion.

Wave Two

Table 5.11: Mean Time In Minutes For Reading Task (Wave Two)

Table 5.12: T-test Comparison For Reading Task (Wave Two)

Table 5.11 indicates a di�erence of around 8 minutes between groups to complete

the reading task. Table 5.12 shows that this di�erence is signi�cant at the 95%

con�dence level. This again indicates that SCOOT is more easily read and

understood than C++.

The second wave of participants were given a series of short questions,

regarding the names or values of attributes at certain points during code

execution. Assessing this was a simple matter of right/wrong for each question,

with no room for subjective marking. Table 5.13 shows the mean number of

questions correctly answered in each group, and Table 5.14 shows the t-test

between languages. As can be seen, there was no signi�cant di�erence found in

participant's understanding of the code.

109

Table 5.13: Mean Number Of Questions Correctly Answered (Wave Two)

Table 5.14: T-test Between Languages (Wave Two)

5.2.3 Debugging Task

In addition to TTC for the debugging task, the number of false negatives

(errors missed) was recorded, as was the number of false positives (lines which

participants �agged as incorrect, which in fact contained no errors).

Wave One

Table 5.15: Mean Time In Minutes And Measures For Debugging Task (Wave
One)

110

Table 5.16: T-test Comparison For Debugging Task (Wave One)

Table 5.15 shows that the TTC was lower for the SCOOT group, who also had

less false negatives and false positives. Table 5.16 shows that the di�erence in

TTC and false negatives was signi�cant at the 99% con�dence level, however

di�erent languages do not seem to have signi�cantly a�ected the number of false

positives.

Wave Two

Table 5.17: Mean Time In Minutes And Measures For Debugging Task (Wave
Two)

Table 5.18: T-test Comparison For Debugging Task (Wave Two)

111

Table 5.19: Reliability Analysis (Wave One)

Table 5.20: Reliability Analysis (Wave Two)

Table 5.17 shows that the TTC was slightly lower for the SCOOT group, who

also had less false negatives and false positives. Table 5.18 shows that the

di�erence in TTC and false positives was not signi�cant, however the di�erence

in false negatives was signi�cant at the 95% con�dence level.

5.2.4 Questionnaire

The questionnaire measures three constructs, as described in Chapter 4. Each

was measured with three questions, each scored between 0 and 10 and Table

5.19 and 5.20 shows the reliability analysis for each construct measured in both

waves.

The results of the reliability analysis indicate that all questions for a given

construct are measuring the same thing, and this is consistent across both waves

of participants.

Wave One

Table 5.21: Mean Results For Constructs (Wave One)

112

Table 5.22: T-test Comparison For Constructs (Wave One)

As shown in Table 5.21, only one of the three constructs measured (Perceived

Ease of Use) was signi�cantly higher for SCOOT than for C++. Both languages

were rated similarly in the other two constructs. The di�erence in Perceived

Ease of Use is signi�cant at the 95% con�dence level, as shown in table 5.22.

This indicates that the usefulness of SCOOT and C++ are seen as roughly

equivalent by participants, and that neither SCOOT not C++ was more �fun�

to use. It does suggest that SCOOT was easier to use than C++, which was

a major design goal during the development of SCOOT. A correlation analysis

indicates some interesting links, as shown in Table 5.23.

113

Table 5.23: Correlation Between Task Performance And Constructs (Wave One)

As can be seen from Table 5.23, there appears to be signi�cant correlations

between Perceived Ease of Use and all code writing activities. The idea that

people could learn to write code more easily if a tool is easy to use was a

signi�cant part of the motivation behind the design of SCOOT. These results

support that motivation.

114

Wave Two

Table 5.24: Mean Results For Constructs (Wave Two)

Table 5.25: T-test Comparison For Constructs (Wave Two)

As shown in Table 5.24, only one of the three constructs measured (Perceived

Ease of Use) was signi�cantly higher for SCOOT than for C++. Both languages

were rated similarly in the other two constructs. The di�erence in Perceived

Ease of Use is signi�cant at the 95% con�dence level, as shown in table 5.25.

These results are consistent with those of wave one.

115

Table 5.27: Preliminary Questionnaire Correlations (Wave Two)

Table 5.26: Correlation Between Task Performance And Constructs (Wave Two)

Table 5.26 show that, as was found in wave one, there appears to be

signi�cant correlations between Perceived Ease of Use and all code writing

activities.

In wave two a short (three question) questionnaire was administered to

116

participants before the programming tasks. This was done to �nd a link between

expectations and experience. As can be seen in Table 5.27 there were signi�cant

correlations found between a participant's expectation that they would complete

the task quickly, and the success rate for the �rst programming task. The same

expectation was also linked to their Perceived Ease of Use, which has already

been linked to the success rate for all code writing tasks. It should also be noted

that Expected Interest is linked to Perceived Enjoyment. Though this has not

been linked to performance, it does improve the users experience. While it lies

out of the scope of this project, it seems worth investigating the link between

the user expectations of a language or tool, and their learning experience. If

a link is found then a core part of all early programming curricula should be

designed to improve student expectations.

It should be noted here that Expected Enjoyment was positively correlated

to Debugging Time, which indicated that participants who expected to enjoy

the task, generally took longer to complete the debugging task.

5.3 Qualitative

5.3.1 Writing Tasks

In the �rst round of testing it was intended to assess the correctness of code

written during the writing tasks. This proved to be an essentially subjective

task, however, and so this went no further than the initial round of testing.

The fundamental problem encountered was one of determining the �cause� of an

error. It was not possible to objectively measure why a participant had made a

particular error, and so the results of this analysis were not useful. In the end

it was decided to simply record the number of participants who completed the

tasks, and those who did not.

117

Table 5.28: Demographic Data (Wave One)

Table 5.29: Mean Intent to Continue Using Or Recommend (Wave One)

5.3.2 Reading Task

The �rst wave of participants were given a short piece of code, and asked to

describe its function. This proved insu�cient for any meaningful comparison,

since some participants answered in such a way as to suggest they understood the

function of the code, but without being explicit. It was also di�cult to reliably

measure the �correctness� of their response in some cases, and to determine

whether some errors of understanding were more signi�cant than others.

5.3.3 Demographic Trends

In addition to the survey questions focusing on the constructs that were

measured, background demographic data on the participants was also collected.

Wave One

As can be clearly seen in Table 5.28, there were no signi�cant di�erences in the

general make up of the two groups used in the testing process. Both groups had

similar breakdowns by gender, familiarity with English and with computers.

No correlations of any kind were found between these results and any other

collected data. The �nal stage of the questionnaire asked participants if they

planned to continue using the language/tool they had used, and if they would

recommend it to high school or university students.

118

Table 5.30: T-test Comparison For Intent Or Recommendation (Wave One)

Table 5.31: Demographic Data (Wave Two)

Table 5.32: Mean Intent to Continue Using Or Recommend (Wave Two)

As can be seen in Table 5.29 there were more participants who would

recommend SCOOT for High School students, than C++. This di�erence

is signi�cant at the 95% con�dence level. No other signi�cant di�erences in

recommendations were found.

Wave Two

As can be clearly seen in Table 5.16, there were no signi�cant di�erences in the

general make up of the two groups used in the testing process. Both groups had

similar breakdowns by gender, familiarity with English and with computers.

No correlations of any kind were found between these results and any other

collected data. The �nal stage of the questionnaire asked participants if they

planned to continue using the language/tool they had used, and if they would

recommend it to high school or university students.

119

Table 5.33: T-test Comparison For Intent Or Recommendation (Wave Two)

As can be seen in Table 5.17 there were more participants who would

recommend SCOOT for High School students, than C++. This di�erence

is signi�cant at the 95% con�dence level. No other signi�cant di�erences in

recommendations were found.

5.3.4 Focus Groups

After each session there was a short discussion time, during which participants

were free to o�er any opinions, suggestions or thoughts about their experiences

with the languages. Eight main questions were asked of each group, with room

at the end for any other thoughts, and they are discussed here.

Wave One

What was interesting? Participants in wave one found nothing in particular

interesting with either language. Some of the SCOOT participants did �nd the

syntax of SCOOT a helpful change from a more formal language, but otherwise

not much was mentioned here.

What was fun? Participants familiar with C++ who were using SCOOT

found it fun to see another language, particularly one with such a di�erent

syntax. Those participants using C++ who were already familiar with it did

not �nd any of the tasks fun. Most expressed the view that they felt that they

were being tested, not the language, despite care taken by the researchers to

120

clarify this point. This may be linked to another point raised in the last part of

this section.

What was easy? Most participants in both groups found the reading task

easier than writing, saying that it was easier not to have to think of what to do,

but just to read code and think it through. Participants in the SCOOT group

said that the �rst writing task was quite easy, but that the di�culty jumped

too high for the second task. Participants in most groups reported that the

handouts given (showing simple examples of code) were very useful, and made

writing code easier. These �ndings are as expected, given similar results in

[Lister et al., 2006a].

What was di�cult? Without a doubt, this question was the most discussed

question across both groups of participants. The �rst round of C++ participants

found that they couldn't remember basic programming concepts, even with their

programming experience. Even though they had access to an outline of syntax

examples (like all groups) they felt, for some reason, that they were being tested,

and that they needed to complete the tasks without any help. In addition to this

mentality, they also felt that the task should be harder than it was (thinking

�create a class... surely it's not that simple�) and so they added complexity that

only confused themselves.

There was also a desire amongst this group to ensure that what they created

was �useful�, which none of the simple tasks really were. This meant that a

participant asked to create and test an employee class would not create a simple

test program (instantiate some employees, add data, test functions) but would

instead try and create a fully functional employee management system, including

pay systems, promotions and so on, which was far outside the scope of what

was asked.

Participants with C++ experience who used SCOOT, on the other hand,

found syntactic rules (like which keywords are capitalised) the trickiest thing to

learn. Participants also reported some di�culty in remembering which blocks to

121

close and in what order. SCOOT requires programmers to end di�erent blocks

(method, conditional, loop) with di�erent commands. In C++ they simply put

a close brace, and the compiler closes the appropriate block. They were not

used to having to explicitly think about the block structure of their programs.

They also found the inability to edit code frustrating, which is a limitation of

the SCOOT editor.

Was there a �light bulb moment�, and what was it? Neither the C++

nor the SCOOT participants in the �rst round of testing reported anything like

this.

What was frustrating? C++ participants found the whole task frustrating,

speci�cally citing classes as being �too hard� and error messages as �useless�.

Participants using SCOOT found the inability to edit a block of code (such as

a method or a loop) frustrating, since being able to �x a minor typo would

save rewriting several lines of code. SCOOT participants also reported some

di�culty identifying the relationship between inputs and outputs in the code

history.

Any other suggestions/thoughts? C++ participants seemed to �nd the

idea of ��xing� or �improving� C++ confusing. There was a prevailing attitude

amongst them that C++ was �good� and that any di�culty they had in using

it was their failing. They also said that �programming should be hard�. While

this certainly provides a sense of achievement once a person can program, it

may in fact be a hurdle to novice programmers. This issue lies in the �eld of

programming curriculum design, however, and is far outside the scope of this

project.

SCOOT participants suggested that inputs be more clearly linked to outputs

in the code history, and that they be able to save, load and edit their code.

122

Wave Two

What was interesting? Participants experiencing C++ for the �rst time

found the whole idea of programming interesting, as it gave them the chance to

see �behind the screen�. Participants seeing SCOOT with no prior programming

experience also found it interesting to see how computers worked, and to �nd

that programming was not as di�cult as they had thought.

What was fun? Students seeing C++ for the �rst time found the process of

writing code which worked very satisfying, though they weren't sure it could be

called fun. New programmers using SCOOT found the whole process enjoyable.

They found the act of writing programs exciting, and found it fun to see how

programs could be written. They also said it was good to see that programming

was not �just for geeks� and that computers were not �very clever boxes�. Some

students pointed out that seeing a tool like SCOOT helped remove the �magic�

around the computer.

What was easy? Most participants in both groups found the reading task

easier than writing, saying that it was easier not to have to think of what to

do, but just to read code and think it through. As with Wave One, participants

using SCOOT said that the �rst writing task was quite easy, but that the

di�culty jumped too high for the second task. Participants in both groups

reported that the handouts given (showing simple examples of code) were

very useful, and made writing code easier, just as was reported by Wave one

participants.

What was di�cult? Again, this question was the most discussed question

across both groups of participants.

The C++ participants, who had no prior programming experience, reported

very di�erent issues to those in wave one. This group found it hard to complete

tasks in the time allocated, and found the syntax of C++ very di�cult to

123

understand. The most confusing things for this group were reported to be

identifying keywords, and remembering when to use semi-colons.

The second round of SCOOT participants reported the most di�culty in

knowing which commands to use in which circumstances, and in completing

more complex tasks, such as having a conditional block inside a method being

added to an object.

It is worth remembering that both groups (C++ and SCOOT) in this

wave of testing had no prior programming experience, and were shown object

creation/manipulation, methods, loops and conditionals in a single 5-6 hour

session. A similar amount of material would be covered in 5-6 weeks of an

introductory programming course.

Was there a �light bulb moment�, and what was it? The C++

participants said they felt like they were getting there, but no-one felt that

they had �got it�. SCOOT participants reported that they thought they had it

early on, during the �rst task, but then lost con�dence during the second task

which got much harder much faster than task one.

What was frustrating? C++ participants found that they did not have the

time to learn what they needed to in order to feel con�dent completing the

tasks. Participants using SCOOT found the inability to edit a block of code

(such as a method or a loop) frustrating, as was found in Wave One. SCOOT

participants also reported some di�culty identifying the relationship between

inputs and outputs in the code history.

Any other suggestions/thoughts? The C++ participants suggested that

case-sensitivity be removed, and that compiler error messages be more useful to

beginners. just as with Wave One, SCOOT users suggested that inputs be more

clearly linked to outputs in the code history, and that they be able to save, load

and edit their code.

124

Chapter 6

Discussion

6.1 Summary and Outcomes

Learning to program is a di�cult task, and while this task cannot necessarily

be made easy with a well designed language or IDE, it can certainly be made

harder with a bad one. Cognitive Load Theory (CLT) [Chalmers, 2003] suggests

that it is necessary to remove as much extrinsic load as possible, freeing novice

programmers to focus on learning principles of programming rather than an

interface and a language. While there are many languages designed to be easy

to use, and many OO languages, a need for an OO programming language,

explicitly designed to be a stepping stone to other languages, was identi�ed.

SCOOT was designed as a teaching tool to meet this need. SCOOT

commands are English-like in syntax, while still requiring users to follow simple

syntactic rules, similar to those found in other languages. It is interpreted,

similar to Python, which allows users to build classes dynamically, adding and

removing elements on the �y. In order to test the ways in which SCOOT users

learned to program it was compared to C++ in a series of tasks including code

reading, debugging and writing. Additionally a short questionnaire and focus

group was conducted, to assess the experience of using the language or tool.

This �rst step in testing the hypotheses was to develop a working prototype

125

of SCOOT, and in order to do that the design principles needed to be �rmly

established. A survey of the literature indicated that while many languages

had been developed to teach programming, most seemed to either rede�ne

programming to remove code altogether (as in Alice 2.0, SCC) or to create

a language that, whilst easy to learn, attempted to be a full language in its own

right, rather than a stepping stone to other languages. Only one language found

(GRAIL) followed a similar design approach to that developed for SCOOT.

GRAIL's developers focused on creating a language that would maintain a

textual interface and focus on being (in their words) a �zeroth� language, as

a stepping stone to other languages.

When discussing the design of a new tool, however, it is not enough to simply

discuss the commands. A key component of any teaching tool is the environment

used by the learners. Some languages, such as C++ and Java, have multiple

environments, which can be tailored to suit the needs of their users. Other

languages, like Alice and SCC have a single interface, with less customisability.

Since the goal of SCOOT was to merely be a teaching tool acting as a stepping

stone to other languages it was decided to create an interface with minimal

clutter, and very limited menus. There would be a single �eld for code entry,

a panel showing the history of entered code, and a second panel showing the

results of those commands. A single button would be used to execute code

which had been entered. By keeping the interface as simple and minimalistic as

possible, the extrinsic load on the task of programming would be signi�cantly

reduced.

The programming language GRAIL has a very similar approach in terms of

language design. However, there is one signi�cant area in which SCOOT di�ers

from the design of GRAIL, and that is the introduction of objects. GRAIL's

developers do not support the early introduction of objects, but based on

Papert's Continuity Principle it is the argument of this dissertation that moving

objects to the beginning of a programmers learning makes later transitions

easier. For this reason SCOOT di�ers signi�cantly from GRAIL in its approach

126

to programming and language structures. However, in terms of language design

principles SCOOT's approach was very similar. Those principles, discussed in

detail in Section 2.5, are :

� Predictability;

� Familiarity;

� Simplicity.

Once the design principles were in place a working prototype of SCOOT was

developed for testing. It was then necessary to design an experiment which

could test the hypotheses. An introductory seminar was designed to teach

participants the basics of object-oriented programming, using either SCOOT

or C++ to demonstrate the concepts. After this session participants worked

through two programming tasks, as well as a reading and debugging task. Their

performance, and the time to complete the tasks were measured. After this

the participants completed a short questionnaire which used three constructs

to measure their experience. These three constructs align with the three core

hypotheses introduced in Chapter Two. The times to complete each task and the

performance of the individual tasks were used to measure the three secondary

hypotheses.

6.2 General Conclusions

6.2.1 Quantitative Observations

Wave One

On average participants took signi�cantly less time to complete the �rst

programming task, as well as the reading and debugging task, when using

SCOOT rather than C++. Once participants moved on to the second

programming task, however, this di�erence faded. For the �rst programming

task the SCOOT group averaged eleven to twelve minutes, while the C++

127

group averaged over �fty-�ve minutes. Additionally only four of the fourteen

C++ participants were able to complete the �rst writing task, while all �fteen

SCOOT participants were able to complete it. As mentioned already, the time

di�erence for the second programming task was not signi�cant, with both groups

taking around twenty-eight minutes to complete. It should be noted, however,

that only four of fourteen C++ users completed task two, while seven of �fteen

SCOOT users were able to complete this task.

SCOOT users also took signi�cantly less time to complete the reading task,

with the average participant taking eleven to twelve minutes, compared to

twenty minutes for the C++ group. As was discussed in Chapter 4, only the last

group of participants were discreetly measured during the reading task. Each

group answered �ve questions, but no signi�cant di�erences were found in the

correctness of the answers, with the C++ group averaging 3.2 and the SCOOT

group averaging 4.1.

Finally there was also a signi�cant time reduction for SCOOT users in the

debugging task, as well as a signi�cant increase in success at �nding errors.

The SCOOT participants averaged just over nine minutes to complete the task,

typically missing one or two errors. C++ users, on the other hand, took almost

eighteen minutes (on average) to complete the task, and typically missed around

�ve errors. In addition to measuring time to complete and the number of errors

found, the number of errors incorrectly identi�ed (that is valid code which

participants identi�ed as invalid) was also measured. There was no signi�cant

di�erence between the two groups when it came to incorrectly identifying errors.

Wave Two

On average participants took signi�cantly less time to complete the �rst

programming task, as well as the reading and debugging task, when using

SCOOT rather than C++. Once participants moved on to the second

programming task, however, this di�erence faded. For the �rst programming

task the SCOOT group averaged eleven to twelve minutes, while the C++

128

group averaged over �fty-�ve minutes. Additionally only four of the fourteen

C++ participants were able to complete the �rst writing task, while all �fteen

SCOOT participants were able to complete it. As mentioned already, the time

di�erence for the second programming task was not signi�cant, with both groups

taking around twenty-eight minutes to complete. It should be noted, however,

that only four of fourteen C++ users completed task two, while seven of �fteen

SCOOT users were able to complete this task.

SCOOT users also took signi�cantly less time to complete the reading task,

with the average participant taking eleven to twelve minutes, compared to

twenty minutes for the C++ group. As was discussed in Chapter 4, only the last

group of participants were discreetly measured during the reading task. Each

group answered �ve questions, but no signi�cant di�erences were found in the

correctness of the answers, with the C++ group averaging 3.2 and the SCOOT

group averaging 4.1.

Finally there was also a signi�cant time reduction for SCOOT users in the

debugging task, as well as a signi�cant increase in success at �nding errors.

The SCOOT participants averaged just over nine minutes to complete the task,

typically missing one or two errors. C++ users, on the other hand, took almost

eighteen minutes (on average) to complete the task, and typically missed around

�ve errors. In addition to measuring time to complete and the number of errors

found, the number of errors incorrectly identi�ed (that is valid code which

participants identi�ed as invalid) was also measured. There was no signi�cant

di�erence between the two groups when it came to incorrectly identifying errors.

6.2.2 Qualitative Observations

Observation during these sessions suggested that people found SCOOT much

less frustrating and complex than C++, an observation supported by participant

responses in the survey. A common issue observed in C++ users, and not in

SCOOT users, was a tendency to overcomplicate a task. In one notable example

participants were to write a class method which increased a class attribute by

129

500. One particular C++ participant wrote a function which prompted the

user for the amount to increase by, and read that value from the keyboard.

This input value was then compared to 500, and if it was di�erent an error

message appeared and the program asked again. If the user entered 500 then

that value was added to the internal class attribute. In this example a function

which should have been one line long, became nine lines of code, including a

loop and a conditional.

6.2.3 Discussion

Wave One

SCOOT Participants

The �rst round of participants for both SCOOT and C++ were drawn from the

�rst year programming course, which taught C++. In discussion with this group

there was a prevailing attitude that SCOOT didn't really feel like programming,

because �programming should be di�cult�. This attitude was unanimous within

the group, as was the attitude that any problems they had using C++ were their

fault, because C++ was good, and therefore couldn't be improved.

Participants found that the connection between what they wanted to do and

how to do it seemed simpler with SCOOT than with C++. Feedback during

the survey and the discussion after the session also supported this observation.

Several participants reported that the command structures of SCOOT made it

easy to know when to use certain constructs, while others noted the opposite

issue with C++.

Some participants in the SCOOT group found the syntax requirements of

SCOOT frustrating in the early stages of the workshop. Case sensitivity and the

semi-colon at the end of a command were singled out as particularly irritating.

Each line in SCOOT is entered and evaluated individually, so participants had

to correct each line as they went. This was singled out as exceptionally irritating

in the early tasks. Interestingly, this irritation led to participants self-checking

130

their code before entering it, and not relying on the SCOOT environment to

�x their mistakes for them. This is the opposite of what was seen in the C++

groups, where people would simply compile �rst and then �x errors as they

were told about them. This self-checking was mentioned during the discussion

by several students as being a good habit, and those with some programming

experience saw the bene�ts of reading their own code before running it.

A common request from SCOOT users was for a clearer visual link between

inputs and outputs. A suggestion from the developers, which seemed to please

most participants, was to replace the current two-window display with a single

window, showing input commands in bold, with the response output indented

and in normal font below it. This design change will be implemented in a later

version of SCOOT.

A more critical issue raised by many SCOOT users was the inability to edit a

block of code, such as a class method or loop. In the current version of SCOOT,

if an error is found in a class method, then the method must be removed,

and re-entered entirely. The initial vision for SCOOT was only for small scale

projects, so this was not seen as an issue of critical importance, however it is

apparent from the testing process that reducing novice frustration is important

to improving their learning experience. Therefore a future version of SCOOT

will allow for blocks of code, including loops, conditionals and class methods, to

be edited after they have been created. A related issue was the inability to save

or load a program once it was written. This is due to the nature of the SCOOT

environment, but inclusion of this feature will be looked at for a later revision

of the environment.

A smaller request from participants, which will be implemented in a future

revision of SCOOT, is to improve the window displaying the names of all objects

currently in the system. In a future revision, clicking on one of these will display

a list of its attributes and methods.

131

C++ Participants

As discussed above, those participants drawn from the programming course

did not o�er any critical feedback on C++ as a language. Most people also

found the error messages unhelpful, since they were too technical and confusing.

This is likely to be a common problem when using any commercial grade

language as a novice language. Error messages in these environments are

written for programmers, and not for novices. While a case can certainly be

made that understanding those error messages improves ones understanding of a

programming language's internal behaviour, it seems a lot to add to the burden

of a novice programmer.

Wave Two

SCOOT Participants

Most participants reported that the command structures of SCOOT made it

easy to know when to use certain constructs, however many found the syntax

requirements of SCOOT frustrating in the early stages of the workshop. Case

sensitivity and the semi-colon at the end of a command were singled out as

particularly irritating.

As with Wave One, SCOOT users requested a clearer visual link between

inputs and outputs, as well as the ability to save and load their programs. This

has been discussed above.

C++ Participants

C++ users from non-programming backgrounds found several issues during their

time with it. Firstly, people were frustrated that a simple error (such as missing

a semi-colon, or spelling a variable name incorrectly) would not be picked up

until they attempted to compile their code. This is an interesting reversal of

the attitude displayed by SCOOT participants regarding the identi�cation of

simple errors immediately.

132

Participants also complained that simply getting started creating an object

took a long time (around ten minutes) before they were even able to begin

compiling and testing to see where they had gone wrong. Most people also

found the error messages unhelpful, since they were too technical and confusing.

This has already been discussed.

Common Findings

6.2.4 Hypotheses

As has been mentioned, the three primary hypotheses are :

� H1 - SCOOT is seen by novice programmers as easier to use than C++,

written in a customised version of Notepad++ (supported).

� H2 - SCOOT is seen by novice programmers as more useful than C++,

written in a customised version of Notepad++ (not-supported).

� H3 - SCOOT is seen by novice programmers as more enjoyable than C++,

written in a customised version of Notepad++ (not-supported).

and the secondary hypotheses are :

� H4 - When given a simple programming task, users of SCOOT are able

to write a correct solution more quickly than users of C++ (supported).

� H5 - When given a simple piece of code, users of SCOOT are able to

correctly understand it more quickly than users of C++ (supported).

� H6 - When given a piece of code with errors in it, users of SCOOT are

able to identify and correct the errors more quickly than users of C++

(supported).

As shown in Table 5.11 SCOOT was seen by students as signi�cantly easier to

use than C++, but neither construct relating to H2 or H3 showed a signi�cant

di�erence based on the language or tool used. This suggests that while SCOOT's

design led to a set of commands which is easier to use, there is no di�erence

133

in novice perceptions of usefulness or enjoyment. As has been shown, however,

SCOOT users performed signi�cantly better than C++ users during the simpler

programming task. This trend continued for the reading task, with a signi�cant

reduction in the time to complete the task for users of SCOOT. Similarly, users

of SCOOT were able to �nd more errors, and �nd them faster, than users of

C++ during the debugging task. However no signi�cant di�erence in completion

time was found for the more complex programming task.

Signi�cant correlations were found between perceived ease of use and success

in all code writing tasks. This suggests a correlation between improving ease

of use in a novice programming tool and the ability of learners to write correct

code. Further work must be done here to determine if such a correlation exits,

and it is expected that this will be examined as part of a long term study on

the impact of SCOOT.

6.3 Future Work

In this work a prototype of SCOOT was evaluated, and several critical

improvements that need to be made were identi�ed. There are some changes

that need to be made to the structure of SCOOT commands, especially

improvements to ending a method, and of more explicitly linking a comparison

to the branch/iteration that it a�ects. The most critical change that must be

made to SCOOT is to add the ability to edit code after it has been entered. This

weakness is a remnant of the early concept of SCOOT, allowing for immediate

feedback on code as it was entered. As the idea for SCOOT expanded to include

branches and iterations, it has become clear that this is an essential feature that

must be included in any future revision of SCOOT.

As a result of the inclusion of code editing capabilities SCOOT will also

need to handle runtime errors, and provide meaningful feedback to users in this

regard. Current SCOOT errors are directly related to the line of code being

evaluated, and are limited to syntax errors only. Runtime errors must provide a

134

similar level of detail and clarity in order to aid users in �nding and correcting

these errors.

Other than modi�cations to SCOOT itself there are several avenues of

research which should be investigated as a result of this work. A long

term study would allow for the introduction of programming concepts at a

more sedate pace, and thus would more accurately measure the impact of

SCOOT on advanced programming concepts. It would also be interesting to

evaluate participant understanding of programming using the work given in

[Kunkle and Allen, 2016].

The possibility of a psychological link has already been suggested, resulting

in complex code because the language seems complex. This may be an

interesting direction for future research into the teaching and learning of

computer programming languages.

Another interesting direction for future research would be into whether the

attitude shown by the programming students (that C++ is innately good and

that programming should be hard) is commonly held amongst people who enrol

in programming courses, or if this attitude is instead encouraged by introductory

programming courses.

The possibility of a positive correlation between student experience of

a programming environment and their learning outcomes has already been

mentioned, and further work should be done to determine if such a link exists.

Finally, this study suggests that a language designed to be easier to use

for novices has a signi�cant positive impact on the learning experience, with

SCOOT users performing faster and with more accuracy on almost all tasks.

More research into the link between ease-of-use of a learning tool, and learning

outcomes may illuminate this connection for future work in the �eld of novice

programming languages.

135

6.4 Final Conclusions

In searching the literature in the �eld of novice programming languages, the need

for an OO novice programming teaching tool, which used a textual language for

code entry, became apparent. To ful�l this need SCOOT, the Student Centric

Object-Oriented Teaching-tool was developed. In testing this tool it became

clear that users generally found it easier to use SCOOT than an alternative

language, C++. Additionally SCOOT users were able to complete code reading,

debugging and simple writing tasks faster, and with more success than C++

users. While a long term, large scale study will clarify the nature of the link

between ease-of-use and programming success, it seems that a tool designed

to be easier to use is more successful at teaching, and reinforcing, common

programming concepts and practices. The intent of this research project was to

examine the e�ectiveness of a textual OO language, with a simple, consistent

syntax, designed to lead into other languages. This research has shown that

textual languages are still essential for novice programmers, and that a simple

syntax can help novices learn programming principles without unnecessary

overheads.

136

Bibliography

[Adams, 2007] Adams, J. C. (2007). Alice, middle schoolers & the imaginary

worlds camps. In Proceedings of the 38th SIGCSE technical symposium on

Computer science education, pages 307�311, Covington, Kentucky, USA.

ACM.

[Andersen et al., 2016] Andersen, S. A. W., Mikkelsen, P. T., Konge, L.,

Cayé-Thomasen, P., and Sørensen, M. S. (2016). The e�ect of implementing

cognitive load theory-based design principles in virtual reality simulation

training of surgical skills: a randomized controlled trial. Advances in

Simulation, 1(1):20.

[Backus and Heising, 1964] Backus, J. W. and Heising, W. P. (1964). Fortran.

IEEE Transactions on Electronic Computers, EC-13(4):382�385.

[Ben-Ari, 2011] Ben-Ari, M. M. (2011). Moocs on introductory programming:

a travelogue. ACM Inroads, 4(2):58�61.

[Black et al., 2010] Black, A., Bruce, K. B., and Noble, J. (2010). Panel:

designing the next educational programming language. In Proceedings of the

ACM international conference companion on Object oriented programming

systems languages and applications companion, pages 201�204. ACM.

[Blackwell and Bilotta, 2000] Blackwell, A. F. and Bilotta, E., editors (2000).

The E�ect of Programming Language on Error Rates of Novice Programmers,

number Corigliano Calabro, Italy.

137

[Bloch, 2003] Bloch, S. (2003). Teaching linked lists and recursion without

conditionals or null. In Journal of Computing in Small Colleges, volume 18.

[Bloch, 2000] Bloch, S. A. (2000). Scheme and java in the �rst year. In Journal

of Computing in Small Colleges, volume 15, pages 157�165.

[Braught and Wahls, 2008] Braught, G. and Wahls, T. (2008). Teaching objects

in context. Journal of Computing in Small Colleges, 23(5):101�109.

[Brown, 2008] Brown, P. H. (2008). Some �eld experience with alice. Journal

of Computing in Small Colleges, 24(2):213�219.

[Calisir and Calisir, 2004] Calisir, F. and Calisir, F. (2004). The relation of

interface usability characteristics, perceived usefulness, and perceived ease of

use to end-user satisfaction with enterprise resource planning (erp) systems.

Computers in Human Behavior, 20(4):505 � 515.

[Caspersen and Kolling, 2009] Caspersen, M. E. and Kolling, M. (2009).

Stream: A �rst programming process. ACM Transactions on Computing

Education (TOCE), 9(1):4.

[Chalmers, 2003] Chalmers, P. (2003). The role of cognitive theory in

human-computer interface. Computers in Human Behavior, 19(5):593�607.

[Chao, 2016] Chao, P.-Y. (2016). Exploring students' computational practice,

design and performance of problem-solving through a visual programming

environment. Computers & Education, 95:202 � 215.

[Cheung et al., 2009] Cheung, J. C., Ngai, G., Chan, S. C., and Lau, W. W.

(2009). Filling the gap in programming instruction: a text-enhanced graphical

programming environment for junior high students. In ACM SIGCSE

Bulletin, volume 41, pages 276�280. ACM.

[chuen Lin et al,] chuen Lin et al, J. M. Teaching computer programming in

elementary schools: A pilot study.

138

[Cooper et al., 2003] Cooper, S., Dann, W., and Pausch, R. (2003). Teaching

objects-�rst in introductory computer science. In SIGCSE '03: Proceedings of

the 34th SIGCSE technical symposium on Computer science education, pages

191�195, New York, NY, USA. ACM.

[Costa and Miranda, 2017] Costa, J. M. and Miranda, G. L. (2017). Relation

between alice software and programming learning: A systematic review of

the literature and meta-analysis. British Journal of Educational Technology,

48(6):1464�1474.

[Cypher and Smith, 1995] Cypher, A. and Smith, D. C. (1995). Kidsim: end

user programming of simulations. In Conference companion on Human factors

in computing systems, pages 35�36, Denver, Colorado, United States. ACM.

[Dann et al., 2008] Dann, W. P., Cooper, S., and Pausch, R. (2008). Learning

To Program with Alice. Prentice Hall Press, Upper Saddle River, NJ, USA.

[Davis, 1989] Davis, F. D. (1989). Perceived usefulness, perceived ease of use,

and user acceptance of information technology. MIS Quarterly, 13(3):pp.

319�340.

[Davis et al., 1992] Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1992).

Extrinsic and intrinsic motivation to use computers in the workplace. Journal

of Applied Social Psychology, 22(14):1111�1132.

[De Raadt et al., 2002] De Raadt, M., Watson, R., and Toleman, M. (2002).

Language trends in introductory programming courses. In Proceedings

of the 2002 Informing Science+ Information Technology Education Joint

Conference (InSITE 2002), pages 229�337. Informing Science Institute.

[Diwan et al., 2004] Diwan, A., Waite, W. M., Jackson, M. H., and Dickerson, J.

(2004). Pl-detective: a system for teaching programming language concepts.

Journal on Educational Resources in Computing (JERIC), 4(4):1.

139

[Dougherty, 2007] Dougherty, J. P. (2007). Concept visualization in cs0 using

alice. Journal of Computing in Small Colleges, 22(3):145�152.

[Feinberg and Murphy, 2000] Feinberg, S. and Murphy, M. (2000). Applying

cognitive load theory to the design of web-based instruction. In

Proceedings of IEEE professional communication society international

professional communication conference and Proceedings of the 18th annual

ACM international conference on Computer documentation: technology &

teamwork, IPCC/SIGDOC '00, pages 353�360, Piscataway, NJ, USA. IEEE

Educational Activities Department.

[Felleisen et al.,] Felleisen, M., Findler, R. B., Flatt, M., and Krishnamurthi, S.

The teachscheme! project: Computing and programming for every student.

Electronic version available from http://www.ccs.neu.edu/scheme/pubs/.

[Feurzeig et al., 1970] Feurzeig, W., Papert, S., Bloom, M., Grant, R., and

Solomon, C. (1970). Programming-languages as a conceptual framework for

teaching mathematics. SIGCUE Outlook, 4:13�17.

[Findler et al., 2002] Findler, R. B., Clements, J., Flanagan, C., Flatt, M.,

Krishnamurthi, S., Steckler, P., and Felleisen, M. (2002). Drscheme: a

programming environment for scheme. J. Funct. Program., 12(2):159�182.

[Gal-Ezer et al., 2009] Gal-Ezer, J., Vilner, T., and Zur, E. (2009). Has the

paradigm shift in cs1 a harmful e�ect on data structures courses: a case

study. In Proceedings of the 40th ACM technical symposium on Computer

science education, pages 126�130, Chattanooga, TN, USA. ACM.

[Garner, 2004] Garner, S. (2004). The use of a code restructuring tool in

the learning of programming. In ITiCSE '04: Proceedings of the 9th

annual SIGCSE conference on Innovation and technology in computer science

education, pages 277�277, New York, NY, USA. ACM.

[Goldwasser and Letscher, 2008] Goldwasser, M. H. and Letscher, D. (2008).

Teaching an object-oriented cs1 with python. In Proceedings of the

140

13th annual conference on Innovation and technology in computer science

education, pages 42�46, Madrid, Spain. ACM.

[Good and Howland, 2015] Good, J. and Howland, K. (2015). Natural language

and programming: Designing e�ective environments for novices. In

Visual Languages and Human-Centric Computing (VL/HCC), 2015 IEEE

Symposium on, pages 225�233.

[Grandell et al., 2006] Grandell, L., Peltomäki, M., Back, R.-J., and Salakoski,

T. (2006). Why complicate things?: introducing programming in high

school using python. In Proceedings of the 8th Australasian Conference on

Computing Education - Volume 52, ACE '06, pages 71�80, Darlinghurst,

Australia, Australia. Australian Computer Society, Inc.

[Haiman, 1985] Haiman, J. (1985). Iconicity in syntax: proceedings of a

Symposium on iconicity in syntax, Stanford, June 24-6, 1983, volume 6. John

Benjamins Publishing.

[Hayes, 1921] Hayes, M.H.S & Patterson, D. (1921). Experimental devolopment

of the graphic rating scale. Psychological Bulletin, 18:98�99.

[Hoare, 1986] Hoare, P. (1986). Adults' attitudes to children with epilepsy:

The use of a visual analogue scale questionnaire. Journal of Psychosomatic

Research, 30(4):471 � 479.

[Holt, 1994] Holt, R. C. (1994). Introducing undergraduates to object

orientation using the turing language. Dept. of Computer Science, University

of Toronto, 25:324�328.

[Holt and Cordy, 1988] Holt, R. C. and Cordy, J. R. (1988). The turing

programming language. Commun. ACM, 31(12):1410�1423.

[Holt et al., 1987] Holt, R. C., Matthews, P. A., Rosselet, J. A., and Cordy,

J. R. (1987). The Turing programming language: design and de�nition.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

141

[Howe, 1982] Howe, J. e. a. (1982). Teaching Mathematics Through

Programming in the Classroom. DAI research paper. Department of Arti�cial

Intelligence, University of Edinburgh.

[Howland and Good, 2015] Howland, K. and Good, J. (2015). Learning to

communicate computationally with �ip: A bi-modal programming language

for game creation. Computers & Education, 80:224 � 240.

[Ivanovi¢ and Pitnerl, 2011] Ivanovi¢, M. and Pitnerl, T. (2011).

Technology-enhanced learning for java programming: Duo cum faciunt

idem, non est idem. ACM Inroads, 2(1):55�63.

[Janzen et al., 2013] Janzen, D. S., Clements, J., and Hilton, M. (2013). An

evaluation of interactive test-driven labs with webide in cs0. In Proceedings of

the 2013 International Conference on Software Engineering, pages 1090�1098.

IEEE Press.

[Jonas, 2013] Jonas, M. (2013). Teaching introductory progamming using

multiplayer board game strategies in greenfoot. Journal of Computing

Sciences in Colleges, 28(6):19�25.

[Kelleher and Pausch, 2005] Kelleher, C. and Pausch, R. (2005). Lowering the

barriers to programming: A taxonomy of programming environments and

languages for novice programmers. ACM Comput. Surv., 37(2):83�137.

[Kelleher et al., 2007] Kelleher, C., Pausch, R., and Kiesler, S. (2007).

Storytelling alice motivates middle school girls to learn computer

programming. In Proceedings of the SIGCHI conference on Human factors in

computing systems, pages 1455�1464, San Jose, California, USA. ACM.

[Kölling, 2010] Kölling, M. (2010). The greenfoot programming environment.

ACM Transactions on Computing Education (TOCE), 10(4):14.

[Kölling et al., 2015] Kölling, M., Brown, N. C. C., and Altadmri, A. (2015).

Frame-based editing: Easing the transition from blocks to text-based

142

programming. In Proceedings of the Workshop in Primary and Secondary

Computing Education, WiPSCE '15, pages 29�38, New York, NY, USA. ACM.

[Kruglyk and Lvov, 2012] Kruglyk, V. and Lvov, M. (2012). Choosing the �rst

educational programming language. In ICT in Education, Research, and

Industrial Applications: 8th International Conference, ICTERI 2012.

[Kunkle and Allen, 2016] Kunkle, W. M. and Allen, R. B. (2016). The

impact of di�erent teaching approaches and languages on student learning of

introductory programming concepts. Trans. Comput. Educ., 16(1):3:1�3:26.

[Laboratories and Kernighan, 1981] Laboratories, A. . T. B. and Kernighan,

B. (1981). Why Pascal is Not My Favorite Programming Language. Bell

Computing Science-TR�100. Bell Laboratories.

[Layman and Hall, 1988] Layman, J. and Hall, W. (1988). Logo: a cause for

concern. Comput. Educ., 12(1):107�112.

[Lister et al., 2006a] Lister, R., Berglund, A., Clear, T., Bergin, J.,

Garvin-Doxas, K., Hanks, B., Hitchner, L., Luxton-Reilly, A., Sanders,

K., Schulte, C., and Whalley, J. L. (2006a). Research perspectives on the

objects-early debate. In Working group reports on ITiCSE on Innovation

and technology in computer science education, pages 146�165, Bologna, Italy.

ACM.

[Lister et al., 2006b] Lister, R., Simon, B., Thompson, E., Whalley, J. L., and

Prasad, C. (2006b). Not seeing the forest for the trees: Novice programmers

and the solo taxonomy. SIGCSE Bull., 38(3):118�122.

[Lorenzen and Sattar, 2008] Lorenzen, T. and Sattar, A. (2008). Objects �rst

using alice to introduce object constructs in cs1. SIGCSE Bull., 40(2):62�64.

[Louca, 2004] Louca, L. (2004). Programming environments for young learners:

a comparison of their characteristics and students' use. In Proceedings of the

143

2004 conference on Interaction design and children: building a community,

pages 129�130, Maryland. ACM.

[Louca, 2005] Louca, L. (2005). The syntax or the story behind it?: a usability

study of student work with computer-based programming environments in

elementary science. In Proceedings of the SIGCHI conference on Human

factors in computing systems, pages 849�858, Portland, Oregon, USA. ACM.

[Malan and Leitner, 2007] Malan, D. J. and Leitner, H. H. (2007). Scratch for

budding computer scientists. In Proceedings of the 38th SIGCSE technical

symposium on Computer science education, pages 223�227, Covington,

Kentucky, USA. ACM.

[Maloney et al.,] Maloney, J., Resnick, M., Rusk, N., Silverman, B., and

Eastmond, E. The scratch programming language and environment.

[Maloney et al., 2008] Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., and

Rusk, N. (2008). Programming by choice: urban youth learning programming

with scratch. In Proceedings of the 39th SIGCSE technical symposium on

Computer science education, pages 367�371, Portland, OR, USA. ACM.

[Martin, 1996] Martin, J. L. (1996). Is turing a better language for teaching

programming than pascal? Honours Dissertation.

[McIver and Conway, 1996] McIver, L. and Conway, D. (1996). Seven deadly

sins of introductory programming language design. In Proceedings of the 1996

International Conference on Software Engineering: Education and Practice

(SE:EP '96), SEEP '96, pages 309�, Washington, DC, USA. IEEE Computer

Society.

[McIver and Conway, 1999] McIver, L. and Conway, D. (1999). Grail: A

zeroth programming language. In International Conference on Computers

in Education.

[Mellon,] Mellon, C. Alice 2.0 programming language.

144

[Microsoft,] Microsoft. Vs.net. Product website:

https://www.visualstudio.com/ Last accessed 29/6/2016, 3.00pm.

[Miller and Ranum, 2005] Miller, B. N. and Ranum, D. L. (2005). Teaching an

introductory computer science sequence with python.

[Mitchel Resnick and Eric Rosenbaum, 2009] Mitchel Resnick, J. M. and

Eric Rosenbaum, J. S. (2009). Scratch: Programming for everyone. ACM

Communications.

[Moons and De Backer, 2013] Moons, J. and De Backer, C. (2013). The design

and pilot evaluation of an interactive learning environment for introductory

programming in�uenced by cognitive load theory and constructivism.

Comput. Educ., 60(1):368�384.

[Mullins et al., 2009] Mullins, P., Whit�eld, D., and Conlon, M. (2009). Using

alice 2.0 as a �rst language. J. Comput. Small Coll., 24(3):136�143.

[Pane, 1998] Pane, J. F. (1998). Designing a programming system for children

with a focus on usability. In CHI 98 conference summary on Human factors

in computing systems, pages 62�63. ACM Press.

[Pane and Myers, 2002] Pane, J. F. and Myers, B. A. (2002). The impact

of human-centered features on the usability of a programming system for

children. In CHI '02 extended abstracts on Human factors in computing

systems, pages 684�685, Minneapolis, Minnesota, USA. ACM.

[Papert, 1980] Papert, S. (1980). Mindstorms: Children, Computers and

Powerful Ideas. The Harvester Press Limited.

[Parr, 1993] Parr, T. J. (1993). Obtaining Practical Variants Of LL(k) And

LR(k) For k>1 By Splitting The Atomic k-Tuple. PhD thesis, School of

Electrical Engineering, Purdue University.

[Parr, 1997] Parr, T. J. (1997). Language Translation Using PCCTS and C++.

Automata Publishing Company.

145

[Parr and Quong, 1995] Parr, T. J. and Quong, R. W. (1995). Antlr:

A predicated-ll(k) parser generator. Software�Practice and Experience,

25(7):789�810.

[Parsons, 1992] Parsons, T. W. (1992). Introduction to compiler construction.

Computer Science Press, Inc.

[Powers et al., 2007] Powers, K., Ecott, S., and Hirsh�eld, L. M. (2007).

Through the looking glass: teaching cs0 with alice. SIGCSE Bull.,

39(1):213�217.

[Rader et al., 1997] Rader, C., Brand, C., and Lewis, C. (1997). Degrees

of comprehension: children's understanding of a visual programming

environment. In CHI '97: Proceedings of the SIGCHI conference on Human

factors in computing systems, pages 351�358, New York, NY, USA. ACM.

[Raina Mason et al., 2015] Raina Mason, S. C. U., Graham Cooper, S. C. U.,

Barry Wilks, S. C. U., and Authors (2015). Using cognitive load theory

to select an environment for teaching mobile apps development. School of

Business and Tourism, page 47. Australain Computer Society.

[Reges, 2006] Reges, S. (2006). Back to basics in cs1 and cs2. In Proceedings of

the 37th SIGCSE technical symposium on Computer science education, pages

293�297, Houston, Texas, USA. ACM.

[Robins et al., 2003] Robins, A., Rountree, J., and Rountree, N. (2003).

Learning and teaching programming: A review and discussion. Computer

Science Education, 13(2):137.

[Rodger et al., 2009] Rodger, S. H., Hayes, J., Lezin, G., Qin, H., Nelson, D.,

Tucker, R., Lopez, M., Cooper, S., Dann, W., and Slater, D. (2009). Engaging

middle school teachers and students with alice in a diverse set of subjects.

In Proceedings of the 40th ACM technical symposium on Computer science

education, pages 271�275, Chattanooga, TN, USA. ACM.

146

[Rubin, 2013] Rubin, M. J. (2013). The e�ectiveness of live-coding to teach

introductory programming. In Proceeding of the 44th ACM technical

symposium on Computer science education, pages 651�656. ACM.

[Sáez-Lòpez et al., 2016] Sáez-Lòpez, J.-M., Romàn-Gonzàlez, M., and

Vàzquez-Cano, E. (2016). Visual programming languages integrated across

the curriculum in elementary school: A two year case study using scratch in

�ve schools. Computers & Education, 97:129 � 141.

[Sapounidis et al., 2015] Sapounidis, T., Demetriadis, S., and Stamelos, I.

(2015). Evaluating children performance with graphical and tangible robot

programming tools. Personal and Ubiquitous Computing, 19(1):225�237.

[Scripps and Sanner, 1999] Scripps, S. T. and Sanner, M. F. (1999). Python:

A programming language for software integration and development. J. Mol.

Graphics Mod, 17:57�61.

[Sim et al., 2006] Sim, G., MacFarlane, S., and Read, J. (2006). All work and

no play: Measuring fun, usability, and learning in software for children.

Computers & Education, 46(3):235 � 248.

[Smith et al., 1996] Smith, D. C., Cypher, A., and Schmucker, K. (1996).

Making programming easier for children. Interactions, 3(5):58�67.

[Smith et al., 1994] Smith, D. C., Cypher, A., and Spohrer, J. (1994). Kidsim:

programming agents without a programming language. Commun. ACM,

37(7):54�67.

[Smith et al., 2000] Smith, D. C., Cypher, A., and Tesler, L. (2000).

Programming by example: novice programming comes of age. Commun.

ACM, 43(3):75�81.

[Squires and Preece, 1996] Squires, D. and Preece, J. (1996). Usability and

learning: Evaluating the potential of educational software. Computers &

Education, 27(1):15 � 22.

147

[Stolee and Fristoe, 2011] Stolee, K. T. and Fristoe, T. (2011). Expressing

computer science concepts through kodu game lab. In Proceedings of the 42nd

ACM technical symposium on Computer science education, pages 99�104.

ACM.

[Tedford, 2008] Tedford, P. (2008). Teach with alice - and have fun!:

pre-conference workshop. J. Comput. Small Coll., 23(6):6�6.

[Teitelbaum and Reps, 1981] Teitelbaum, T. and Reps, T. (1981). The cornell

program synthesizer: a syntax-directed programming environment. Commun.

ACM, 24(9):563�573.

[Trigwell and Prosser, 1991] Trigwell, K. and Prosser, M. (1991). Improving

the quality of student learning: the in�uence of learning context and student

approaches to learning on learning outcomes. Higher Education, 22:251�266.

10.1007/BF00132290.

[Uysal, 2016] Uysal, M. P. (2016). Evaluation of learning environments

for object-oriented programming: measuring cognitive load with a

novel measurement technique. Interactive Learning Environments,

24(7):1590�1609.

[Weintrop and Wilensky,] Weintrop, D. and Wilensky, U. Bringing

blocks-based programming into high school computer science classrooms.

[Winslow, 1996] Winslow, L. E. (1996). Programming pedagogy - a

psychological overview. SIGCSE Bull., 28(3):17�22.

148

Appendix A

Testing Activities

A.1 Writing Task One

SCOOT

For this task, you will be writing code for two classes, a Car and an Employee.

Both of these classes will contain several attributes.

A Car will contain information about the model, production year, colour and

number of doors. You can choose any variable names you like, but note that

variable names cannot contain spaces

An Employee will contain a name, an employee ID, a department number and

a pay rate. These attributes can also be named as you choose, but should be

logical, and contain no spaces.

Once you've created these two classes, give the attributes some values and

display all class information to the screen. Note that SCOOT does not support

spaces inside strings, so all values must be a single word or number.

149

C++

For this task, you will be writing code for two classes, a Car and an Employee.

Both of these classes will contain several attributes.

A Car will contain information about the model, production year, colour and

number of doors. You can choose any variable names you like, but remember

that variable names cannot contain spaces.

An Employee will contain a name, an employee ID, a department number and

a pay rate. These attributes can also be named as you choose, but should be

logical, and contain no spaces.

Write a main program that creates an instance of each of these classes, and prints

their contents to the screen. The class constructors should set default values

for each of these classes. Add accessor functions to both objects to retrieve the

data, and print it to the screen from your main program, not inside the class.

A.2 Writing Task Two

SCOOT

Now we will add some useful behaviours to our Car and Employee classes.

First of all, we will add a method called Repaint to the Car object. Repaint

will be a simple method that checks the car's colour. If the colour is Red, then

the car will be repainted White.

Next we will add a method called PayRaise to the Employee object. The

PayRaise method will increase the PayRate by 500. Once this has been done, see

if you can add a method called MaxRaise which repeatedly calls the PayRaise

method while the PayRate is less than 15000.

Once you have added these methods to the Car and Employee objects, test them

all.

150

C++

Now we will add some useful behaviours to our Car and Employee classes.

First of all, we will add a method called Repaint to the Car object. Repaint

will be a simple method that checks the car's colour. If the colour is Red, then

the car will be repainted White.

Next we will add a method called PayRaise to the Employee object. The

PayRaise method will increase the PayRate by 500. Once this has been done, see

if you can add a method called MaxRaise which repeatedly calls the PayRaise

method while the PayRate is less than 15000.

Once you have added these methods to the Car and Employee objects, add code

to your main program which tests them all.

151

A.3 Reading Task

The reading task was presented to participants as shown below, along with the

questions that follow. Lines were numbered in the SCOOT code, and so were

lines and pages in the C++ code. The page and line numbers in the questions

were di�erent between SCOOT and C++ users but the questions were otherwise

identical.

SCOOT

A Person i s an Object ;

A Person has a Name ;

A Person has an Age ;

An Employee i s a Person ;

An Employee has an ID ;

An Employee has a Sa lary ;

Set Name o f Person to Tom;

Set Age o f Person to 58 ;

Set Name o f Employee to Bob ;

Set Age o f Employee to 42 ;

Set ID o f Employee to 112312;

Set Sa lary o f Employee to 23440 ;

Get Person ;

Get Employee ;

Set Name o f Person to Peter ;

Set Name o f Employee to John ;

152

Set ID o f Employee to 3212212;

Set Sa lary o f Employee to 28230 ;

Get Person ;

Get Employee ;

An Employee performs PayRise ;

Add 1000 to Sa lary o f Employee ;

End Recipe ;

Evaluate PayRise o f Employee ;

Get Employee ;

153

C++

main.cpp

#inc lude <iostream>

#inc lude " person . h"

#inc lude "employee . h"

us ing namespace std ;

i n t main ()

{

person myPerson ("Tom" , 5 8) ;

person otherPerson ;

employee emp1("Bob" , 58 , "112312" , 23440) ;

employee emp2 ;

otherPerson . setName (" John ") ;

emp2 . setName (" Peter ") ;

emp2 . setID ("3212212") ;

emp2 . s e tSa l a r y (28230) ;

cout << " F i r s t Person : " << endl ;

myPerson . p r i n t () ;

cout << endl << "Second Person : " << endl ;

otherPerson . p r i n t () ;

cout << endl << " F i r s t Employee : " << endl ;

emp1 . p r i n t () ;

cout << endl << "Second Employee : " << endl ;

emp2 . p r i n t (Code Reading Quest ions) ;

r e turn 0 ;

}

154

155

person.h

#inc lude <s t r i ng>

us ing std : : s t r i n g ;

#i f n d e f __PERSON__

#de f i n e __PERSON__

c l a s s person

{

pub l i c :

person (s t r i n g n = "" , i n t a = 18) ;

void setName (s t r i n g name) ;

void setAge (i n t age) ;

s t r i n g getName () ;

i n t getAge () ;

void p r i n t () ;

p r i va t e :

s t r i n g name ;

i n t age

; } ;

#end i f

156

person.cpp

#inc lude <iostream>

#inc lude <s t r i ng>

#inc lude " person . h"

us ing std : : cout ;

us ing std : : endl ;

us ing std : : s t r i n g ;

person : : person (s t r i n g n , i n t a)

{

name = n ;

i f (a > 0)

age = a ;

e l s e

age = 0 ;

}

void person : : setName (s t r i n g n)

{

name = n ;

}

void person : : setAge (i n t a)

{

i f (a > 0)

{

age = a ;

}

157

}

s t r i n g person : : getName ()

{

re turn name ;

}

i n t person : : getAge ()

{

re turn age ;

}

void person : : p r i n t ()

{

cout << "Name: \ t " << name << endl ;

cout << "Age : \ t " << age << endl ;

}

158

employee.h

#inc lude " person . h"

#inc lude <s t r i ng>

us ing std : : s t r i n g ;

c l a s s employee : pub l i c person

{

pub l i c :

employee (s t r i n g n = "" , i n t a = 0 , s t r i n g id = "" , double s = 0) ;

void setID (s t r i n g id) ;

void s e tSa l a r y (double s) ;

s t r i n g getID () ;

double ge tSa la ry () ;

void payRise () ;

void p r i n t () ;

p r i va t e :

s t r i n g empID ;

double s a l a r y ;

} ;

159

employee.cpp

#inc lude <iostream>

#inc lude <s t r i ng>

#inc lude <iomanip>

#inc lude "employee . h"

us ing std : : cout ;

us ing std : : endl ;

us ing std : : s t r i n g ;

us ing std : : f i x e d ;

us ing std : : s e t p r e c i s i o n ;

employee : : employee (s t r i n g n , i n t a , s t r i n g id , double s)

: person (n , a)

{

empID = id ;

i f (s > 0)

s a l a r y = s ;

}

void employee : : setID (s t r i n g id)

{

empID = id ;

}

void employee : : s e tSa l a r y (double s)

{

i f (s > 0)

s a l a r y = s ;

160

}

s t r i n g employee : : getID ()

{

re turn empID ;

}

double employee : : g e tSa la ry ()

{

re turn s a l a r y ;

}

void employee : : payRise ()

{

s a l a r y = sa l a r y + 1000

}

void employee : : p r i n t ()

{

person : : p r i n t () ;

cout << "ID :\ t " << empID << endl ;

cout << f i x ed << s e t p r e c i s i o n (2) ;

cout << "Salary : \ t$ " << sa l a r y << endl ;

}

161

Reading Task Questions

SCOOT Code Reading Questions

1. Please give the names of all the attributes of the Employee object.

__

__

2. Please give the names of all behaviours of the Employee object.

__

__

__

3. Please give the names and values of all attributes of the Employee class

when �Get Employee;� is �rst used (line 10)

__

__

4. Please give the names and values of all attributes of the Employee class

when �Get Employee;� is next used (line 18)

__

__

5. Please give the names and values of all attributes of the Employee class

when �Get Employee;� is last used (line 20)

__

__

162

C++ Code Reading Questions

1. Please give the names of all the attributes of the Employee object.

__

__

2. Please give the names of all behaviours of the Employee object.

__

__

__

3. Please give the names and values of all attributes of the Employee class

when the 'print' method is �rst used (line 10, page 3)

__

__

4. Please give the names and values of all attributes of the Employee class

when the 'print' method is next used (line 13, page 3)

__

__

5. Please give the names and values of all attributes of the Employee class

when the 'print' method is last used (line 16, page 3)

__

__

163

A.4 Debugging Task

Participants were given copies of the code shown below, along with the task

description:

Identify programming errors in this code. Locate errors using the

page and line number, and describe the problem. Suggest a replacement

line that would correct the problem.

Both SCOOT and C++ code contained 5 errors, and lines were numbered in

the SCOOT code, and so were lines and pages in the C++ code, just like the

Reading Task.

164

SCOOT

A Car i s an Object ;

A Car has a Model ;

A Car has a ProductionYear ;

A Car has a Colour ;

A Car has a Pr i ce ;

Set Model o f Car to Camry ;

Set ProductionYear o f Car to 2001 ;

Set Colour o f Car to Orange ;

Set p r i c e o f Car to 14500 ;

A Car performs addFees ;

Set Pr i ce o f Car to Pr i ce o f Car + 1000

End Recipe ;

A Car can r epa in t ;

Compare Colour o f Car to Red ;

I f equal ;

Set Colour o f Car to Black ;

End I f ;

End Recipe ;

Car . addFees () ;

Evaluate r epa in t o f Car ;

Get Car ;

165

C++

main.cpp

#inc lude <iostream>

#inc lude " person . h"

#inc lude "employee . h"

us ing namespace std ;

i n t main ()

{

person myPerson ("Tom" , 5 8) ;

person otherPerson ;

employee emp1("Bob" , 58 , "112312" , 23440) ;

employee emp2 ;

otherPerson . setName (" John ") ;

emp2 . setName (Peter) ;

emp2 . setID ("3212212") ;

emp2 . s e tSa l a r y (28230) ;

cout << " F i r s t Person : " << endl ;

myPerson . p r i n t () ;

cout << endl << "Second Person : " << endl ;

otherPerson . p r i n t () ;

cout << endl << " F i r s t Employee : " << endl ;

emp1 . p r i n t ;

cout << endl << "Second Employee : " << endl ;

emp2 . p r i n t () ;

r e turn 0 ;

}

166

person.h

#inc lude <s t r i ng>

us ing std : : s t r i n g ;

#i f n d e f __PERSON__

#de f i n e __PERSON__

c l a s s person

{

pub l i c :

person (s t r i n g n = "" , i n t a = 18) ;

void setName (s t r i n g name) ;

void setAge (i n t age) ;

s t r i n g getName () ;

i n t getAge () ;

void p r i n t () ;

p r i va t e :

s t r i n g name ;

i n t age ;

}

#end i f

167

person.cpp

#inc lude <iostream>

#inc lude <s t r i ng>

#inc lude " person . h"

us ing std : : cout ;

us ing std : : endl ;

us ing std : : s t r i n g ;

person : : person (s t r i n g n , i n t a)

{

name = n ;

i f (a > 0)

age = a ;

e l s e

age = 0 ;

}

void setName (s t r i n g n)

{

name = n ;

}

void person : : setAge (i n t a)

{

i f (a > 0)

{

age = a ;

}

168

}

s t r i n g person : : getName ()

{

re turn name ;

}

i n t person : : getAge ()

{

re turn age ;

}

void person : : p r i n t ()

{

cout << "Name: \ t " << name << endl ;

cout << "Age : \ t " << age << endl ;

}

169

employee.h

#inc lude " person . h"

#inc lude <s t r i ng>

us ing std : : s t r i n g ;

c l a s s employee : person

{

pub l i c :

employee (s t r i n g id = "" , double s = 0) ;

void setID (s t r i n g id) ;

void s e tSa l a r y (double s) ;

s t r i n g getID () ;

double ge tSa la ry () ;

void p r i n t () ;

p r i va t e :

s t r i n g empID ;

double s a l a r y ;

} ;

170

employee.cpp

#inc lude <iostream>

#inc lude <s t r i ng>

#inc lude <iomanip>

#inc lude "employee . cpp"

us ing std : : cout ;

us ing std : : endl ;

us ing std : : s t r i n g ;

us ing std : : f i x e d ;

us ing std : : s e t p r e c i s i o n ;

employee : : employee (s t r i n g id , double s)

: person (n , a)

{

empID = id ;

i f (s > 0)

s a l a r y = s ;

}

void employee : : setID (s t r i n g id)

{

empID = id ;

}

void employee : : s e tSa l a r y (double s)

{

i f (s > 0)

s a l a r y = s ;

}

171

s t r i n g employee : : getID ()

{

re turn empID ;

}

double employee : : g e tSa la ry ()

{

re turn s a l a r y ;

}

void employee : : p r i n t ()

{

person : : p r i n t () ;

cout << "ID :\ t " empID << endl ;

cout << f i x ed << s e t p r e c i s i o n (2) ;

cout << "Salary : \ t$ " << sa l a r y << endl ;

}

172

A.5 Questionnaires

C++ Language Questionnaire
Today’s Date: ________
Your Programmer number: ___

In the following statements, indicate by marking on the scale how much you agree e.g:

Strongly Disagree Strongly Agree

Statement 1. When programming, using C++ increases my programming productivity

 Strongly Disagree Strongly Agree

Statement 2. Using C++ makes it easier to accomplish programming tasks more quickly

 Strongly Disagree Strongly Agree

Statement 3. Overall, I find C++ useful when programming

 Strongly Disagree Strongly Agree

Statement 4. I often become confused when using C++

 Strongly Disagree Strongly Agree

Statement 5. I find it easy to get C++ to do what I want it to do

 Strongly Disagree Strongly Agree

Statement 6. I found completing the tasks took longer than I expected

 Strongly Disagree Strongly Agree

Statement 7. It is easy for me to remember how to perform tasks using C++

 Strongly Disagree Strongly Agree

Statement 8. Overall, I find C++ easy to use

 Strongly Disagree Strongly Agree

173

SCOOT Language Questionnaire
Today’s Date: ________
Your Programmer number: ___

In the following statements, indicate by marking on the scale how much you agree e.g:

Strongly Disagree Strongly Agree

Statement 1. When programming, using SCOOT increases my programming productivity

 Strongly Disagree Strongly Agree

Statement 2. Using SCOOT makes it easier to accomplish programming tasks more

quickly

 Strongly Disagree Strongly Agree

Statement 3. Overall, I find SCOOT useful when programming

 Strongly Disagree Strongly Agree

Statement 4. I often become confused when using SCOOT

 Strongly Disagree Strongly Agree

Statement 5. I find it easy to get SCOOT to do what I want it to do

 Strongly Disagree Strongly Agree

Statement 6. I found completing the tasks took longer than I expected

 Strongly Disagree Strongly Agree

Statement 7. It is easy for me to remember how to perform tasks using SCOOT

 Strongly Disagree Strongly Agree

Statement 8. Overall, I find SCOOT easy to use

 Strongly Disagree Strongly Agree

174

Preliminary Questionnaire
Today’s Date: ________
Your Programmer number: ___

In the following statements, indicate by marking on the scale how much you agree
e.g:

Strongly Disagree Strongly Agree

Statement 1. I expect that I will enjoy completing the programming tasks

 Strongly Disagree Strongly Agree

Statement 2. I expect that I will be able to complete the programming tasks quickly

 Strongly Disagree Strongly Agree

Statement 3. I expect that completing the programming tasks will be interesting

 Strongly Disagree Strongly Agree

175

	Cover Sheet
	Front Pages
	Title Page
	Statement of Access to Thesis
	Declaration On Ethics
	Declaration
	Contributions of Others
	Publications
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables

	Chapter 1. Introduction
	Chapter 2. Literature Review
	Chapter 3. Framework and Language Design
	Chapter 4. Experimental Design
	Chapter 5. Results
	Chapter 6. Discussion
	Bibliography
	Appendix A. Testing Activities

