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Abstract  

The rate of exchange, or connectivity, among populations effects their ability to recover after 

disturbance events. However, there is limited information on the extent to which populations 

are connected or how multiple disturbances affect connectivity, especially in coastal and 

marine ecosystems. We used network analysis and the outputs of a biophysical model to 

measure potential functional connectivity and predict the impact of multiple disturbances on 

seagrasses in the central Great Barrier Reef World Heritage Area (GBRWHA), Australia. The 

seagrass networks were densely connected, indicating that as modelled seagrasses are 

resilient to the random loss of meadows. Our analysis identified discrete meadows that are 

important sources of seagrass propagules and that serve as stepping stones connecting various 

different parts of the network. Several of these meadows were close to urban areas or ports 

and likely to be at risk from coastal development. Deep water meadows were highly 
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connected to coastal meadows and may function as a refuge, but only for non-foundation 

species. We evaluated changes to the structure and functioning of the seagrass networks when 

one or more discrete meadows were removed due to multiple disturbance events. The scale of 

disturbance required to disconnect the seagrass networks into two or more components was 

on average > 245 kilometres; about half the length of the metapopulation. The densely 

connected seagrass meadows of the central GBRWHA are not limited by the supply of 

propagules, therefore management should focus on improving environmental conditions that 

support natural seagrass recruitment and recovery processes. Our study provides a new 

framework for assessing the impact of global change on the connectivity and persistence of 

coastal and marine ecosystems. Without this knowledge, management actions, including 

coastal restoration, may prove unnecessary and be unsuccessful. 

 

Introduction 

The rate of exchange, or connectivity, among populations affects population and 

metapopulation dynamics and genetics (Cowen and Sponaugle, 2009; McMahon et al. 

2014), responses to species invasions and disease transmission, species expansion and the 

replenishment of populations after disturbance events (Treml et al. 2008). For example, 

well connected coral reefs receive a high number of larvae from multiple source reefs and 

recover more rapidly from disturbances such as bleaching and storms (Hughes et al. 2005; 

Thomas et al. 2015). Identifying and protecting pathways of connectivity is critical to 

effective conservation outcomes because they support population persistence, ecosystem 

function and biological diversity (Steneck et al. 2009). However, connectivity estimates 

are rarely incorporated into conservation decision making because of a lack of quantitative 

data on dispersal pathways and the spatial scale and extent to which populations are 

connected (Almany et al. 2009; Magris et al. 2014). Measuring dispersal and connectivity 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

is particularly difficult in marine ecosystems because of the challenges associated with 

tracking propagules, individuals and larvae (D’Aloia et al. 2015) over broad spatial scales 

and in a dynamic three-dimensional fluid environment (Saunders et al. 2016).  

 

Studies that empirically measure dispersal and connectivity in marine ecosystems use 

techniques such as electronic tagging (Block et al. 2011), capture-mark-recapture (Lowe 

and Allendorf, 2010), larval tagging (Almany et al. 2007), and genetic approaches, such as 

DNA parentage analysis (e.g. Planes et al. 2009; Almany et al. 2013; Harrison et al. 2013). 

However, empirical measures of connectivity are limited to a few marine species due to 

cost and logistical constraints (Kool et al. 2013; Abesamis et al. 2016) and relatively small 

spatial and temporal scales (Andrello et al. 2013). An alternative approach is the coupling 

of species dispersal parameters with hydrodynamic parameters in biophysical models (e.g. 

Cowen et al. 2006; Treml and Halpin 2012; Thomas et al. 2014; Abesamis et al. 2016; 

Grech et al. 2016). Biophysical models predict the movement of individuals by tracking 

particles using numerical models to describe the motion of waters, and biological 

parameters to define the attributes of a species, including larval and propagule duration 

and mortality, timing of release, and behaviour in the water column. Outputs of 

biophysical models can be used to populate matrices with the number of ‘virtual’ 

individuals moving among locations, enabling the exploration and analysis of connectivity 

using techniques such as graph theory (Treml et al. 2008). 

 

The application of graph (or network) theory to landscape ecology and conservation 

biology is rapidly growing, particularly in connectivity and metapopulation analysis 

(Urban et al. 2009). Graph theory provides a flexible framework for visualizing and 

characterising connectivity at multiple spatial scales by representing how habitats and 
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subpopulations are physically or logically linked (Rayfield et al. 2011). In weighted 

graphs (or networks), nodes represent discrete habitat patches or subpopulations, and 

edges (or links) between nodes indicate the direction and relative strength of dispersal and 

the resultant functional connections. Graph theory enables the assessment of the emergent 

properties and key structural characteristics of large and complex networks (Kool et al. 

2013). For example, measures of centrality (e.g. betweeness, degree and closeness) 

indicate the role of a node relative to its neighbours or the entire network (Estrada and 

Bodin 2008). These measures are important for identifying habitats or subpopulations that 

exert a high degree of influence over the entire network or metapopulation. Graph theory 

also enables the assessment of the impact of disturbance events on connectivity, a task that 

is notoriously complex and difficult to measure (Gonzalez et al. 2011). Removing nodes or 

edges from a graph indicates the potential of a metapopulation to withstand the loss of 

discrete habitats or subpopulations (Cumming et al. 2010) and provides a measure of a 

metapopulation’s robustness to disturbance events (Urban and Keitt, 2001; Saunders et al. 

2016). 

 

Tropical seagrasses are regularly exposed to multiple disturbance events, both natural (e.g. 

storms, cyclones and high rainfall) and human-induced (e.g. coastal development, 

sediment loads from land use, dredging and shipping) (Grech et al. 2012). It is typical that 

studies on seagrass recruitment and recovery following disturbance events focus on clonal 

reproduction (e.g. Kendrick et al. 2017). Sexual reproduction is also an essential 

mechanism for recruitment and recovery, but its contribution to the persistence and 

maintenance of seagrass populations is less understood (Kendrick et al. 2012). Studies 

examining both sexual and asexual reproduction have found that while some seagrass 

populations rely largely on clonal growth for population maintenance (Rasheed 1999, 
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2004), in the case of large scale meadow loss (Rasheed et al. 2014) or for annual or 

ephemeral populations (Hovey et al. 2015; York et al. 2015), sexual reproduction is of 

critical importance. Seagrass fruits and propagules of most species are capable of 

dispersing long distances via the convective forces of ocean waves and currents 

(McMahon et al. 2014; Kendrick et al. 2017). Long distance dispersal supports meadow 

connectivity and the natural recolonisation of sites after disturbance events (Kendrick et al. 

2017), however very few studies have attempted to quantify seagrass dispersal and 

connectivity at broad spatial scales (Ruiz-Montoya et al. 2015; Jahnke et al. 2017). 

Tropical seagrasses occur in some of the world’s most threatened coastal regions (Orth et 

al. 2006; Waycott et al. 2009) and there is a critical need to assess the role of connectivity 

in seagrass replenishment and recovery after disturbance events, the effect of disturbance 

events on seagrass connectivity, and its implications for the conservation of coastal 

habitats (York et al. 2017). 

 

The goal of our study was to assess seagrass connectivity and quantify the cumulative 

impact of multiple disturbance events in the central Great Barrier Reef World Heritage 

Area (GBRWHA), Queensland, Australia. Potential functional connectivity was measured 

using the outputs of a biophysical model of seagrass dispersal and settlement and network 

analysis. Network analysis was used to evaluate changes to the structure and functioning 

of the seagrass networks when one or more discrete meadows were removed due to 

multiple disturbance events. We used the outputs of our analysis to evaluate seagrass 

meadow connectivity in the central GBRWHA, predict the impact of disturbance events 

on connectivity and to identify strategies that support the replenishment and recovery of 

seagrass meadows following disturbance events. 
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Materials and Methods 

Study area 

The GBRWHA covers an area of 348,000 km2 (Figure 1) and was inscribed on the World 

Heritage List in 1981 for its superlative natural beauty, ecological diversity, and relative 

intactness. The Australian Government has international responsibilities under the World 

Heritage Convention to conserve the region, including its seagrass habitats. The ~40,000 km2 

of tropical seagrass habitats of the GBRWHA region are characterized by low nutrient 

availability and high diversity, disturbance, and productivity (Waycott et al. 2009; Coles et al. 

2015) and are spatially and temporally dynamic (ephemeral). The 15 GBRWHA seagrass 

species are a vital component of the reef ecosystem and provide food for numerous fish, 

crustacean, sea turtles and dugong (Unsworth et al. 2014). We assessed potential functional 

connectivity among seagrass meadows using the central GBRWHA as an example (Figure 1). 

This area includes ~6,000 km2 of seagrass habitats and was chosen because: (a) there are > 30 

years of seagrass data and biophysical models available; (b) there is published evidence of 

seagrass loss and recovery in the region (e.g. Rasheed et al. 2014); and, (c) the central 

GBRWHA has been exposed to a variety of disturbance events, including cyclones (e.g. 

Category 5 Yasi, Category 4 Hamish and Category 4 Debbie), high rainfall events causing 

turbid flood plumes, urban and industrial development (e.g. Townsville) and port 

developments (e.g. Townsville and Abbot Point) (Figure 1).  

 

Seagrass dispersal and connectivity modelling 

We created connectivity matrices for seagrass meadows in the central GBRWHA using the 

biophysical model outputs of Grech et al. (2016). Grech et al. (2016) delineated the spatial 

extent of seagrass meadows with a spatial (geographic information system [GIS]) layer of 

intertidal, shallow subtidal and deep water seagrass distribution, derived from McKenzie et 
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al. (2014) and Coles et al. (2009) (Figure 1). They modelled the hydrodynamics of the central 

GBRWHA using the depth-integrated finite element Second-generation Louvain-la-Neuve 

Ice-ocean Model (SLIM) (Lambrechts et al. 2008). Biological parameters were incorporated 

in SLIM to simulate the dispersal and settlement patterns of ‘virtual’ propagules (i.e. plant 

fragment, fruit or spathe) to and from known sites of seagrass presence. These parameters 

included: (1) simulating the dispersal of ‘virtual’ propagules floating at the surface (affected 

by wind speed and direction) and suspended below the surface; (2) a first-order decay 

function to simulate the gradual settlement of particles; and (3) 68 simulations ran for a 

maximum of 8 weeks during the peak of the flowering period (August 1st 2012 – January 

31st 2013), capturing variability in winds, tides and currents. 

 

The total area of seagrass included in the Grech et al. (2016) analysis was 6,710.2 km2 

(intertidal and shallow subtidal = 857.5 km2; deep = 5,852.7 km2), comprised of 100 discrete 

meadows (intertidal and subtidal = 97; deep = 3; SI Table 1). The size of intertidal and 

shallow subtidal seagrass meadows ranged from 0.41 – 157.1 km2 (mean = 8.8 km2) and deep 

water 1,417.3 – 2,335.0 km2 (mean = 1,950.9 km2; SI Table 1). To facilitate connectivity 

analysis, individual seagrass meadows were allocated into one of two generalised species 

classes based on similar life-history traits (Figure 1) (Kilminster et al. 2015): the structurally 

more robust, competitively dominant and persistent tropical seagrass species (genera 

Halodule, Cymodocea and Zostera) (n = 67), referred to as foundation species; and the 

structurally small, ephemeral and transient species of the genus Halophila (n = 33), referred 

to as non-foundation species.  
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Grech et al. (2016) utilised a model which spread the particle release locations evenly across 

intertidal and shallow subtidal meadows at intervals of ~2 kilometres, and an equal number of 

particles (representing ‘virtual’ seagrass propagules) were released per location. Release 

locations were spread evenly across each deep water meadow at intervals of ~10 kilometres. 

The number of particles released per unit area was smaller in deep water meadows than in 

intertidal and shallow subtidal meadows because deep water seagrasses have lower biomass 

and abundance relative to coastal seagrass (Coles et al. 2007; Coles et al. 2009; Rasheed et al. 

2014).  

 

We calculated the cumulative ‘virtual’ propagule settlement from the 68 simulations of Grech 

et al. (2016) within foundation and non-foundation meadows in GIS. The outputs were used 

to populate weighted and directed connectivity matrices of the number of ‘virtual’ propagules 

from every seagrass meadow i to every other meadow j.  

 

Connectivity measures 

We used the foundation and non-foundation seagrass connectivity matrices and network 

analysis to explore spatial patterns of connectivity, identify potential dispersal pathways, and 

locate critical source meadows in the central GBRWHA. In our study, networks (referred to 

as habitat graphs) are a set of nodes that represent discrete seagrass meadows (McKenzie et 

al. 2014), and edges (or links) between nodes indicate functional connections. Edges are 

weighted by the number of ‘virtual’ propagules from every seagrass meadow i to every other 

meadow j.  
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We used the GIS software ArcGIS 10.21 and the network analysis software Gephi 0.9.22 to 

quantify connectivity of the foundation and non-foundation habitat graphs. At a network 

scale, we used a range of measures to define the two habitat graphs (Table 1) and node degree 

distribution (probability distributions of node degrees over the entire network) to assess 

communicability within the network (Minor and Urban 2008; Kool et al. 2013). At an 

element (node) scale, we used: betweeness centrality to identify meadows that serve as 

stepping stones connecting various different parts of the habitat graph (Estrada and Bodin 

2008; Treml and Halpin 2012); out-flux (or weighted out-degree) to identify important source 

meadows (Magris et al. 2015); PageRank to identify important source meadows that takes 

into account the full topology of the habitat graph (Allesina and Pascual 2009); and local 

retention to identify the relative amount of meadow self-replenishment (Treml and Halpin 

2012). We used modularity and the Louvain algorithm (Blondel et al. 2008) to detect 

communities (or clusters) of nodes that are densely connected to each other and weakly 

connected to other nodes in the network (Thomas et al. 2014). A sensitivity analysis was used 

to identify a resolution with a modularity value > 0.4, indicating that the graph had a 

prominent community structure.  

 

Large meadows released a higher number of ‘virtual’ propagules in the 68 simulations of 

Grech et al. (2016) relative to smaller meadows because they had more particle release 

locations (see Seagrass dispersal and connectivity modelling). We assessed the influence of 

meadow size on the habitat graphs by comparing out-flux with meadow area to identify nodes 

that contributed a high number of propagules to the network relative to their size.  

 

                                                             
1 https://www.arcgis.com 
2 https://gephi.org 
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We compared the foundation and non-foundation habitat graphs with a random network to 

assess their network type. We generated random networks using the Erdős-Rényi model in 

the R package igraph (Csardi and Nepusz 2006). The Erdős-Rényi model uses the same 

number of nodes and edges of a real graph to generate a random network. The difference 

between the real and random graphs is that the edges in the random graph are randomly 

distributed between nodes. 1,000 random networks were created using the same number of 

nodes and edges of the foundation and non-foundation graphs. We used Wilcoxon’s signed-

rank tests to determine whether the network metrics of the random graphs were significantly 

different to the network metrics of the foundation and non-foundation habitat graphs. 

 

Cumulative impact assessment 

We assessed the cumulative effect of multiple impacts on the connectivity of foundation and 

non-foundation meadows by sequentially removing nodes (meadows) similar in spatial 

location to six real-world events (Table 2; SI Figure 1): Severe Tropical Cyclone Yasi; 

Severe Tropical Cyclone Hamish; Severe Tropical Cyclone Debbie; the Port of Abbot Point 

development; the regional city (population ~172,000) and Port of Townsville; and, flooding 

of the Burdekin River. We assumed that all meadows immediately adjacent to Abbot Point, 

Townsville and the Burdekin River were completely destroyed; and all meadows exposed to 

the very destructive winds of Cyclone Yasi, Hamish and Debbie were completely destroyed. 

We used a Bray-Curtis dissimilarity matrix and three network measures to assess the relative 

impact of all possible combinations of disturbance events (n = 63) on the connectivity of 

foundation and non-foundation habitat graphs: network diameter (or traversibility; maximum 

number of connections required to traverse the network) (Minor and Urban 2008; Moore et 

al. 2016); network density (or connectance; measures how close the network is to complete) 
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(Moore et al. 2016); and average clustering coefficient (average of the clustering coefficient 

of nodes in the network) (Minor and Urban 2008).  

 

We assessed the spatial scale of disturbance required to disconnect the habitat graphs into two 

or more components by sequentially removing nodes (meadows) from the foundation and 

non-foundation habitat graphs. The nearest node of every focal meadow (n = 100) was 

removed until the habitat graph was disconnected. We then measured the Euclidian distance 

between the focal meadow and its furthest cut-node. A cut-node is a single node that causes a 

network to be disconnected into two or more components when it is removed (Urban and 

Keitt 2001).  

 

 

Results 

The foundation species habitat graph was comprised of 67 nodes and 1406 edges (Figure 2, 

Table 1, SI Figure 2, SI Table 1) and the non-foundation graph 33 nodes and 487 edges 

(Figure 2, Table 1, SI Figure 3, SI Table 1). Both graphs were densely connected and featured 

only one component. Both graphs also exhibited the properties of a small-world network: 

highly clustered (Table 1), no hubs (i.e. nodes with a high number of edges relative to other 

nodes; SI Figure 4) and short average path length and graph diameter relative to network 

order (Table 1). In small-world networks, connectivity is resilient to the random loss of nodes 

as there are many redundant connections (Minor and Urban 2007; 2008).  

 

There was no significant difference in the network diameter, number of components and 

average path length between the non-foundation habitat graph and the random network of the 

same number of nodes and edges. However, the foundation habitat graph was less connected 
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than what occurs randomly; the network diameter and average path length were significantly 

lower (p < 0.001) in the random network, however the number of components was the same 

(1).  

 

The ‘virtual’ propagules released from high out-flux node 40 primarily remained within 

Upstart Bay, resulting in a high level of local retention (97%; Figures 3 and 4, SI Table 1). 

Other meadows of high (> 90%) local retention were also located in Upstart Bay (non-

foundation node 94) and near Hinchinbrook Island (foundation nodes 82, 83, 88 and 96, non-

foundation nodes 80 and 84), in Repulse Bay (foundation node 5) and around the Whitsunday 

Islands (foundation nodes 7 and 9; Figures 3 and 4, SI Table 1). Meadows with high local 

retention are more likely to be self-persistent (Burgess et al. 2014), but are also vulnerable to 

disturbance events as they are less connected to other meadows in the network and therefore 

less likely to be replenished.  

 

We removed local retention from node out-flux to provide a measure of the relative 

importance of meadows as a source of propagules (Figure 3, SI Table 1). Meadows of high 

out-flux minus local retention were located in Cleveland Bay (foundation nodes 52 and 92, 

non-foundation node 53), deep water (non-foundation nodes 98, 99 and 100), Abbot Point 

(foundation nodes 35 and 36, non-foundation node 38) and around the Whitsunday Islands 

(foundation nodes 6, 8 and 21; Figures 3 and 4, SI Table 1). High out-flux foundation nodes 

52 and 92 and non-foundation nodes 53 and 99 in Cleveland Bay and deep water also had 

high PageRanks values, further supporting their relative importance as source meadows in the 

region (SI Table 1).  
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We used the measure of out-flux minus local retention (Figure 3) to assess the influence of 

meadow size on a nodes contribution to ‘virtual’ propagules. Large foundation meadows 

exported greater numbers of ‘virtual’ propagules than smaller meadows (SI Table 1) and 

there was a positive and significant correlation (r(66) = 0.86, p < .001) between meadow area 

and meadow out-flux (SI Figure 5). Large non-foundation meadows also exported a high 

number of ‘virtual’ seagrass propagules and there was a positive and significant correlation 

(r(32) = 0.87, p < .001) between meadow area and meadow out-flux (SI Figure 5). The three 

large non-foundation deep-water meadows (nodes 98, 99 and 100; Figure 4) had a 

disproportionately low out-flux relative to their size because the density of particle release 

locations was smaller and many ‘virtual’ propagules dispersed in a north-east direction 

(Grech et al. 2016). Meadows that contributed a high number of ‘virtual’ propagules relative 

to their size were located in Cleveland Bay (foundation nodes 52 and 92, non-foundation 

nodes 53), deep water (non-foundation nodes 98, 99 and 100) the Whitsunday Islands 

(foundation node 21) and Abbot Point (foundation node 36, non-foundation node 38; Figure 

4, SI Table 1).  

 

The betweenness centrality measure identified three foundation meadows and six non-

foundation meadows that were critical for maintaining connectivity (Estrada and Bodin 2008) 

by acting as stepping stones between various different parts of the network (Figure 2, SI 

Figures 2 and 3, SI Table 1). Stepping stone nodes of the foundation habitat graph were the 

large meadows of the Whitsunday Islands (node 21), Abbot Point (node 95) and Cleveland 

Bay (node 92; Figure 4). Stepping stone nodes of the non-foundation habitat graph were the 

large deep water meadows (nodes 98, 99 and 100) and meadows located near Hinchinbrook 

Island (nodes 84 and 97) and Cleveland Bay (node 53; Figure 4).The size of meadows 

influenced betweenness centrality because large meadows have a high out-flux of ‘virtual’ 
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propagules and therefore a greater likelihood of encountering other meadows in the 68 

dispersal simulations of Grech et al. (2016).  

 

Modularity identified 6 foundation and 4 non-foundation discrete communities (Figures 2 and 

4, SI Figures 2 and 3). Connectivity in the foundation habitat graph follows a south to north 

pathway: Repulse Bay (Figure 4e), the Whitsunday Islands (Figure 4e), Edgecumbe Bay – 

Upstart Bay (Figure 4d), Cleveland Bay and Bowling Green Bay (Figure 4c) and Halifax Bay 

– Hinchinbrook Island (Figure 4b). The south to north pathway of connectivity is driven by 

strong south-easterly winds during the peak of the flowering period (Grech et al. 2016). The 

non-foundation habitat graph exhibits a south to north dispersal pathway along the coast, and 

also a cross-shelf dispersal pathway (east to west) due to the influence of the three large deep 

water meadows. The boundaries of the three coastal foundation communities align to the 

boundaries of the non-foundation communities (i.e. Upstart Bay – Edgecumbe Bay [Figure 

4d], Cleveland Bay [Figure 4c] and Halifax Bay – Hinchinbrook Island [Figure 4b]).  

 

The three large deep water meadows form a non-foundation community with a small meadow 

in Mission Beach (node 91) at the northern boundary of the modelling domain (Figure 4a). 

Node 91 is weakly connected to other coastal nodes (degree = 7; SI Table 1), possibly 

signalling the northern-limit of the central GBRWHA seagrass metapopulation. The four 

nodes of Repulse Bay are also weakly connected (SI Figure 2) to the foundation habitat graph 

relative to other nodes and communities because it faces south-east (the predominant wind 

direction during the peak of the flowering period), possibly signalling the Whitsunday Island 

community as the southern-limit of the central GBRWHA seagrass metapopulation.  
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The greatest impact to the foundation habitat graph was from the removal of meadows 

adjacent to the regional city and Port of Townsville, followed by the Port of Abbot Point, 

Cyclone Debbie, Cyclone Yasi, and flooding of the Burdekin River (SI Figure 1, SI Table 2). 

Cyclone Hamish had no impact on the foundation habitat graph because it occurred over deep 

water non-foundation meadows only. The results of the node-removal method and 

dissimilarity matrix did not produce a logical ranking of impact by disturbance events for the 

non-foundation habitat graph (SI Table 3), indicating a limitation of the approach for graphs 

with a small (< 30) network order.  

 

The scale of disturbance events required to disconnect the habitat graphs into two or more 

components was assessed by identifying the furthest cut-node from every meadow in the 

network. The average distance between every node’s furthest cut-node of the foundation 

habitat graph was 290 kilometres (STD 102.1) and the non-foundation habitat graph 246 

kilometres (STD 69.5).  

 

Discussion 

This study used network analysis and the outputs of a biophysical model to address two 

questions that are integral to the effective management of coastal habitats: what is the role of 

connectivity in seagrass replenishment and recovery after disturbance events, and what is the 

cumulative impact of multiple disturbance events on seagrass connectivity? In our central 

GBRWHA study area, we found that the seagrass habitat graphs became disconnected into 

two or more components if the cumulative size of disturbance events was > 245 kilometres. 

Our analysis also revealed three previously unknown features of seagrasses in the central 

GBRWHA: (1) seagrass meadows between the Whitsunday Islands and Mission Beach 

(Figure 1) form a metapopulation within the greater GBRWHA population; (2) deep water 
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non-foundation meadows may function as a multi-generational stepping stone from the south 

to the north and are highly connected to coastal meadows; and (3) the central GBRWHA 

seagrass foundation and non-foundation metapopulations are densely connected and exhibit 

the properties of small-world networks. This study used a theoretical approach to assess the 

ecological implications of connectivity, and therefore did not take into account finer scale 

biological and stochastic processes that may influence propagule production and recruitment 

in seagrass meadows. We identify locations where empirical studies could be used to assess 

the production of propagules to verify the conclusions of our study. 

 

We found that the most northerly and southerly nodes in our study area were weakly 

connected to the foundation and non-foundation habitat graphs (Figure 2, SI Figures 2 and 3), 

indicating the existence of a seagrass metapopulation in the central GBRWHA. The most 

northern meadow in the study area is weakly connected to other coastal meadows and the 

most southern meadows (Repulse Bay) are south-east facing, limiting their capacity to supply 

propagules to the north. The existence of a seagrass metapopulation in the central GBRWHA 

has multiple implications for management. For example, disturbance events that impact 

seagrass meadows at one location potentially have implications for seagrass meadows at 

other locations within the metapopulation. Maintaining a functional ecosystem therefore 

necessitates considering impacts on seagrass meadows at not only the site of a disturbance 

event, but also at the community (Figure 4) and metapopulation scale in, for example 

Environmental Impact Assessments (EIA) for new coastal developments. 

 

It is possible that seagrass metapopulations are spread along the GBRWHA coast at similar 

scales to the central GBRWHA (~500 km). Most of the ‘virtual’ propagules released by 

Grech et al. (2016) remained within the study area and previous modelling of deep water 
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seagrass meadows has suggested the presence of north-south discontinuities in meadow 

distribution (Coles et al. 2009). Identifying seagrass metapopulations beyond the boundary of 

the central GBRWHA would require extending the biophysical models to the entire length of 

the coast (~2,300 kilometres). Our approach would also be improved by comparing potential 

functional connectivity of seagrasses with realized connectivity, measured using genetic 

analyses. However, genetic diversity based estimates of connectivity reflect the combined 

outcome of what will potentially be multiple recruitment events over the life of the existing 

meadow. The potential for dispersal is often predicted to be larger then realized dispersal in 

marine ecosystems (Burgess et al. 2014; Jahnke et al. 2017). In our study, this could translate 

to an over-prediction of connectivity for meadows that are far apart. However, the longer 

lived nature of seagrass propagules (viable plant fragments, fruit or spathes) relative to other 

marine organisms, such as coral larvae (Thomas et al. 2015), supports our predictions of 

dense habitat graphs with long connections. The reasons for discrepancies between estimates 

of potential functional connectivity and realized connectivity are post-dispersal, pre-

settlement and post-settlement processes (Jahnke et al. 2017). More information on these 

processes would improve the performance of connectivity studies that rely on biophysical 

models to measure dispersal and settlement.  

 

The deep water non-foundation meadows exhibited high levels of out-flux and betweeness 

centrality because they are large (total area > 5,800 km2), highly connected to coastal 

meadows, and release propagules that have the capacity to disperse over long distances. 

Grech et al. (2016) recorded particles released from the deep water meadows dispersing > 

900 kilometres to the north. Deep water meadows may function as multi-generational 

stepping stones from the south to the north, enabling the sharing of genotypes over long 

distances. Deep water meadows may also function as an off-shore refuge area for non-
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foundation seagrasses, assisting in recovery by providing propagules to coastal meadows 

after major disturbance events. Deep water meadows have previously been shown to be more 

resilient (higher recovery capacity) than coastal seagrass meadows (Rasheed et al 2014), 

enhancing their value as a seagrass refugia. The refugia function of deep water meadows is 

likely to become more important under climate change because of sea-level rise and the 

predicted increased frequency and energy of the most intense cyclones (Knutson et al. 2010). 

However, deep water meadows only produce non-foundation species propagules and have 

limited effect on the persistence of foundation species. In addition, no evidence or 

mechanism for connectivity from deep water to coastal seagrass populations of these species 

have been documented although they are likely to exist. 

 

The foundation and non-foundation habitat graphs exhibited the properties of small-world 

networks and are therefore resilient to the random loss of nodes because there are many 

redundant connections (Minor and Urban 2007 and 2008). Small-world networks are more 

robust to perturbations then other network architectures and, in biological systems, may 

reflect an evolutionary advantage (Barabási and Albert 1999). However, not all meadows in 

the habitat graphs were equally important ecologically, or for management. Nine meadows in 

Cleveland Bay, Abbot Point, the Whitsundays, Hinchinbrook Island and deep water had a 

particularly high out-flux and betweeness centrality (Figures 2 and 3, SI Table 1). This 

suggests that these nodes should be a high priority for protection and conservation as they 

perform two important functions: they provide an important source of propagules in the 

central GBRWHA, and serve as stepping stones connecting various parts of the 

metapopulation. Stepping stones facilitate long-distance dispersal and contribute to species 

persistence across wide spatial and temporal scales (Saura et al. 2014). The nine meadows 

also had a high in-degree, meaning they are robust to perturbations as many nodes are 
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available to supply them with propagules if they are affected by a disturbance event (SI Table 

1). Empirical studies on seagrass ecology are needed to assess the production and recruitment 

of propagules and to verify the actual conservation value of the nine meadows. 

 

The outputs of our cumulative impact assessment provided further evidence that seagrasses in 

the central GBRWHA are robust to multiple disturbance events. We found that the scale of 

cumulative impact required to disconnect the habitat graphs into two or more components 

was on average > 245 km, around half the length of the central GBRWHA metapopulation. In 

context, the very destructive winds of Severe Tropical Cyclone Yasi, one of the largest 

cyclones in Australia's recent history, covered ~150 km of coastline. We also found that the 

locations of disturbance events resulted in differing levels of impact on the foundation habitat 

graph. Connectivity was effected by impacts occurring in the centre of the metapopulation, 

near the regional city and Port of Townsville (Cleveland Bay) and the Port of Abbot Point 

(Figure 1). Foundation meadows in Cleveland Bay are so important to connectivity that their 

loss is equal to the combined loss of seagrass meadows in the Whitsundays, Abbot Point, and 

Upstart Bay (Figure 1; SI Table 2). Even though Cyclone Yasi covered the greatest area, it 

had minimal impact on connectivity as it covered a single, highly connected community 

(Figure 4b) of relatively low out-flux that occurred at the edge of the network (SI Figure 2). 

The same approach to assessing cumulative impact did not yield a clear result for the non-

foundation habitat graph because its small network order (33) limited the number of nodes 

that could be removed before the network measures became unstable (Moilanen 2011).  

 

Large scale replanting of seagrasses in response to disturbance events (e.g. Severe Tropical 

Cyclone Yasi, McKenna et al. 2015) has previously been canvassed by management 

authorities in the GBRWHA. The evidence-base for seagrass restoration is limited by our 
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poor understanding of and ability to provide advice on the alternative action: waiting for 

natural modes of recovery to occur. Our study informs some of those questions. Supply of 

propagules for most meadows will not limit replenishment and recovery after disturbance 

events because meadows in the central GBRWHA are densely connected. The outputs of Tol 

et al. (2017) further demonstrate that the availability of seagrass propagules in the GBRWHA 

may assist the natural recovery of seagrass meadows because green turtles and dugong have 

the ability to move viable seagrass seeds to new locations. Observed slow recovery of 

seagrass meadows, in excess of two years (Preen et al. 1995), is likely the result of poor post-

disturbance environmental conditions such as sediment mobility, changed topography, and 

water quality. Poor environmental health metrics have previously been shown to reduce the 

likelihood of successful restoration (van Katwiijk et al. 2016).  

 

Management approaches to enhance recovery need to include environmental conditions as 

well as recruitment. Physically restoring seagrass plants is unlikely to be successful until the 

environmental health of the recipient site has recovered. Once the environment has recovered, 

we found that planting seagrasses may be unnecessary in most meadows in the study area as 

propagules, in theory, are readily available and recruitment and recovery could occur 

naturally. The exceptions to this would be meadows with high local retention but not well 

connected (e.g. Upstart Bay, Figure 1). There may be other exceptions as the model uses a 

theoretical production of propagules applied across meadows of the same type. In reality, the 

production of sexual propagules and fragments may vary both temporally and spatially. 

Despite these limitations, our approach points to a high degree of connectivity and 

replenishment potential, and the recent recovery of large scale losses of seagrasses that 

occurred in sections of the GBRWHA between 2010 and 2011 would support this (Rasheed 

et al. 2014; McKenna et al. 2015). 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

The tropics are faced with a changing global climate, including warming sea temperatures 

(Hughes et al. 2017) and the increased intensity of tropical storms. The cumulative impact of 

anthropogenic activities, such as coastal development and poor watershed management, have 

significantly increased in tropical and coastal regions in the previous decade (Halpern et al. 

2015).  Losses of seagrass at scales > 245 kilometres may become frequent. Our study points 

to the need to understand complex processes, such as connectivity, in order to effectively 

assess post-disturbance replenishment, recruitment and recovery. Combining the outputs of 

biophysical models and network analysis offers a powerful framework for understanding 

connectivity in marine and coastal ecosystems and identifying important sites that support 

population persistence. Quantifying the impact of multiple disturbance events on connectivity 

further informs the likelihood of population persistence under global change. Without this 

knowledge, management actions, including coastal restoration, may prove unnecessary and 

be unsuccessful. 
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Figure Legends 

Figure 1: (a) Distribution of foundation (Halodule, Cymodocea and Zostera species) and 

non-foundation (Halophila species) seagrass meadows in the central Great Barrier Reef 

World Heritage Area; (b) the location of the central Great Barrier Reef World Heritage Area 

study area on the north-east coast of Australia (QLD = Queensland); and, (c) the location of 

the study area in the Great Barrier Reef World Heritage Area.  

 

Figure 2: Habitat graphs of (a) foundation and (b) non-foundation seagrass meadows in the 

central Great Barrier Reef World Heritage Area. Each point represents one node (meadow). 

The size of the node illustrates its betweenness centrality and the colour illustrates its 

community (see Figure 4). A high betweeness centrality indicates nodes that are critical for 

maintaining connectivity relative to other meadows by acting as stepping stones between 

various different parts of the network. Meadows in the same community are more strongly 

connected with each other than with meadows in other communities. The connections (edges) 

between nodes are shown in grey, with weaker connections filtered out.  

 

Figure 3: (a) Local retention rates of foundation (blue) and non-foundation (green) meadows; 

and, (b) out-flux (number of ‘virtual’ seagrass propagules released from meadows that settle 

on themselves or another meadow) minus local retention of foundation (blue) and non-

foundation (green) meadows. Each point represents one node (meadow). Meadows with a 

high local retention rate are more likely to be self-persistent, but are also vulnerable to 

disturbance events as they are less connected to other meadows. Meadows with a high out-

flux (minus local retention) are important sources of seagrass propagules relative to other 

meadows.  
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Figure 4: Communities of foundation and non-foundation seagrasses in the central Great 

Barrier Reef World Heritage Area: (a) non-foundation deep water community J; (b) 

foundation community E and non-foundation community H of the Halifax Bay and 

Hinchinbrook Island region; (c) foundation community F and non-foundation community I of 

Cleveland Bay and foundation community D of Bowling Green Bay; (d) foundation 

community C and non-foundation community G of the Upstart Bay, Abbot Bay and 

Edgecumbe Bay region; and (e) foundation community A of Repulse Bay and foundation 

community B of the Whitsunday region. 
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Table 1: Network measures of the foundation and non-foundation habitat graphs. 

 

Network measure Description (Rayfield et al. 2011) 
Foundation 

species 

Non-
foundation 

species 

Network order Total number of nodes. 67 33 

Network size 
Total number of edges. Indicates the number of 
pairs of immediately connected nodes. 

1,406 487 

Average degree 
Mean of the number of edges per node. 
Indicates the average accessibility of each 
node. 

42.0 29.5 

Average weighted 
node degree 

Mean of the weighted edges per node. 
Weighted edges represent the number of 
‘virtual’ propagules connecting nodes. 

8,238.8 31,750.5 

Connectance (network 
density) 

Measures how close the network is to 
complete. A complete graph has all possible 
edges and density equal to 1.  

0.32 0.46 

Average clustering 
coefficient 

Average of the clustering coefficient of nodes. 
Clustering coefficient indicates the degree to 
which a node’s neighbourhood is a complete 
graph. 

0.48 0.57 

Network diameter 

The maximum number of steps required to 
traverse the network (i.e. the longest of all the 
shortest paths between any two nodes in the 
network). Indicates compactness of the graph 
and overall traversability of the network. 

8 3 

Average path length 
The average number of steps it takes to reach 
any other node in the network.  

2.57 1.71 

Number of connected 
components 

Number of connected sub-graphs 
(components). Components are sets of nodes 
connected to each other. 

1 1 

Number of 
communities 
(modularity) 

Number of clusters measured by the strength of 
division of the network into groups (or 
communities) compared to a random network. 

6 4 
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Table 2: Foundation and non-foundation meadows (nodes) that overlapped or were adjacent 

to six disturbance events (Figure S1) in the central Great Barrier Reef World Heritage Area. 

Nodes, representing meadows (see Figure 4 for ID), were sequentially removed from the 

foundation and non-foundation habitat graphs to assess the relative impact of all possible 

combinations of disturbance events (n = 63) on the connectivity of the foundation and non-

foundation habitat graphs. 

 

Disturbance event Disturbance type 
Region effected 
by disturbance 

Foundation 
nodes 

Non-foundation 
nodes 

Severe Tropical 
Cyclone Yasi 

(2 – 4 February 
2011) 

Climatic 

South 
Hinchinbrook 

Island – Mission 
Beach 

72, 73, 74, 75, 
78, 81, 82, 83, 
85, 86, 87, 88, 

96 

76, 77, 79, 80, 
84, 89, 90, 91, 

97 

Severe Tropical 
Cyclone Hamish 

(4 – 16 March 2009) 

Climatic Deep water - 98, 99, 100 

Severe Tropical 
Cyclone Debbie 

(26 – 28 March 
2017) 

Climatic 
Whitsunday 
Islands and 

Repulse Bay 

1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11, 
12, 13, 14, 15, 
16, 17, 18, 19, 
20, 21, 23, 24, 
26, 27, 29, 30, 

31 

22, 25, 28 

Port of Abbot Point 
Coastal 

development 
Abbot Point and 

Abbot Bay 
36, 95 38 

Regional city and 
Port of Townsville 

Coastal 
development 

Cleveland Bay 52, 54, 92 51, 53, 93 

Flooding of 
Burdekin River 

Increased 
sediment load 

Upstart Bay 40, 41 42, 43, 94 
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