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Abstract 

 

This thesis examines the population trends and habitat requirements of the endangered northern 

bettong (Bettongia tropica) (Wakefield 1967) within wet to moist Eucalyptus woodland in their core 

population on the Lamb Range in north-eastern Queensland, Australia. This research has implications 

for managing habitat used by B. tropica and increasing their long-term population viability. 

Management recommendations to improve the conservation of B. tropica are presented. 

 

Effective management strategies depend upon identifying and mitigating against the key threats to 

population stability. However, the ability to devise suitable management strategies is often impeded by 

a lack of data. This is frequently the case for endangered species, including B. tropica. In Chapter two 

I overcome this problem by using simulation models to make projections of the future impacts on B. 

tropica under various scenarios. The population viability and survival probability of B. tropica 

populations on the Lamb Range was modelled in response to 1) increased predation; 2) changes in 

drought and fire frequency predicted with anthropogenic climate change; and 3) synergistic effects of 

predation, fire, and drought. Population viability analysis (PVA) models suggest that populations were 

resilient to substantial declines (up to 75%) and recovered to carrying capacity within 10 years when 

no threats impacted upon the population. 

 

However, modelling showed that a ≥40% increase in predation by cats, Felis catus, resulted in the 

population declining to extinction within 20 years. In contrast, populations were resilient to increases 

in droughts and fires. However, the impacts of predation could be more severe if predation and fire 

were to interact to increase the mortality of B. tropica. Interestingly, juvenile mortality was the main 

age class driving population viability, although mortality would need to double from the current rate 

before extinction was assured. To assist in maximising the long-term viability of B. tropica 

populations, it is recommended that the density of predators (especially cats and foxes) and B. tropica 

populations be regularly and consistently monitored. Predator control measures should be undertaken 

if high densities of predators are detected. 

 

Bettongia tropica is a keystone species within Eucalyptus woodlands on the Lamb Range. The long-

term viability of B. tropica is important for maintaining ecosystem function within these woodlands. 

The population density of B. tropica was previously assessed between 1994 and 1996 within the three 

main sub-populations (Davies Creek, Emu Creek and Tinaroo Creek) of the core population on the 

Lamb Range. During that previous study, the majority of sampling occurred at one sub-population, 

Davies Creek. No consistent monitoring of B. tropica’s core population had been undertaken since 

1996, although inconsistent monitoring between 2000 and 2009 at Davies Creek suggested a possible 

decline. In Chapter three, I re-assessed the population density, fitness (survival rates, body condition 
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and females with young) and trap success of B. tropica in the three main sub-populations using a far 

more intensive trapping regime than used in previous assessments. Population parameters were 

quantified during both the wet and dry seasons from nine surveys over two years at each sub-

population. Substantially more sampling within each sub-population means that my estimates are more 

reliable than previous. Population density estimates appeared stable compared to the assessment 20 

years prior. Population density was highest at the site with highest rainfall (Tinaroo Creek), with 

rainfall thought to indicate food abundance. Bettongia tropica sub-populations had similar density 

estimates and fitness during both seasons. Interestingly, trap success was higher during the dry season. 

Since long-term monitoring studies often use trap success to assess population trends, an accurate 

assessment of the population trend of B. tropica requires regular monitoring during both the wet and 

dry seasons. The population density varied with spatial distribution, with higher population densities 

occurring within preferred habitats. Population monitoring should therefore be conducted not only 

within preferred habitat, but also within more marginal habitats. 

 

Knowledge of the spatial distribution of species can provide an insight into the habitat requirements 

and behaviours of species. This information can assist in devising management strategies to increase 

long-term habitat stability and thus population viability. In Chapter, four movement patterns, home 

range distribution and social interactions of B. tropica were investigated using data obtained 

approximately every 10 minutes from 41 Global Positioning System (GPS) collars. Bettongia tropica 

had home ranges of 20.90  1.55 ha (mean  SE), with core foraging and nesting areas of 5.53  0.42 

ha and 0.67  0.10 ha respectively. An average of six nesting areas were used over an average of 25.43 

± 1.65 days. Bettongia tropica maintained separate core foraging and nesting areas, despite having 

largely overlapping home ranges. This suggests they defend areas with high resource density and are 

somewhat territorial, a trait not previously recorded for this species. 

 

Across all sites, males had larger home ranges than females, with home ranges of both genders 

increasing during the dry season. Interestingly, home ranges were similar between sites for males and 

females. The distribution of males appeared influenced by the distribution of females (seeking mating 

opportunities) and food resources, whilst females were influenced only by the distribution of food 

resources. Bettongia tropica undertook rapid and direct movements between resource patches and then 

moved slowly at irregular angles whilst foraging. Fast, linear movements are effective for travelling 

quickly across areas with minimal resources or few mating opportunities, whilst slower movements 

maximised the time B. tropica spent within areas with high density of resources. From the movement 

patterns of B. tropica, the location of bettong nesting and foraging areas were determined. 

 

In Chapter five, the microhabitat requirements of B. tropica were surveyed at nesting and foraging 

areas. Collared B. tropica were also radio-tracked to their nest location to determine the design and 
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material used to construct nests. Bettongia tropica mainly constructed nests from grass (Poaceae spp.) 

or nested under the ‘skirts’ (leaves) of grass trees (Xanthorrhoea johnsonii). Different habitat 

parameters were important for nesting and foraging. Nests were situated in steep areas with high grass 

cover and an abundance of grass trees. Whilst foraging, B. tropica selected habitats with a higher 

density of cockatoo grass (Alloteropsis semialata) and a lower density of tree basal area. Predator 

pressure appeared to influence habitat selection by B. tropica. Nesting areas were chosen for 

camouflage while resting, whilst foraging areas were more open to allow rapid escape from predators. 

Camera trapping conducted for six sessions recorded capture rates of approximately one predator 

capture to 60 B. tropica and one potential competitor to around 16 B. tropica. The presence of 

invasive predators of B. tropica on the Lamb Range means it is vital to regularly and consistently 

monitor both B. tropica and predator populations to assess for changes in density that could impact on 

the future population viability of B. tropica. 

 

The results of this study provide greater detail on the ecology of B. tropica and will assist in 

conserving the species. Food density appeared to have the greatest influence on B. tropica population 

density, which was reflected in how bettongs, especially females, moved throughout their habitat. 

Tinaroo Creek, which is the wettest site, had the highest population density. At Tinaroo Creek B. 

tropica had smaller home ranges (although not significantly) and females spent more time foraging 

(indicated by slow, angular movements) and less time travelling between resource patches (indicated 

by them undertaking rapid, linear movements). Higher rainfall would lead to higher resource density, 

enabling bettongs to travel shorter distances to access resources. This would allow more bettongs to 

occur within a given habitat area, with the habitat thus supporting a higher population density. 

 

Camera trapping data shows that the current predation pressure was slightly higher at Emu Creek, with 

more camera captures of predator species per captures of B. tropica at the site. Emu Creek was the 

only site where both cattle and rufous bettongs co-occurred with B. tropica, with these species likely 

to compete with B. tropica for grass resources. Interestingly, current predation and competition 

pressure did not appear to significantly influence the fitness of B. tropica, with survival rates, body 

condition and number of females with young similar between sites. This was surprising since 

predation pressures appeared to strongly influence microhabitat selection by B. tropica. It is possible 

that the current predation and competitive pressure was not sufficiently different between sites to 

detect an influence on population density of B. tropica in this study. However, climate change may 

increase predation pressure, with PVA modelling showing that predation by feral species could have 

the greatest impact on the future viability of B. tropica populations. Managing the habitat to minimise 

the potential impacts of predators is thus of high conservation priority. 
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Current habitat management practices involve low-intensity mosaic burns undertaken every two to 

three years on the Lamb Range. The population on the Lamb Range is stable, indicating current fire 

regimes are generally adequate and not negatively impacting upon B. tropica. However, habitat 

management could be improved based on the results of this study. Specifically, it is recommended that 

burns be conducted at a 20 ha scale and at least six areas of approximately 0.70 ha be left unburned to 

provide sufficient post-fire nesting resources. Management practices should also focus on maintaining 

or increasing the density of the habitat parameters identified in this study that are important for both 

nesting (grass cover and grass trees) and foraging (cockatoo grasses and low tree basal area). This may 

assist in improving habitat quality and increasing the density and viability of B. tropica populations. 

 

It is important that habitat quality be improved throughout the species distribution. The distribution of 

B. tropica has previously been modelled based on the distribution of their food resources projected 

from environmental variables. After my study, camera trapping can be used to survey for the 

presence/absence of B. tropica throughout that modelled distribution. Monitoring within Eucalyptus 

and wet sclerophyll woodlands on steep slopes and comprising an abundance of grass cover, grass 

trees and cockatoo grass and low tree basal area will maximise the detectability of B. tropica. Previous 

researchers have found that vegetation thickening can reduce grass cover. I determined that grass 

cover and cockatoo grass are important resources for B. tropica. Bettong individuals constructed 

poorly camouflaged nests within thickets of lantana. These nesting structures were not observed 

throughout the rest of the habitat, indicating that weedy and thickened vegetation provides sub-

standard habitat for B. tropica. If B. tropica occurs within areas where vegetation thickening is 

occurring, low-intensity burns should be conducted to reduce thickening and promote a grassy 

understorey. Low-intensity fire management may assist in improving the habitat quality for B. tropica 

throughout their distribution. 

 

It is also recommended that the number of known B. tropica populations be increased. Bettongia 

tropica is now only recorded from two populations (the Lamb Range and Mt. Carbine). The Mt. 

Carbine population is very small, with little research conducted on that population. As determined 

from Chapter 2, the Lamb Range population is resilient to a reduction in the number of individuals, 

making translocations a viable option at this time. Establishing additional populations would increase 

the population viability of the species and provide a safeguard for the species’ survival if the Lamb 

Range population suffered a large population decline or one or more of the sub-populations went 

locally extinct. The population viability may also be improved by a better understanding of the 

ecology and fate of juveniles, as juveniles were the main drivers of the population viability of B. 

tropica. In Chapter 3, it was shown that the survival rates of adult bettongs were high throughout the 

year across all sites and females carried pouch young during both the wet and dry season. However, 

the fate of juveniles and sub-adults was not measured. It is recommended that future research assess 
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the survival rates of sub-adults and juveniles and determine the main factors affecting their survival. 

This will assist in improving the conservation of B. tropica. 

 

Bettongia tropica provide important ecosystem services within Eucalyptus woodlands, including 

fungal spore dispersal and possible nutrient recycling. These services can improve habitat quality by 

improving the growth of certain plant species, which in turn affects vegetation community 

composition. Eucalyptus woodlands are habitat for a diversity of native species and protecting B. 

tropica may thus improve the health of an entire ecosystem. This conservation of healthy Eucalyptus 

woodlands should also assist in maintaining the population viability of other native species within this 

habitat. 

 

The concepts from this study can also be applied to research into other small mammal species. This 

study highlights the importance of consistent monitoring during the wet and dry seasons. My research 

also demonstrates that studying animals’ movement patterns can determine their microhabitat 

requirements. Many small mammal species have cryptic behaviours and their microhabitats are often 

poorly understood. Previous studies have determined the habitat preferences of small mammals by 

comparing trap capture rates within different habitats. However, this method may be biased by many 

factors, including animals being attracted to an area due to baiting of traps or less sampling effort 

occurring within difficult to access habitats. Using species movement patterns thus provides a more 

accurate method and is recommended for ascertaining the microhabitat requirements of other small 

mammal species. This information is crucial for species conservation, as it enables management to 

focus on protecting important microhabitats. 
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Chapter 1: General Introduction 

 

Australian terrestrial mammals have experienced the highest rate of mammal extinctions worldwide, 

accounting for a third of extinctions (Fisher et al. 2013). At the time of European settlement, an 

estimated 273 terrestrial mammals were endemic to Australia (Woinarski et al. 2015). Around 10% 

(30 species) of Australia’s mammals are now extinct and 21% (56 species) are considered threatened, 

being classified as either critically endangered (10 species), endangered (10 species) or vulnerable (36 

species) (Chapman 2009; Woinarski et al. 2015). An additional 15% (52 species) are near threatened 

(Chapman 2009; IUCN Standards and Petitions Subcommittee 2013; Woinarski et al. 2015). 

Mammals continue to suffer severe declines throughout Australia (Woinarski et al. 2010), with the 

extinction of one to two species per decade likely to continue (Woinarski et al. 2015). 

 

Most Australian mammal declines have occurred within relatively unmodified semi-arid or arid 

habitats in southern Australia in areas away from human centres (Fisher et al. 2013; Woinarski et al. 

2015). Within these regions, small to medium-sized mammals (35 g to 5.5 kg) have suffered the 

greatest declines (Burbidge & McKenzie 1989; Short & Smith 1994). More recently, species within 

tropical (northern) regions have started to decline (Fisher et al. 2013). Small ground-dwelling species 

that inhabit open vegetation with moderate rainfall have typically experienced substantial declines 

(Fisher et al. 2013; Woinarski et al. 2010). For example, the northern brush-tailed phascogale 

(Phascogale pirata), northern quoll (Dasyurus hallucatus) and fawn antechinus (Antechinus bellus), 

have experienced large range contractions and population declines of >90% (Fitzsimons et al. 2010; 

Woinarski et al. 2011a; Fisher et al. 2013). The cause of those declines is uncertain, although 

predation by feral species and habitat alteration are likely explanations, with poisoning by toads also 

affecting northern quoll populations (Fitzsimons et al. 2010; Woinarski et al. 2011a; Fisher et al. 

2013). 

 

Predation and inappropriate fire regimes are considered to be the two main causes of severe mammal 

declines across Australia (Woinarski et al. 2015). Predation by cats (Felis catus) is considered the 

main threat to native Australian mammals, with 97 species impacted (22 extinctions, 46 species 

threatened and 29 species near threatened) (Woinarski et al. 2015). Inappropriate fire regimes have 

also affected 63 mammal species (6 extinctions, 35 species threatened and 22 species near threatened), 

whilst predation from red foxes (Vulpes vulpes), thought absent from the tropics, has impacted 58 

species (13 extinctions, 28 species threatened and 17 species near threatened) (Woinarski et al. 2015). 

Habitat transformation (Fisher et al. 2003), including habitat loss and fragmentation, grazing, 

competition with feral species and disease are also contributing to mammal declines (McKenzie et al. 

2007; Fisher et al. 2013; Woinarski et al. 2010; Woinarski et al. 2011a; Woinarski et al. 2015; Preece 

et al. 2017). 
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Bettong species (Potoroidae) are endemic Australian marsupials that have experienced substantial 

population declines (Wayne et al. 2013b). Translocated populations of bettong species, including the 

Tasmanian bettong (Bettongia gaimardi) and burrowing bettong (Bettongia lesueur), have gone 

locally extinct due to predation by feral cats (Short & Turner 2000; Fancourt 2014). Brush-tailed 

bettongs (Bettongia penicillata) in particular have suffered severe population declines and range 

contractions and by the 1960s were restricted to three small areas within south-west Western Australia 

(Wayne et al. 2013b). Predation by invasive species, mainly foxes, was considered the main cause of 

the population decline (Start et al. 1995). To conserve the species, predators (foxes and cat) were 

controlled and bettong individuals translocated into predator free areas (Start et al. 1995). Populations 

recovered rapidly and the species was delisted from the threatened species list in 1996 (Start et al. 

1995). However, between 1999 and 2006, populations suffered severe and rapid (75-90%) declines 

(Groom 2010; Wayne et al. 2013b; Thompson et al. 2014) and as of 2008, brush-tailed bettongs were 

re-listed by the International Union for Conservation of Nature (IUCN) as being critically endangered 

(Woinarski & Burbidge 2016). Disease is the leading hypothesis for the cause of this decline, although 

predation, a reduction in resources and direct human interference may have all contributed (Wayne et 

al. 2013b). 

 

The northern bettong (Bettongia tropica) (Wakefield 1967) has also suffered large range contractions, 

although the extent of population declines is currently unknown (Burbidge & Woinarski 2016). 

Bettongia tropica is listed as Endangered according to the IUCN Red List of Threatened Species 

(Burbidge & Woinarski 2016) and the Environment Protection and Biodiversity Conservation Act 

1999 (Australian Commonwealth) (Dennis 2001). Given the species endangered status and the 

vulnerability of bettong species to threats, research regarding the current population status and the 

ecology of B. tropica may assist in developing management strategies to conserve the species. It is 

important these strategies are devised and implemented before B. tropica experiences the severe 

population declines observed for other bettong species. 

 

During surveys in the early 1990s, B. tropica was recorded at four sites within far north Queensland: 

the core population on the Lamb Range (with four sub-populations) and peripheral small, low-density 

populations at Mt. Carbine, Mt. Windsor and Mt. Zero (Dennis 2001) (Figure 1.1). As of 2003, 

persistence of these peripheral populations has been uncertain. Extensive cage trapping (>3,600 trap 

nights) conducted between 2006 and 2007 failed to detect B. tropica at Mt. Zero (Bateman 2010), with 

the population considered locally extinct (Burbidge & Woinarski 2016). At Mt. Windsor, only one 

individual was ever detected from a total of 520 cage trap nights and 44 hours of spotlighting during 

the 1990s (Winter 1992; Winter 1997; Dennis 2001) and 2,800 camera trap nights in 2017 (Koleck et 

al. 2017, unpublished data). However, sampling at Mt. Windsor has only previously been conducted 

during the wet season (Winter 1997; Koleck et al. 2017, unpublished data). Trap success is generally 
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lower during the wet season (McClearn et al. 1994) and surveying during the dry season may increase 

the chance of detecting B. tropica. Camera trapping (2,800 trap nights) conducted in February 2017 

detected three individuals at Mt. Carbine (Koleck et al. 2017, unpublished data). This means there may 

have been a 50% reduction in the number of B. tropica populations, with the species only now 

recorded from two populations; the core population on the Lamb Range and the smaller and 

potentially disconnected population at Mt. Carbine. 

 

All populations (both extinct and extant) of B. tropica are restricted to a narrow band of transitional 

forests from dry sclerophyll to Allocasuarina on the western margin of the Wet Tropics World 

Heritage Area (Winter 1992). The diet of B. tropica appears to be the main factor restricting the 

species’ distribution (Abell et al. 2006; Bateman et al. 2011). Throughout the year, B. tropica 

predominately consumes ectomycorrhizal hypogeous fungal sporocarps (underground fruiting bodies), 

commonly known as truffles (Johnson & McIlwee 1997; Abell et al. 2006). Lilies, forbs and grasses, 

particularly the shoot base of cockatoo grass (Alloteropsis semialata), comprise around half the 

species’ diet during the dry season when truffle abundance declines (Johnson & McIlwee 1997; 

McIlwee & Johnson 1998). Therefore, B. tropica is confined to areas where truffles occur for the 

majority of the year and cockatoo grass grows in abundance during the dry season when truffle 

abundance declines (Johnson & McIlwee 1997; McIlwee & Johnson 1998; Abell et al. 2006). 

 

	 	
	
 

 

  

Figure 1.1. Location of Bettongia tropica peripheral populations (Mt. Windsor, Mt. Carbine and Mt. Zero) 

shown by yellow dots and the core Lamb Range sub-populations (Bridle Creek, Davies Creek, Emu Creek and 

Tinaroo Creek) indicated by red dots. Inset shows the study sites at Davies Creek, Emu Creek and Tinaroo 

Creek (red circles), with the white lines showing the locations of cage trap transects within the study sites. The 

location of Bridle Creek is also shown (Google Earth®, adapted from Vernes and Pope (2006)).	
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The presence of B. tropica may be vital for maintaining ecosystem functioning within Eucalyptus 

woodlands on the Lamb Range. Bettongia tropica is a specialist disperser of truffles in north-eastern 

Queensland, Australia (Reddell et al. 1997; Nuske 2017). Truffles are important for forest health, as 

they form a symbiotic relationship with certain plant species, usually woody trees (Sharma 2017). This 

relationship can increase plant growth and survival (Fellbaum et al. 2011), improve seedling 

establishment and/or influence plant community dynamics (Nara 2006). Dispersing truffle spores may 

also contribute to maintaining fungal diversity within the landscape (Danks 2012; Fleming et al. 

2014a), with fungi being important for nutrient recycling and other ecosystem functions (Hodge & 

Fitter 2010). Bettongia tropica potentially assist with nutrient cycling by bioturbation when digging 

for truffles and the shoot base of cockatoo grass (Vernes & Dunn 2009; Fleming et al. 2014a). Truffle 

dispersal and nutrient cycling are important ecosystem services, with B. tropica being classified as a 

keystone species within Eucalyptus woodlands (Nuske 2017; Nuske et al. 2017). 

 

Given their endangered status, a recovery plan was established in 2000 to conserve B. tropica (Dennis 

2001). An updated but unpublished recovery plan was then developed by the Department of 

Environment and Heritage Protection in 2012 (Burbidge et al. 2014). The overarching goal of both 

recovery plans is to conserve B. tropica by maintaining or expanding current wild populations and to 

establish new wild populations (Dennis 2001; Burbidge et al. 2014). The species will be considered 

stable when B. tropica populations occur within five areas containing suitable habitat and populations 

are stable over the long term.  

 

My project was aligned with addressing the first objective of the northern bettong recovery plan, 

which is to manage the habitat of known populations of B. tropica (Dennis 2001; Burbidge et al. 

2014). To achieve this, the recovery plan lists four sub-objectives, which involve: 

1) mapping the distribution, population density and habitat requirements of B. tropica, 

2) obtaining a memorandum of understanding between management agencies to conserve B. tropica 

habitat, 

3) developing appropriate fire management regimes, and 

4) understanding population trends within the Lamb Range and peripheral populations. 

 

1.1 Thesis aims and structure 

The overarching aims of my project were to determine the (1) population trends (fourth sub-objective 

of the recovery plan) and (2) habitat requirements of B. tropica (first sub-objective), with the overall 

goal of improving the conservation management of the species. This work was divided into four aims  

corresponding to each chapter. 
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1.1.1 Chapter 2: Influence of potential threats to population viability 

I aimed to determine the impacts of potential future threats on the population viability of B. tropica. It 

is often difficult to establish the cause of population declines, as multiple threats may simultaneously 

affect populations (Evans et al. 2011). Bettongia tropica populations are potentially under pressure 

from various threats, including invasive predators, inappropriate fire regimes and habitat alteration 

(Burbidge & Woinarski 2016). Climate change could also substantially impact upon the species’ 

viability in the future. Both increased drought frequency and/or intensity and range expansions of 

invasive predators (cats and foxes) further into B. tropica habitat could impact upon B. tropica 

(Burbidge & Woinarski 2016). Predation is a leading cause of mammal declines and it was 

hypothesised that predation by invasive species, in particular feral cats, would have the greatest impact 

upon the population viability of B. tropica.  

 

Population viability analysis (PVA) was used to model how B. tropica populations respond to these 

potential future threats, including evaluating the extent of possible population declines (Heinsohn et al. 

2015). PVA uses simulation models to make projections of how threats will impact populations and 

can highlight the threat/s most likely to have the greatest impact upon population viability (Ferguson 

& Ponciano 2014). The model is particularly useful for species that are difficult to monitor, as it 

provides a starting point for managing a population (Heinsohn et al. 2015). Managers can devise 

appropriate preemptive conservation strategies to minimise the likely impacts of threats (Norris & 

Harper 2003). Proactive management is crucial for conserving species that are already threatened and 

vulnerable to extinction (Norris & Harper 2003). Following desktop PVA modelling, which was used 

to determine the factors that could result in population declines, I assessed the current population 

trends by undertaking fieldwork at each site.  

 

1.1.2 Chapter 3: Population trends 

The aim for Chapter 3 was to determine the population density and to assess the population trends of 

B. tropica within the three main sub-populations (Davies Creek, Emu Creek and Tinaroo Creek) on 

the Lamb Range. To effectively manage populations, it is crucial to examine population trends in the 

field (Wayne et al. 2006; Rinehart et al. 2014). Observed population declines similar to those 

modelled in Chapter 2 would warrant further investigation into the cause (Kuker & Barrett-Lennard 

2010) and identified threats would need to be managed to avoid or minimise further declines 

(Woinarski et al. 2010). For example, regular monitoring of the brush-tailed bettongs (Bettongia 

penicillata) populations enabled management to determine the likely causes of the species multiple 

population declines, with management actions then undertaken to reduce the threats (Thompson et al. 

2015). Brush-tailed bettongs rapidly declined in the 1970s due to predation by foxes, with fox baiting 

programs then undertaken and the population of brush-tailed bettongs subsequently recovering to 

around 200,000 individuals (Marlow et al. 2015; Thompson et al. 2015). The population continued to 
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be monitored, with a rapid decline again occurring between 1999 and 2006 (Marlow et al. 2015; 

Thompson et al. 2015). Monitoring the trend of decline showed that predation by feral cats was the 

most likely cause, prompting translocations of brush-tailed bettongs into cat and fox controlled areas 

(de Tores and Marlow 2012). There is also increasing evidence to suggest disease also was a critical 

factor in the decline (Marlow et al. 2015; Thompson et al. 2015).  

 

Assessing population trends is especially important for species such as B. tropica that are rare, already 

threatened (Brook et al. 2000) or occur within a small geographic range (Williams et al. 2009). These 

species often have small population sizes and are particularly vulnerable to threatening processes and 

stochastic population fluctuations (Williams et al. 2009; Furlan et al. 2012). Even small changes have 

the potential to result in vulnerable populations declining to extinction (Hoffmann & Parsons 1997; 

Duncan et al. 2012). 

 

For B. tropica, the population density had been previously estimated within the core population on the 

Lamb Range. Vernes and Pope (2006) estimated the population density at the four sub-populations on 

the Lamb Range between November 1994 and May 1996, although only one sub-population (Davies 

Creek) was assessed and monitored thoroughly. A decline within the core population would likely be 

dire for the species’ survival, given the already restricted distribution and few extant populations 

(Burbidge & Woinarski 2016).  

 

A re-assessment of the population was thus required to determine the current population trends of B. 

tropica. Cage trapping was conducted over nine trapping sessions between November 2014 and 

November 2016 and all B. tropica were microchipped to distinguish individuals. Pollock’s robust 

design multi-season mark-recapture analysis was conducted to estimate the population abundance at 

each trapping session, which enabled population trends over the two years to be assessed. Drier 

habitats support fewer food resources for B. tropica and it was predicted that the driest site would 

support the lowest population density and therefore be more vulnerable to decline. 

 

1.1.3 Chapter 4: Fine-scale movement patterns 

The third aim of my study was to assess the seasonal movement patterns, including home ranges and 

social interactions, of B. tropica within the three main sub-populations. Gaillard et al. (2010) proposed 

that the most limiting factors at broad- and fine-scales should theoretically dictate spatial ecology and 

habitat selection. An understanding of a species’ movement patterns can provide an insight into the 

habitat resources that are crucial for the species (McLoughlin et al. 2000; Powell 2012) and the fine-

scale distribution of these resources (Allen & Singh 2016). For example, Finlayson and Moseby 

(2004) radio-tracked female burrowing bettongs (Bettongia lesueur) and used the location fixes to 

determine the habitat that individuals preferred. Movement patterns can vary between sub-populations 
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due to various factors, including differences in resource distribution, habitat quality, competition or 

predation between locations (Holyoak et al. 2008; Nathan et al. 2008; Davies et al. 2013). It is thus 

important to assess a species’ home range and movement patterns across multiple locations (Davies et 

al. 2013). Both truffles and cockatoo grass (main food resources) are sparsely distributed and it was 

predicted that B. tropica would require large home ranges and travel large distances each night to 

source sufficient food. 

 

Prior to this study there were limited data on the seasonal movement patterns of individuals of B. 

tropica. Vernes and Pope (2001) radio-tracked 23 B. tropica individuals at Davies Creek and 

estimated broad-scale movement patterns and home range size based on fixes recorded every two 

hours during the night. Due to B. tropica travelling relatively large distances each hour (Vernes & 

Pope 2001), the specific location where B. tropica foraged could not be assessed using that 

methodology. The fine-scale distribution of resources and the specific habitat requirements of B. 

tropica also could not be investigated. In contrast, I determined the fine-scale movement patterns by 

GPS tracking 41 bettongs. I created maps, determined the size of home ranges and examined them for 

potential social interactions. I also determined the movement trajectory and speed that B. tropica 

travelled to understand how bettongs move throughout their habitat to access resources. It was 

predicted that B. tropica within populations would have large home ranges and that the home ranges 

of individuals would substantially overlap with others, due to food resources (truffles and cockatoo 

grass) being sparsely distributed.  

 

1.1.4 Chapter 5: Fine-scale habitat requirements 

The final aim of this study was to identify the fine-scale habitat requirements of B. tropica at their 

nesting and foraging areas and the presence of their potential predators and competitors. The 

interaction between animals and their environment results in non-random habitat use (Börger et al. 

2008; Signer et al. 2015), with habitat selection varying between species due to differences in niche 

and habitat requirements (Kingston & Morris 2000; Luza et al. 2016). Species often concentrate a 

larger proportion of their movements within certain areas (core areas), with these areas usually 

containing a high density of important resources (Asensio et al. 2012; Feldhamer et al. 2015). 

Vegetation surveys can be targeted to core areas, enabling the important habitat requirements of 

species to be determined (Bingham & Noon 1997). Management can then focus on improving habitat 

quality to increase the presence of important resources. 

 

For B. tropica, the species broad-scale habitat requirements are known. Bettongia tropica attain higher 

density within Eucalyptus woodlands with a grassy understorey (3.7 to 7.5 bettongs/km2) compared to 

drier or wetter habitats, such as Allocasuarina forest (1.5 bettongs/km2) (Vernes & Pope 2006). 

Eucalyptus woodland close to rainforest receives sufficient rainfall to support truffles almost all year 
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round and the canopy is open enough for cockatoo grass to grow in the understorey (Abell et al. 2006). 

In contrast, wetter habitats (rainforest to Allocasuarina) largely shade out grasses (Harrington & 

Sanderson 1994) and rainforest trees are not appropriate host trees for ectomycorrhizal truffles (Smith 

et al. 2013b). 

 

Prior to my study, there was limited information on the fine-scale habitat preferences of B. tropica and 

it was unknown whether preferences differed across the landscape. Vernes and Pope (2001) radio-

tracked B. tropica to their nests and determined the materials used for nest construction at one sub-

population (Davies Creek). However, the fine-scale habitat preferences at nesting areas were not 

surveyed. Additionally, there was minimal information of habitat requirements when foraging. Vernes 

(2003) surveyed the habitat at cage trap locations and inferred the habitat preferences of B. tropica 

whilst foraging based on the number of captures at each cage trap. Bettongia tropica were caught more 

frequently within cages placed along open ridgelines compared to denser mid-slopes and gullies 

(Vernes 2003). However, this result may have been biased by non-random trap placement (Cusack et 

al. 2015; Hotfmeester et al. 2016). Habitat requirements of B. tropica thus needed to be re-assessed 

without bias and with habitat surveys conducted at multiple sub-populations. This should provide a 

more comprehensive insight into the habitat resources that are important for the species across the 

landscape (de Knegta et al. 2007; Hebblewhite & Haydon 2010; Allen & Singh 2016). To determine 

the microhabitat requirements of B. tropica, I analysed the movement patterns of B. tropica (obtained 

in Chapter 4) to determine where bettongs nested and foraged. I then conducted vegetation surveys at 

five nesting and foraging areas for six individuals (three males and three females) at each study site. I 

also radio-tracked collared B. tropica to their nests and recorded the nesting material that each 

individual had used. It was expected that nesting and foraging areas would comprise of variables that 

maximised camouflage from predators. 

 

Additionally, the presence of potential competitors and predators had not been ascertained across the 

populations on the Lamb Range. Vernes (2000) undertook the only previous research into predator 

species on the Lamb Range by analysing dingo scats for the presence of bettongs. The presence of 

other predator species had not been assessed. Prior to my study, no research had determined whether 

potential competitor species occupied the same area as B. tropica. I conducted 12,960 camera trap 

nights to detect the presence of predator and competitor species. 

 

1.1.5 Chapter 6: Synthesis and management recommendations 

In Chapter 6, I synthesised the results of chapters 2 to 5 and discussed the implications of the study 

regarding the ecology of B. tropica and how this new information can contribute to the management of 

B. tropica populations. My research provides baseline information on multiple aspects of B. tropica 

ecology across the Lamb Range. Recommendations from my research will enable managers to 
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develop and improve management strategies to conserve B. tropica. I also outline how my research 

contributes to addressing the management actions listed in the B. tropica recovery plan and 

recommend future research priorities. Future studies can build upon this research to provide a greater 

insight into the distribution and movements of B. tropica, with spatial and temporal replication 

recommended to provide an insight into the trends of B. tropica across the species distribution and 

through time.  
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Chapter 2: Influence of predation, drought and fire on the population viability of 

Bettongia tropica 

 

2.1 Abstract 

Context. Identification of key threats to endangered species is vital for devising effective management 

strategies but may be hindered when relevant data is limited. A population viability analysis (PVA) 

may overcome this problem by using simulation models to make projections of the future impacts of 

factors under various scenarios. 

Aims. This chapter aimed to determine population viability of endangered northern bettongs 

(Bettongia tropica) in north-eastern Australia and investigate key threats to population resilience 

including increases in mortality rates and changes in fire and drought frequency. 

Methods. Using population viability analysis (PVA) I modelled survival probability of B. tropica 

populations under likely scenarios including: 1) increased predation; 2) changes in drought and fire 

frequency predicted with anthropogenic climate change; and 3) synergistic effects of predation, fire, 

and drought. 

Key results. Population viability models suggest that populations are highly vulnerable to increases in 

predation by feral cats, Felis catus (and potentially red fox, Vulpes vulpes, should they colonise the 

area), as juvenile mortality is the main age-class driving population viability. If B. tropica become 

more vulnerable to predators during post-fire vegetation recovery, more frequent fires could 

exacerbate effects of low-level cat predation. In contrast, populations were predicted to be resilient to 

the greater frequency of droughts expected with climate change, with high probabilities of extinctions 

only predicted under the unprecedented and unlikely scenario of 4 drought years in 10. However, since 

drought and fire are interlinked, the impacts of predation could be more severe with climate change 

should predation and fire interact to increase B. tropica mortality risk. 

Conclusions. Like other Potoroids, B. tropica appear highly vulnerable to predation by introduced 

mammalian predators such as feral cats.  

Implications. Managers need information allowing them to recognise scenarios when populations are 

most vulnerable to potential threats, such as drought, fire and predation. PVA modelling can assess 

scenarios and allow pro-active management based on predicted responses rather than requiring 

collection of extensive field data prior to management actions. My analysis suggests that assessing and 

controlling predator populations and thereby minimising predation, particularly of juveniles, should 

assist in maintaining stability of populations of the B. tropica. 

 

 

Paper accepted. Whitehead et al., 2018. Wildlife Research 
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2.2 Introduction 

Widespread population declines of small mammals have occurred throughout Australia (Fisher et al. 

2013). Predation by feral species, including foxes and cats, and habitat alteration through 

inappropriate fire regimes are the major factors contributing to the species declines (Fisher et al. 2003; 

Woinarski et al. 2011a; Fisher et al. 2013). Environmental changes may also severely threaten the 

survival of many vulnerable mammal species (Isaac 2009), particularly with increased frequency and 

intensity of extreme weather events (Hughes 2003). Predictions of drought frequency in north-eastern 

Australia have risen from 2 years in 10 (Kothavala 1999) to drought every two to four years (Quiggin 

2010). Multiple threats may be operating on populations. Effectively reducing further declines 

depends on identifying and mitigating the main threatening process affecting a species (Evans et al. 

2011). However, the rarity of threatened and endangered species makes it difficult to detect specific 

causes of declines and management decisions are often based on limited data. To ensure that the most 

appropriate decisions are made to conserve these species, such data must be applied effectively. 

 

There are often insufficient replicate populations to accurately assess which conservation strategies 

maximise the probability of a population persisting (Coulson et al. 2001). Population viability analysis 

(PVA) is a simple method that can overcome this problem by estimating the probability of a 

population becoming extinct over a certain period of time (Coulson et al. 2001) using models of future 

life-history parameters, environmental events and identifiable population threats (Brook et al. 2000). 

Theoretical influences of ecological and life-history traits and threats on the viability of a population 

can also be predicted over time (Akcakaya & Sjogren-Gulve 2000). The risk of extinction, or of a 

population falling under a critical abundance level, can be assessed together with the relative 

importance of multiple potential threats to population growth (Ferguson & Ponciano 2014). PVAs 

have assisted in developing management strategies for various species (Lindenmayer & Possingham 

1996; Heinsohn et al. 2004; Heinsohn et al. 2015). Additionally, PVAs may be used for guidance in 

prioritising the most effective strategy (Gerber & González-Suárez 2010) to minimise population 

declines before declines are irreversible (Wayne et al. 2006). 

 

Small and endangered populations are particularly susceptible to altered population dynamics (Brook 

et al. 2000). In small populations it is unlikely that future rates of population change will remain 

similar to their current rate (Brook et al. 2000). This limits the accuracy of PVA to predict the future 

status of populations (Brook et al. 2000). However, PVA can still model the potential impacts of 

changes, including that of catastrophes or changes to vital rates (Coulson et al. 2001). Undertaking a 

PVA is only the first step in the process for assessing species’ population trends. Field validation is 

later required to confirm whether the trends in the field follow the modelled trends (Wayne et al. 

2006). Bettongia tropica, the northern bettong, provides an example of the use of PVA to supply 

information useful for conservation managers and alleviate the problems of limited data. 
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Bettongia tropica is restricted to dry sclerophyll forests on the western boundary of the Wet Tropics 

World Heritage rainforests (Vernes & Pope 2001) in north-eastern Australia (Burbidge & Woinarski 

2016). Dietary requirements restrict B. tropica to these forests, as these habitats receive sufficient 

rainfall to support the preferred nutritious food source of truffles (fungal fruiting bodies) during the 

wet season, but are open enough for the dry season staple of the species, cockatoo grass (Alloteropsis 

semialata), to grow in the understorey (Abell et al. 2006). Due to their specialised diet, drought and 

changed fire regimes resulting in vegetation alteration (Hilbert et al. 2001; Bateman et al. 2012a), are 

likely to have a major impact on the population viability of B. tropica, as both reduce food abundance 

(Bateman et al. 2012a; Harrison & Congdon 2002; Short 1998). 

 

Predation and competition may also threaten B. tropica populations. No known study has 

comprehensively assessed the influence of predation on B. tropica. However, other bettong species 

have suffered large population declines or local extinctions primarily due to predation, principally by 

feral cats (Short & Turner 1999; Priddel & Wheeler 2004; Bateman et al. 2011; Fancourt 2014). 

Therefore, predation is considered to be a major threat to B. tropica. Additionally, competition with 

rufous bettongs (Aepyprymnus rufescens) could possibly influence the population stability of B. 

tropica, particularly within drier areas (Bateman et al. 2012a). Rufous bettongs are adapted to a wider 

temperature and precipitation range and have colonised areas where B. tropica populations previously 

occurred (Bateman et al. 2012a). 

 

These aforementioned threats, especially drought, changed fire regimes and predation, may have 

contributed to B. tropica disappearing from substantial areas of their former range (Maxwell et al. 

1996; Pope et al. 2012), creating four disjunct populations: a core population on the Lamb Range 

(Vernes & Pope 2006), and three smaller, low-density populations ( Laurance 1997; Dennis 2001; 

Bateman 2010). On the Lamb Range, four geographically close sub-populations occur at Bridle Creek, 

Davies Creek, Emu Creek and Tinaroo Creek (Pope et al. 2000), with greater densities in the southern 

sub-populations (Laurance 1997; Vernes & Pope 2006). However, current population size and 

viability of these populations was unknown (addressed in Chapter 3). 

 

2.2.1 Aims 

This analysis aimed to assess the population viability of B. tropica using pre-existing data (Vernes & 

Pope 2006) from four monitored sub-populations on the Lamb Range. Specifically, I aimed to assess 

how the viability of each sub-population was influenced by varying rates of juvenile, adult and 

dispersing sub-adult mortality, both with and without the potential synergistic effects of fire on B. 

tropica survivorship. I also aimed to model the response of each population to changes caused by 

drought, again with and without fire and predation effects. 
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2.3 Methods 

2.3.1 Base model of bettong population viability 

Data on life history characteristics, abundance and distribution of B. tropica were collated from mark-

recapture studies undertaken between 1994 and 1997 (Appendix A) at Bridle Creek (16°58′S, 

145°35′E), Davies Creek (17°01′S, 145°35′E), Emu Creek (17°06′S, 145°31′E) and Tinaroo Creek 

(17°10′S, 145°32′E) on the Lamb Range, in north-eastern Queensland, Australia. In particular, field 

data collected in 1994 on population density (Vernes & Pope 2006), adult fecundity and pouch young 

survivorship (Vernes & Pope 2002), population structure (Pope et al. 2000), mating system and local 

dispersal patterns (Pope et al. 2012) form the backbone of the model. Data from captive studies on 

reproduction in B. tropica by Johnson and Delean (2001) and on related potoroids were also used 

where required (Appendix A ). I also modelled the frequency and severity of catastrophes (fire and 

drought) into the future, basing the scenarios on modelling by Quiggin (2010), Bateman (2010) and 

Bateman et al. (2011). 

 

I predicted the probability of persistence of B. tropica populations over a 100-year period for each 

sub-population (Bridle Creek, Davies Creek, Emu Creek and Tinaroo Creek), as well as for the 

metapopulation. Modelling was undertaken using the PVA simulation computer program VORTEX 

(Version 10) and 1000 iterations of the model. Vortex determines a species probabilistic estimate of 

extinction (Beissinger et al. 2008) based on a random value from a specific distribution (Lacy 2000b). 

Simulations can then explore the sensitivity of population viability analysis to particular parameters. A 

base model of B. tropica populations was then developed from the parameter inputs determined from 

the literature (Appendix A). This enabled an evaluation of how changed population size and mortality 

rates influenced population viability. Genetic factors were not modelled as B. tropica populations have 

substantial genetic diversity (Pope et al. 2000), suggesting genetic factors are unlikely to be an 

important factor in their decline.  

 

The base model assumed all dispersing individuals emigrated to other populations to the north or south 

(Appendix A). It was assumed that an equal percentage of individuals emigrated to the northern and 

southern populations from Davies and Emu Creek (the two populations within the centre of the 

metapopulation), whilst all dispersing individuals from Bridle Creek emigrated south to Davies Creek 

and those dispersing from Tinaroo Creek emigrated north to Emu Creek (Figure 1.1). However, it is 

possible that geographic or environmental features may result in the percentage of immigrating 

individuals being unevenly divided between northern or southern populations. The emigration rates to 

certain populations may potentially be an over or under-estimation. 
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2.3.2 Influence of declining population sizes on population viability 

The influence of a decreased population size on population viability was also assessed over a 100-year 

period using 1000 iterations of the model. Using the same life history parameters as in the base model 

(Appendix A), the population size of each of the four sub-populations was constrained to be 25%, 

50% and 75% lower than base model population estimates. Carrying capacity was also set at a lower 

limit to match the starting population size for each simulation. 

 

2.3.3 Influence of increased mortality on population viability 

Changes in juvenile mortality rates and the persistence of dispersing sub-adults were modelled using 

sensitivity analysis to determine how sensitive the model was to increasing mortality rates. It is noted 

that juvenile mortality is the component of the model for which the data is least robust. The analysis 

had three components; juvenile mortality (0-1 years), adult mortality (1+ years) and mortality of sub-

adult dispersers. Juvenile mortality was allowed to increase from its approximate base value (45%) in 

5% increments to a maximum of 85%, whilst adult and disperser mortality was increased from its base 

value (15%) in 5% increments to a maximum of 80%. Each component was modelled as a single 

factor that changed incrementally as the other two components were held constant. 

 

2.3.4 Influence of cat predation on population viability 

The base model was modified to create scenarios that simulated different levels of cat predation (low, 

moderate, and high) on bettong populations. Feral cats are known predators of small macropods and 

have been implicated in the decline of several populations (Fisher et al. 2013; Frank et al. 2014). 

Previous studies indicate that feral cats may pose a high to very high risk to B. tropica populations 

(Department of Environment 2015), despite feral cat populations currently being thought to be small 

on the Lamb Range (Harrison & Congdon 2002). A current assessment specifically on the impacts of 

feral cats within the Wet Tropics has not been undertaken. Cat predation rates of B. tropica were 

therefore estimated based on the impact of cats on other small mammal populations within Australia. 

Predation rates reported in the literature typically range from 40 to 60%; for example, Gibson et al. 

(1994) confirmed cats were responsible for 40 to 56% of mala (Lagorchestes hirsutus) mortality after 

reintroduction to the Tamami Desert, whilst Priddel and Wheeler (2004) reported 42% of reintroduced 

brush-tailed bettongs (B. penicillata) were killed by cats in western NSW. Additionally, Marlow et al. 

(2015) found that 65% of brush-tailed bettongs were killed by feral cats within two reserves in their 

Western Australia study site. Based on these and other studies (see Fisher et al 2015), ‘high cat 

predation’ was set as at 60%, and ‘moderate cat predation’ at 40% in the models (Table 2.1). 

Additionally, since low densities of cats should have less impact on bettongs, I created a ‘low cat 

predation’ scenario where cat predation was arbitrarily set at 20% (Table 2.1).  
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Table 2.1. Mortality rates of Bettongia tropica for different VORTEX models of low, medium and 

high cat predation, with and without the synergistic effects of fire, and the impact of fire. 

Scenario Cat predation Severity factor of 

drought applied to 

adult survivorship 

Juvenile 

mortality 

(%) 

Adult 

mortality 

(%)  

Survival of 

dispersers 

(%) 

Base model No cat predation, no fire effects 

on mortality 

0.95 46.0 15.0 87.0 

Scenario 1 Low cat predation (+20%), 

without fire effect 

0.95 55.2 35.0 69.6 

Scenario 2 Low cat predation (+20%), with 

fire effect 

0.80 55.2 35.0 69.6 

Scenario 3 Moderate cat predation (+40%), 

without fire effect 

0.95 64.4 55.0 52.5 

Scenario 4 Moderate cat predation (+40%), 

with fire effect 

0.80 64.4 55.0 52.5 

Scenario 5 High cat predation (+60%), 

without fire effect 

0.95 73.6 75.0 34.8 

Scenario 6 High cat predation (+60%), with 

fire effect 

0.80 73.6 75.0 34.8 

 

Dependent juveniles were linked to mothers in the models, so if a female bettong died, any dependent 

young (age 0-1) died with her. Predation rates were added to existing (base model) rates for adults 

(Table 2.1) (i.e. in the models, adult mortality is base+cat predation rate). Juvenile mortality rates were 

compounded to the existing mortality rates by 20, 40 and 60% (i.e. in the models, juvenile death is 

base+base*cat predation rate). This was intended to cover 1) any young in the pouch dying 

automatically if their mother was predated, and 2) some additional young also dying as either a sub-

adult animal that was outside the pouch but still dependent on its mother, or still in the pouch but 

ejected by their mother as she escaped predation. Pouch ejection is a known contributor to pouch 

young mortality when mothers are stressed by predators (Morton 1990; Priddel & Wheeler 2004; 

Associate Professor Karl Vernes, personal observation), although the rate at which this occurs in the 

wild is unknown. It is acknowledged that the rate of pouch young and sub-adult deaths is unknown in 

real populations exposed to different levels of cat predation. However, it is reasonable to assume that 

the rate increases as cat predation increases.  

 

Red foxes (Vulpes vulpes) are currently absent within the range of B. tropica (Harrison & Congdon 

2002). However, foxes are likely to detrimentally affect B. tropica populations in the future if fox 

distribution expands into areas occupied by B. tropica. Other bettong species have suffered substantial 

declines or extinctions due to predation by foxes (Department of Sustainability, Environment, 

Population and Communities 1998; 2010). There is limited data on mortality and survival rates 

following fox incursion into areas occupied by bettongs. Therefore, the potential influence of foxes 
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was not modelled separately. 

 

2.3.5 Influence of fire on population viability 

Previous studies have determined that predation post-fire, especially by foxes or cats, can be as high as 

46% and cause large declines of bettong populations (Christensen 1980). There is limited data on 

predators on the Lamb Range, although one cat was captured on a camera trap at Tinaroo Creek 

(Chapter 5). If cats become a significant predator of B. tropica on the Lamb Range, it is reasonable to 

consider scenarios where predation and fire operate synergistically along the lines demonstrated by 

Christensen (1980). This would lead to increased mortality of bettongs following fire. Accordingly, 

the three cat predation scenarios each have two components: with and without the synergistic effect of 

fire (Table 2.1).  

 

2.3.6 Influence of increased drought frequency on population viability 

Drought in wet and dry sclerophyll forests has been classified in a number of ways. Bateman et al. 

(2011b) suggested that since >50 mm of rain was required for truffle fruiting, 14 days without this 

amount of rain constituted a drought. However, Abell et al. (2006) found that truffles occurred 

throughout the year at Davies Creek, despite 5 months of rainfall <50 mm and truffle abundance was 

largely influenced by rainfall in the previous one or two months. Expert opinion on climate and 

drought modelling (Professor Stephen Turton, pers. comm.) suggested that 60 days without rain 

(traces excepted) would constitute a dry period within the wetter sclerophyll habitat that is adjacent to 

the dry sclerophyll habitat of my study sites. The Bureau of Meteorology (2016) defines drought as a 

severe or serious deficiency in rainfall, where there are three or more consecutive months where 

rainfall is among the lowest 5% (severe) or 10% (serious) of historical totals. To account for high 

abundances of truffles only occurring when rainfall was above 50 mm, drought was defined as a three-

month or longer period with less than 50 mm of rain. Drought was classified to have ceased when 

rainfall during the following three months was above 70% of historical records (Bureau of 

Meteorology (BOM) 2016). 

 

The number of droughts was totalled for the last 10 years (2007 until 2016) using the weather station 

at Tinaroo Falls Dam ((BOM) 2016). This weather station is close to the wettest study site (Tinaroo 

Creek) and thus the rainfall data is the best-case scenario for all three sub-populations. Rainfall 

estimates from Walkamin weather station were used when estimates were unavailable from Tinaroo 

Falls Dam. 

 

One drought, lasting 3 months, occurred within the 10 years. Drought frequencies were thus modelled 

between 10% (one in 10 years) to 50% (every other year) to determine how this impacted population 

abundance and population viability of B. tropica over a 100-year period. Drought was defined as a 
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‘catastrophe’ in the base model, with a strong negative effect on reproduction (impact = 0.66, as in 

drought years reproduction was 66% of the rate in non-drought years), but was modelled as having a 

relatively minor effect on persistence (impact = 0.9, as survival of bettongs was 90% of the rate in 

non-drought years). The impact factor for the models was based on the results of Priddel and Wheeler 

(2004). Priddel and Wheeler (2004) assessed the impact of a severe drought (<75 mm rain over 9 

months) on reproduction and juvenile mortality of brush-tailed bettongs in mallee habitat in western 

New South Wales, Australia. Priddel and Wheeler (2004) found that during drought years, 

reproduction was 33% of the rate in non-drought years. The climate in western New South Wales is 

drier than on the Lamb Range and thus droughts in north-eastern Queensland are likely to be less 

severe and shorter in duration compared to those experienced in drier climates (Kirono et al. 2012). It 

is thus unlikely that B. tropica would experience as severe a drought as reported by Priddel and 

Wheeler (2004). I therefore reduced the impact of drought on reproduction by half that observed by 

Priddel and Wheeler (2004), from 0.33 (Priddel & Wheeler 2004) to 0.66. It is noted that B. tropica 

may be less resilient to greater variations in temperature and precipitation than species adapted to drier 

climates (Bateman et al. 2011). The models may thus somewhat underestimate the impact on the 

reproduction and survival bettongs. However, cockatoo grass (dry season food resource) may be able 

to persist and sustain B. tropica populations during dry periods (Johnson & McIlwee 1997). For the 

sensitivity analysis, drought was allowed to increase from its base value in 10% increments to 50%. 

 

Because droughts and fire are usually correlated (Lucas et al. 2007), I increased the probability of fire 

occurring in a drought year. I modelled fire as having a 50% chance of occurring in a drought year, 

versus a 25% chance in non-drought years. I also modelled increasing drought combined with an 

increased incidence of fire with the Base Model, Scenario 1 (low cat predation, without fire effects) 

and Scenario 2 (low cat predation, with fire effects). This provided an assessment of the impact that 

increasing drought frequency might have on the population viability of B. tropica under low levels of 

cat predation. I did not model higher predation scenarios with increasing drought frequency because 

these scenarios already predicted rapid extinction of bettongs under current drought and fire 

frequencies. 

 

2.4 Results 

2.4.1 Base model of bettong population viability 

The probability of persistence in the Base Model was 1 (based on the life-history parameters shown in 

Appendix A), with all four sub-populations fluctuating around carrying capacity and with population 

viability not declining over a 100-year period (Figure 2.1; Table 2.2). It is acknowledged that potential 

model inaccuracies resulting from gaps in knowledge could affect the conclusions. 
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Table 2.2. Population prognosis of Bettongia tropica in terms of population size and probability of 

extinction at the end of a 100 year-long simulation, under scenarios of low and high cat predation, 

with and without the synergistic effects of fire. Mean time to extinction from commencement of 

simulation is also shown. 

Scenario Population 
Number Extant  

(± SD) 

Probability of  

Extinction 

Mean Time to Extinction 

± SD (Years) 

Base 

Model 

Meta 1067 ± 73 0 – 

Bridle 104 ± 10 0 – 

Davies 226 ± 20 0 – 

Emu 302 ± 27 0 – 

Tinaroo 433 ± 37 0 – 

Scenario 1 (Low 

Cat) 

Meta 926 ± 96 0 – 

Bridle 91 ± 12 0 – 

Davies 208 ± 20 0 – 

Emu 275 ± 28 0 – 

Tinaroo 353 ± 61 0 – 

Scenario 2 (Low 

Cat, with Fire 

Effect) 

Meta 572 ± 225 0.003 91 ± 4 

Bridle 63 ± 25 0.002 84 ± 18 

Davies 158 ± 52 0.004 82 ±10 

Emu 189 ± 76 0.007 90 ± 6 

Tinaroo 163 ± 104 0.002 86 ± 3  

Scenario 3 

(Medium Cat) 

Meta 0 1.0 24 ± 5 

Bridle 0 1.0 16 ± 4 

Davies 0 1.0 21 ± 5 

Emu 0 1.0 22 ± 5 

Tinaroo 0 1.0 20 ± 4 

Scenario 4 

(Medium Cat, 

with Fire Effect) 

Meta 0 1.0 20 ± 4 

Bridle 0 1.0 13 ± 4 

Davies 0 1.0 17 ± 4 

Emu 0 1.0 18 ± 4 

Tinaroo 0 1.0 17 ± 4 

Scenario 5 (High 

Cat) 

Meta 0 1.0 9 ± 1 

Bridle 0 1.0 6 ± 1 

Davies 0 1.0 7 ± 2 

Emu 0 1.0 8 ± 2 

Tinaroo 0 1.0 8 ± 2 

Scenario 6 (High 

Cat, with Fire 

Effect) 

Meta 0 1.0 8 ± 1 

Bridle 0 1.0 6 ± 1 

Davies 0 1.0 7 ± 1 

Emu 0 1.0 7 ± 1 

Tinaroo 0 1.0 7 ± 1 
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Figure 2.1. Changes in Bettongia tropica metapopulation size and probability of extinction under low, 

medium and high cat predation, with and without the synergistic effects of fire. 

 

2.4.2 Influence of declining population sizes on population viability 

Populations were resilient to reduced population sizes. All sub-populations remained viable when 

starting population sizes were 25% and 50% less than the base model population. Only the Bridle 

Creek sub-population had a slightly lower probability of persistence when the population size was 

reduced by 75%. Despite the lower starting population sizes, all populations returned to carrying 

capacity within 10 years when the carrying capacity was held at the level used in the base model. 

 

2.4.3 Influence of increased mortality on population viability 

When changes in juvenile, adult, and sub-adult disperser mortality rates were individually modelled 

using sensitivity analyses, changes in juvenile mortality had the greatest influence on population 

viability. Increases in juvenile mortality from 45% (base level) to 65% had minimal effect on 

population viability. However, the probability of extinction within 100 years began to increase above 

zero when juvenile mortality was 75% and was assured (p = 1) when juvenile mortality was 80% or 

greater (Figure 2.2a). Increases in adult mortality from 15% (base level) to 55% had no effect on the 

population viability, but from 60% to 65%, probability of extinction increased greatly, and beyond 

65% extinction was assured (Figure 2.2b). Thus, adult mortality had to increase by >50% before 

extinction was assured, whereas juvenile mortality only had to increase by 35% above the base level 

before extinction was assured. The mortality rate of dispersing sub-adults did not influence any of the 

four sub-populations or the population size or risk of extinction of the metapopulation. Even when 

100% of dispersing individuals died, all sub-populations remained viable and at their carrying capacity 

(over a 100-year projection). Additionally, the probability of extinction did not change if the mortality 

rate of dispersing individuals fluctuated. 
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Figure 2.2. Simulation of sensitivity of the Bettongia tropica metapopulation to extinction from 

fluctuating (a) juvenile and (b) adult mortality. Only scenarios that had a probability of extinction >0 

are included. 

 

2.4.4 Influence of cat predation and fire effects on population viability 

The bettong metapopulation persisted under scenarios of low cat predation and low cat predation with 

a fire effect (Table 2.2; Figure 2.1). However, moderate and high cat predation scenarios led to rapid 

extinction of the population, regardless of whether fire was operating in synergy with predation (Table 

2.2; Figure 2.1). Bettong populations went extinct within about 10 years when cat predation was high 

(regardless of fire effects) and within about 25 years when cat predation was moderate (regardless of 

fire effects) (Table 2.2; Figure 2.3a, b, c and d). 

 

  a) 

  b) 



	 21	

 

Figure 2.3. Simulation of changes in the probability of extinction with time, for Bettongia tropica on 

the Lamb Range under scenarios of medium and high cat predation, with and without the synergistic 

effects of fire. Only scenarios that had a probability of extinction >0.01 are shown. 

 

2.4.5 Influence of increased drought frequency on population viability 

Drought did not affect the viability of the B. tropica population (Figure 2.4a) until there was a 40% or 

greater chance of drought occurring (i.e. two droughts every 5 years). This frequency has not occurred 

(BOM 2014) nor is predicted to occur in north-eastern Queensland under current climate change 

models (Kirono et al. 2012). When there was low cat predation linked with fire and coupled with 

increasing drought, the probability of extinction increased post-fire (Figure 2.4b and c). Low cat 

predation combined with fire and a high likelihood of drought (30% or greater) resulted in a high 

probability of extinction (Figure 2.4c). Low cat predation under increasing drought scenarios had 

minimal influence on population viability when survivorship was independent of fire (i.e. low cat 

predation without a fire effect; Figure 2.4b). When cat predation was low and coupled with drought 

(but not fire), the population probability of extinction only increased above zero under the unlikely 

scenario of a 40% chance of drought in any one year (Figure 2.4c).  

 

   

   

a)  b) 

c)  d) 
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Figure 2.4. (a) Predicted metapopulation size of Bettongia tropica with increasing drought frequency; 

(b) predicted metapopulation size with increasing drought frequency under low rates (20%) of cat 

predation both with and without the effects of fire; and (c) probability of extinction with increasing 

drought frequency under low rates (20%) of cat predation both with and without the effects of fire. For 

(b) and (c) ‘F’ denotes a synergistic effect between predation and fire. Only scenarios that had a 

probability of extinction >0 are included. 

 

  

a) 

b) 

c) 
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2.5 Discussion 

The PVA models assessed how varying rates of juvenile, adult and dispersing sub-adult mortality 

influenced the viability of B. tropica sub-populations. Models were constructed both with and without 

the potential synergistic effects of fire as well as drought. The models indicated populations were 

highly vulnerable to increases in cat predation, whilst fire and drought had less of an influence. 

 

2.5.1 Influence of declining population sizes on population viability 

Simulations suggested that without external influences, B. tropica populations should remain stable. 

Additionally, if population sizes severely declined, they would have a strong capacity to recover 

following cessation of the factor responsible for the initial decline. However, it is recognised that 

many species are unable to regain their original population size immediately after a catastrophe 

(Yarrow 2009). New, lower carrying capacities (Berg 2007) or small population sizes may be unable 

to withstand environmental or stochastic events and may fail to recover (Hoffmann & Parsons 1997) 

and subsequently decline towards extinction (Duncan et al. 2012).  

 

2.5.2 Influence of increased mortality on population viability 

Both adult and juvenile mortality affected population viability, with increases in either mortality rate 

causing substantial population declines or limiting population size. Unexpectedly, increased juvenile 

mortality was the greatest concern. Although juvenile mortality needed to almost double (from 45% to 

80%) before the population declined to extinction, this was substantially less than the 4.5-fold increase 

in adult mortality (15% to 70%) that would cause a similar outcome. Wildlife populations that support 

substantially higher proportions of adults than young often decline over time as few new individuals 

become reproductive each year (Yarrow 2009). Declines can be exacerbated by threats that affect 

mortality rates and have long-lasting effects on populations, such as predation, disease, environmental 

change or catastrophes such as drought and large wildfires (Hughes 2003; Yarrow 2009). 

 

Interestingly, mortality resulting from dispersal appears likely to have little impact on the 

metapopulation viability of B. tropica. Dispersing to more climatically suitable areas or foraging over 

larger areas during times of environmental stress may thus be expected to be integral to survival of the 

species (Harris & Leitner 2004). Threatening factors, including predation and environmental stressors 

(drought with fire), appeared to impact B. tropica population viability and thus B. tropica may need to 

disperse to more suitable areas when under environmental stress. Bettongia tropica displays high site 

fidelity (Vernes & Pope 2001), with limited dispersal from their home range (Pope et al. 2000) and 

only 20% of males dispersing (Pope et al. 2012). This may impede their ability to move to more 

climatically suitable areas or lengthen the time taken to do so (Harris & Leitner 2004). 
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Predation by feral species, habitat changes or environmental events, including severe drought and fire, 

can increase mortality rates of bettong species and cause population declines (Short & Turner 1999; 

Priddle & Wheeler 2004; Yeatman & Groom 2012; Fancourt 2014). Modelling indicates that 

increased mortality rates due to predation could impact severely upon the viability of B. tropica 

populations. Modelling also suggests that under low cat predation (with and without fire), bettong 

populations could remain viable over 100 years but stabilise at a lower population size. However, 

under moderate and high predation rates, the population will probably decline drastically to extinction.  

 

Predation has been implicated as the major cause of population declines in many other small mammal 

species across Australia (Risbey et al. 2000; Woinarski et al. 2010). Smaller species of macropods are 

usually largely regulated by predation, whilst larger species are regulated by the effect of food supply 

on juvenile mortality or fecundity (Sinclair 1996). Limited research has been conducted on 

populations of potential predators of B. tropica and thus the impact of predators on B. tropica 

populations is currently unknown. Other bettong populations have proven vulnerable to predation by 

cats and foxes, with predation rapidly increasing mortality rates, reducing reproductive success and 

triggering population declines of several species (Short & Turner 1999; Short & Turner 2000; Priddel 

& Wheeler 2004; Fancourt 2014). For example, a population of Tasmanian bettongs (Bettongia 

gaimardi) declined to extinction within six months of at least three feral cats colonising the area 

(Fancourt 2014). Additionally, Short and Turner (2000) determined that feral cats had a 

disproportionate impact on juvenile burrowing bettongs (Bettongia lesueur), with little or no 

recruitment during years when feral cats occupied habitat in Western Australia. 

 

Due to the severe impact of invasive predators, it is thought unlikely that bettongs could survive for 

any length of time when density is >1 cat/km2 (Short & Turner 2000) or when a few aggressive cats 

occupy an area (Fancourt 2014). If invasive predators on the Lamb Range were to increase to medium 

or high levels, modelling indicates that the metapopulation of B. tropica is very likely to become 

extinct. Determining the factors that could enable predator populations to increase from low levels is 

thus of great importance for the conservation of B. tropica populations. 

 

2.5.3 Influence of fire on population viability 

Reduced cover from fire coupled with cat predation, has been proposed as a contributor to the recent 

declines in mammals more broadly across northern Australia (Fisher et al. 2014). High intensity fire 

usually results in widespread loss of vegetation (Williams et al. 1999) and the habitat being less 

suitable until vegetation regenerates (Monany & Fox 2000). Vegetation loss is likely to increase the 

risk of predation for bettongs because bettongs primarily nest in vegetation both for protection from 

predators and for shelter (Taylor 1993b; Vernes & Pope 2001). Increased predation rates following 

high intensity fires have substantially impacted other bettong populations. For example, Christensen 
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(1980) showed that wildfire within his Western Australian study site profoundly affected the 

survivorship of brush-tailed bettongs. Prior to a fire, bettongs could persist at the site despite predation 

(principally by foxes), but immediately after fire, predation rates by foxes, cats, and native quolls 

(Dasyurus geoffroyi) increased greatly (Christensen 1980). As a consequence, 46% of 24 radio-

collared animals succumbed to predation, mostly within the six weeks following the burn (Christensen 

1980). In areas of high wildfire frequency, nesting sites that withstand fire, such as those located 

amongst boulders, may become crucial resources (Vernes & Pope 2001). Fire-resistant nesting sites 

may be particularly important as fire frequency and intensity is expected to increase under changed 

climatic conditions (Hughes 2003; Brook et al. 2008). 

 

However, in my models, the population size of B. tropica declined after fire, due to an increase in 

predation rates resulting from vegetation loss. This was even when predator populations were low. 

Interestingly, population viability was not affected, with the population still occurring after 100 years, 

but at a lower population size. These model findings are supported by evidence from experimental 

fires conducted at Davies Creek by Vernes (2000), when much of the ground-layer vegetation was 

removed. In that experiment, none of the 21 radio-collared bettongs died during the post-fire 

vegetation recovery phase. Vernes (2000) attributed this to few cats and no foxes being present at the 

site, and the main predator being the native dingo (Canis familaris), which preys infrequently on 

bettongs. Unexpectedly, when moderate and high levels of cat predation, in combination with fire, 

were modelled, fire effects were relatively unimportant. This was because predation pressure alone 

was already too great for long-term population viability. 

 

2.5.4 Influence of increased drought frequency on population viability 

It was expected that B. tropica populations would become less viable after longer periods of drought 

conditions. Drought decreased population viability, although current climate change models do not 

predict that droughts will occur at the frequency required to cause severe effects (Kirono et al. 2012). 

However, when low cat predation and fire were combined with the effects of drought, the probability 

of extinction increased. Drought may also impact upon B. tropica populations by reducing the time 

truffles are available (Bateman et al. 2012a), resulting in a longer reliance on less nutritious cockatoo 

grass (Johnson & McIlwee 1997). Additionally, other environmental or climate changes may also 

impact upon B. tropica populations. Environmental and climate changes are predicted to result in 

native specialist and endemic species suffering range and population contractions, whilst the 

distribution or density of invasive predatory species may increase (Didham et al. 2007; Brook et al. 

2008; Isaac 2009). Future changes may also exacerbate threatening processes (Didham et al. 2007). 

The influence of other potential environmental or climate changes could not be modelled based on the 

available data. Incorporating the influence of other environmental factors would increase the accuracy 

of models and is an avenue for further research. 
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2.6 Management implications 

Population viability analysis provides an important tool for management, by providing information on 

how viability is influenced by changes in population size and mortality rates. Modelling suggests 

predation could be the major driver of population decline of B. tropica. Field verification is still 

required to confirm these results (Wayne et al. 2006). The results from the PVA provide a starting 

point for further research to be undertaken. 

 

It is proposed that management actions of top conservation priority include: 

1) assessing whether the population has declined since previous studies were conducted by Vernes and 

Pope (2006), 

2) determining the density of predator populations, with a focus on the core habitat, 

3) measuring the mortality rates, especially of juvenile and sub-adult animals, and the cause of 

mortality, and 

4) implementing control measures (e.g. predator control) to minimise mortality, especially of 

juveniles. 

These actions have the potential to increase viability and minimise, stabilise or even reverse potential 

population declines of the endangered B. tropica. 

 

The modelled declines of B. tropica populations are consistent with population declines of other 

mammals throughout Australia (Risbey et al. 2000; Woinarski et al. 2010). However, most previous 

studies have not specifically identified the age class most responsible in driving the population 

decline. By identifying juvenile mortality as the main factor driving population viability, conservation 

managers can focus on minimising predation to this age class. This study suggests that increases in 

juvenile mortality, resulting from predation, should be investigated as being a potential cause of 

substantial declines for other small Australian mammals. Models with varying mortality rates provide 

an indication of the severity of declines that could occur on the ground. Managers can then implement 

measures to minimise mortality and population declines. 

 

Between 2000 and 2009, inconsistent monitoring was conducted at Davies Creek, with sampling 

conducted along different transect lines (with cages closed if there were infrequent captures), at 

different times of year and sampling did not occur during some years (Parks and Wildlife 2009, 

unpublished data). Based on the cage trapping records, there appeared to be a decline in the number of 

captures of B. tropica (Figure 2.5). Due to this potential decline, a re-assessment of the population 

needed to be undertaken using consistent monitoring. I therefore assessed the current population status 

of B. tropica, which is presented in the following chapter. 
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Figure 2.5. Captures (and the trend line of captures) of Bettongia tropica between 1999 and 2009 at 

Davies Creek. (Source: Queensland Parks and Wildlife 2009, unpublished data). 
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Chapter 3: Population trends and life-history traits of Bettongia tropica 

 

3.1 Abstract 

Context. A decline of a keystone species is likely to substantially impact upon ecosystem functioning 

and may threaten the population viability of other species dependent upon the ecosystem. It is 

therefore crucial to determine the population trends of keystone species and to understand the factors 

that influence the population trends, including seasonal and spatial variations. Bettongia tropica is a 

keystone species within Eucalyptus woodlands and ensuring the species’ population is stable is 

important for maintaining the health of this ecosystem. 

Aim. This chapter aimed to assess the influence of study site (spatial differences) and season (wet and 

dry) on population density, fitness (including survival rates, body condition and proportion of females 

with dependent young) and trap success of the northern bettong (Bettongia tropica) within the species’ 

three main sub-populations on the Lamb Range, far north Queensland. I also compared new density 

estimates (2014 to 2016) to those obtained 20 years earlier (1994-1996).  

Method. Nine four-night cage-trapping sessions were conducted every two to three months between 

November 2014 and 2016. Fifty-three cage traps were deployed each session. Trapped B. tropica were 

microchipped to distinguish individuals and morphometrics taken upon each capture. The population 

density and survival probabilities of B. tropica at each sub-population were estimated using Pollock’s 

robust design multi-season mark-recapture analysis based on the presence/absence of B. tropica 

individuals during each trapping session. Trap success, body condition and the proportion of females 

with dependent young were calculated.  

Key results. Across the Lamb Range, population density estimates varied between 5.90 and 12.82 

bettongs/km2 and appeared stable compared with estimates from 20 years earlier. At Davies Creek, 

Emu Creek and Tinaroo Creek, population density averaged 7.17 bettongs/km2, 8.82 bettongs/km2 and 

13.00 bettongs/km2 respectively. Density estimates at Tinaroo Creek were substantially higher than the 

other sites, likely due to higher rainfall, which presumably increased the abundance of food resources. 

During the wet season, trap success was lower than during the dry season, whilst population density 

was similar between seasons. Body condition, survival rates of adults (>80%) and the number of 

females with young (>70%) were similar across all sub-populations and seasons.  

Management implications. A stable B. tropica population indicates that fire management conducted on 

the Lamb Range has been successful in maintaining suitable habitat for B. tropica. Population density 

estimates varied between trapping sessions, whilst trap success estimates fluctuated seasonally. Future 

monitoring surveys need to be devised to minimise seasonal bias to ensure long-term population 

trends are accurately assessed. Consistent and regular monitoring is required for early detection of 

potential future declines. 
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3.2 Introduction 

With the decline of native species worldwide, it is increasingly important to develop effective and 

efficient conservation strategies (Rands et al. 2010). Conservation management strategies have often 

focused on either single-species conservation (conserving one species) or ecosystem management 

(Simberloff 1998; Lindenmayer et al. 2007). Ecosystem management focuses on improving the health 

of the ecosystem, with the assumption that a healthy ecosystem will conserve species within the 

ecosystem (Simberloff 1998). However, both management strategies can pose problems. Management 

actions designed to benefit a single species may detrimentally impact other native species (Committee 

on Scientific Issues in the Endangered Species Act 1995; Lindenmayer et al. 2007). Ecosystem 

management tends to focus on processes, such as nutrient cycling, and thus could allow the loss of 

species that do not substantially impact important processes (Simberloff 1998) or potentially overlook 

or undervalue specialists or wide-ranging species (Lindenmayer et al. 2007). Additionally, the goals of 

ecosystem management are often variously defined (Simberloff 1998) and may lack specific 

conservation goals (Lindenmayer et al. 2007).  

 

Simberloff (1998) proposed the conservation of keystone species as a strategy for combining 

beneficial features of both single-species and ecosystem management. Keystone species (Paine 1969) 

are species that have a disproportionate impact on the ecosystem in which they live and whose 

activities impact upon the well-being of many other species within the ecosystem (Power et al. 1996). 

Keystone species undertake important functions such as fungal dispersal (Vernes & Dunn 2009), seed 

dispersal (Vander Wall et al. 2005) and/or bioturbation (Fleming et al. 2014a), and the loss of these 

species may have severe impacts on the ecosystem function and community structure (Sinclair 2003; 

O'Connor & Crowe 2005). By focusing on keystone species, managers only need to devise specific 

conservation goals for one species. The conservation of this species should potentially improve the 

overall health of the ecosystem and thus achieve the goal of ecosystem management (Lindenmayer et 

al. 2007; Simberloff 1998).  

 

The northern bettong, Bettongia tropica, is a keystone species within wet Eucalyptus woodlands, 

consuming and dispersing more truffle species than other small mammals within the ecosystem 

(Nuske et al. 2017). Truffle diversity can be important for shaping vegetation community composition 

(Nara 2006) and maintaining ecosystem functioning (Johnson et al. 2012). Because B. tropica 

provides these important dispersal services, changes in B. tropica populations are likely to affect the 

ecosystem (Davic 2003). Understanding the population trends of B. tropica may provide an insight 

into ecosystem health. 

 

Vernes and Pope (2006) estimated population density of B. tropica for the four sub-populations on the 

Lamb Range between 1994 and 1996. The population density was estimated as 1.0-3.5 B. tropica/km2 
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at the Bridle Creek sub-population, 1.3-7.5 B. tropica/km2 at Davies Creek, 7-10 B. tropica/km2 at 

Emu Creek and 6.5-14.5 B. tropica/km2 at Tinaroo Creek (Vernes & Pope 2006). Extensive cage 

trapping (4,267 trap nights) occurred at Davies Creek to calculate the population density (Vernes & 

Pope 2006). Trap nights is the trapping effort (number of traps by number of trapping nights) (Widmer 

et al. 2017). Only limited sampling occurred at the other sub-populations (125, 130 and 334 trap nights 

at Bridle Creek, Emu Creek and Tinaroo Creek respectively) (Vernes & Pope 2006). Few trap nights 

potentially limits the accuracy of population estimates (Kowalewski et al. 2015). A comprehensive 

assessment of the density of B. tropica within its multiple sub-populations was thus required. 

Ascertaining the current population density will enable comparisons that assess population trends and 

stability. 

 

When managing populations, it is also important to assess the factors that influence population 

dynamics, including fitness measures (McCleery et al. 2013) such as body condition, and survival and 

reproductive rates (Ballesteros et al. 2013). Changes in food abundance between sites or seasons can 

also affect the fitness of species (Wirminghaus & Perrin 1993; Murray 2002; Korpimäki et al. 2004; 

Rocha et al. 2017). A change in fitness can ultimately influence population density (Hanya & 

Chapman 2013; Prevedello et al. 2013). For B. tropica, the effect of seasonality on population 

estimates, fitness and trap success had not previously been assessed across all populations. 

 

Trap success is often used to indicate population density (e.g. Woinarski et al. 2011b; Fancourt et al. 

2013; Wayne et al. 2017) and is an important measure to assess. Trap success is the number of animal 

captures relative to trapping effort (Widmer et al. 2017) and can vary seasonally (Cunningham et al. 

2005). However, short-term seasonal fluctuations do not necessarily reflect the long-term trends in 

population abundance or density (de Andreazzi et al. 2011; Rocha et al. 2017). It is thus important to 

understand how seasonal variations can influence trap success estimates (Plumptre 2000; Lee & Bond 

2016; Proença et al. 2016). 

 

3.2.1 Aims 

In this chapter I estimated population density, dynamics and trap success of B. tropica at three sites 

within the Lamb Range, aiming to assess: 

1) population density and trap success between sites, between wet and dry seasons and between time 

periods (1994-1996 vs. 2014-2016), 

2) survival between sites and between seasons, 

3) influence of site, season and gender on body condition, and 

4) influence of site and season on proportion of females with young. 
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Truffles occur at higher abundance in wet compared to dry areas (Abell et al. 2006). I expected that 

the population density, trap success, survival rates, body condition and numbers of females with young 

would be higher during the wet season and at the wettest site. Based on the decline in trap success 

observed from 1999 to 2009 (see Figure 2.5), it was predicted that the population density would have 

declined between the two time periods.  

 

3.3 Methods 

3.3.1 Study sites 

This study was conducted in the three main B. tropica sub-populations (referred to as sites) within the 

Lamb Range (Figure 1.1): Davies Creek (17º01’S, 145º35’E, altitude 670 m above sea level (a.s.l.)), 

Emu Creek (17º06’S, 145º31’E, altitude 670 m a.s.l.) and Tinaroo Creek (17º09’S, 145º32’E, altitude 

680 m a.s.l.). Davies Creek is the northernmost of these three sites, being approximately 10 km north 

of Emu Creek and 15 km north of Tinaroo Creek (Vernes & Pope 2006). Emu Creek occurs at the 

drier limits of the species’ range and has the driest habitat type (Johnson & McIlwee 1997; Bateman et 

al. 2012b), whilst Tinaroo Creek is the wettest site and Davies Creek is an intermediate between 

Tinaroo Creek and Emu Creek (Johnson & McIlwee 1997). All sites have a similar geology, with 

predominantly granitic bedrock containing minor outcrops of hornfelsed meta-sedimentary rocks 

(schist and quartzite) (P. Whitehead, pers. comm.). Tinaroo Creek also contains a small (≈ 0.2 km2) 

region of basalt (P. Whitehead, pers. comm.).  

 

The habitat at each site comprised open Eucalyptus woodland with low to medium density of trees. 

The dominant tree species were Eucalyptus crebra and E. citriodora, Corymbia 

dorlesomona/intermedia, and Acacia flavescens (Wet Tropics Management Authority 2015). Plate 3.1 

shows the habitat at each study site. The shrub layer across all sites included Grevillea glauca, Acacia 

flavescens, Allocasuarina littoralis and Hakea macrocarpa, whilst the understorey was dominated by 

kangaroo grass (Themeda triandra) (Vernes & Pope 2006), with cockatoo grass (Alloteropsis 

semialata) and grass trees (Xanthorrhoea johnsonii) also present (pers. obs.) (Plate 3.2). Blady grass 

(Imperata cylindrica) was common along gullies and creek beds (pers. obs.). There were slight 

differences in the broad-scale habitat between the sites. Emu Creek, the driest site, had more E. 

citriodora than the other sites, with stands of Melaleuca occurring on the lower slopes (pers. obs.) 

(Plate 3.3). The lower slopes of Emu Creek also had lower grass density than Davies Creek and 

Tinaroo Creek. At Tinaroo Creek, Lantana camara occurred in patches on the lower slopes and there 

were areas where Allocasuarina spp. dominated (Plate 3.4).  
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Plate 3.1. Habitat at (a) Davies Creek, (b) Emu Creek, and (c) Tinaroo Creek.  

 

 

 

 

 

 

 

 

 
 

Plate 3.2. Understorey at Tinaroo Creek dominated by grass trees (Xanthorrhoea johnsonii). 

 

 

Plate 3.3. Low density stands of Melaleuca trees on the lower slopes at Emu Creek. 

 

  
 

   a) 
 
 

  b) 

c) 
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Plate 3.4. Dense stands of Lantana within the understorey on the lower slopes at Tinaroo Creek. The 

sub-canopy was dominated by Allocasuarina spp. and there was minimal to no grass cover. 

 

3.3.2 Cage trapping 

A pilot study was conducted in July 2014 for four consecutive nights at each site to habituate B. 

tropica to cage traps. Trapping was undertaken for four nights in November 2014, February, May, 

August and November 2015, and February, May, August and November 2016 at each site. 

 

At Davies Creek, the trapping grid comprised four 800 m and three 700 m transects, whilst at Emu 

Creek and Tinaroo Creek, the trapping grid comprised one 400 m transect, and seven 700 m transects 

(Figure 3.1). Emu Creek and Tinaroo Creek had shorter ridgelines within Eucalyptus woodland than 

Davies Creek, resulting in the difference in grid configuration between sites. Five transects at Davies 

Creek and six transects at Emu Creek and Tinaroo Creek were positioned 200 m to 350 m apart along 

roughly parallel ridgelines. Transects started 100 m from a dirt road that carried very low traffic levels 

(an estimated maximum of ten cars per day (pers. obs.)). At all sites, two transects were 20 m to 40 m 

from the road and followed the road contour. These transects were positioned perpendicular to the 

other transects to increase trap success (Winter 2002). 

 

Each site contained 53 medium-sized collapsible cage traps (60 cm x 24 cm x 26 cm). Cages were 

placed every 100 m along each transect (Figure 3.1). Between 5 cm and 10 cm of grass was placed on 

the top and on the sides of the cages to provide shelter for animals. The inside of the cages (except the 

bottom) were lined with plastic woven mesh to minimise abrasions to animals. 
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Figure 3.1. Trapping grid configuration at (a) Davies Creek, (b) Emu Creek and (c) Tinaroo Creek on 

the Lamb Range, showing the location of the 53 cage traps (red circles), positioned 100 m apart along 

seven transect lines at Davies Creek and eight transect lines at Emu Creek and Tinaroo Creek. 

(Source: Google Earth®, 2017). 

 

Cages were baited and opened in the mid-afternoon with a 2.5 cm ball of bait containing rolled oats, 

honey, peanut butter, vanilla essence and sardines. Bait was replaced each day. Traps were checked 

between midnight and 4 am to ensure B. tropica were released before dawn to minimise their stress 

levels (Vernes 1999; Winter 2000, 2002). 

 

When B. tropica were captured, they were removed from the cage and placed in a cloth bag. Bettongs 

were scanned with a microchip reader to detect the presence of a Passive Integrated Transponder (PIT) 

tag (Trovan Unique ID100 (1.4) Midi-Chip), and the tag number recorded (Vernes & Pope 2006). PIT 

tags have a unique number, enabling individuals to be identified (Gibbons & Andrews 2004). If no tag 

was present, one was inserted into the scruff of the bettong’s neck between the shoulder blades 

(Vernes & Pope 2006). Bettongia tropica were weighed and their hind foot length (excluding claw), 

head length (back of head to nose) and hind leg length measured using calipers (Plate 3.1). These are 

standard measures for small mammals (Hoffmann et al. 2010), including B. tropica (Vernes 1999). 

Sex, maturity and presence of pouch young were also recorded (Vernes & Pope 2002). Maturity for 
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males was based on a scale of 0 to 3 for the size of epididymis and testes (Fleming 1974; McCravy & 

Rose 1992), with 0 indicating not visible and 3 being large and pronounced (M. Goosem, pers. 

comm.). A male with a rating of 2 or higher for both the epididymis and testes was classified as an 

adult (M. Goosem, pers. comm.). Female maturity was inferred from presence of young or by weight 

(>950g) (Vernes & Pope 2002). A 3 mm ear tissue sliver was taken on the first capture, and scat 

samples were collected with every capture, with this information used for future studies. Animals were 

released where they were captured.  

 

The length of pouch young was taken by measuring the bulge in the pouch using calipers. Bettongs 

often eject pouch young when stressed (Thompson et al. 2015). To prevent this, the pouch of all 

females was taped. This was done by placing three 8 cm strips of rigid sports strapping tape vertically 

and two 8 cm pieces horizontally over the pouch. If pouch young were very small (<2 cm), only three 

pieces of tape (two vertical and one horizontal) were used. 

 

                                                                                                                                                                                   

Plate 3.5. Measuring (a) hind foot length, (b) head length and (c) hind leg length of Bettongia tropica. 

(Photograph by Maree Baade). 

 

3.3.3 Data analysis 

The methodology for calculating the population density, which is the estimated population 

abundance/effective trapping area (Vernes & Pope 2006), is presented in three sections; 

1) calculating the population abundance of each site, involving constructing capture-recapture 

matrices and validating model assumptions, 

2) calculating the effective trapping area for each site, and 

3) statistical analysis to determine differences in population density between sites and seasons (wet 

and dry season) and from 20 years previously (1994-1996 vs. 2014-2016). 

 

3.3.3.1 Calculating population abundance 

The population abundance within each site was calculated for each trapping session using Pollock’s 

robust design multi-season mark-recapture analysis (hereafter referred to as robust design) (Pollock et 

a) 

 
 
 

   b) 

 
 

  c) 
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al. 1989). Robust design enables population abundance, survival probabilities, emigration and 

immigration to be simultaneously estimated (McClintock & White 2009). Robust design uses capture-

recapture data sampled at two time intervals: primary and secondary sampling periods (Pollock 1982; 

Silva et al. 2009). A primary sampling period is long enough for population change to occur (open 

population), whilst a secondary period is sufficiently short to assume no immigration or emigration 

(closed population) (Kendall et al. 1997; Silva et al. 2009). Using information from both open and 

closed populations means the methodology is more precise and has lower bias than implementing 

open or closed population models separately (Kendall et al. 1995; Kendall et al. 1997; McClintock & 

White 2009). Abundance estimates were derived for all sampling periods and for the entire sampling 

session (Baillargeon & Rivest 2007; Smith et al. 2013a). 

 

For my study, primary periods were the two to three months between trapping sessions, whilst the 

secondary periods were the four nights of consecutive cage trapping in each session. Capture-

recapture data of B. tropica for each night of trapping was imported into RStudio in a capture matrix 

(see methodology below) (Santostasi et al. 2016). Robust design analyses were undertaken separately 

for each site, with analysis conducted using package Rcapture (Baillargeon & Rivest 2007) in RStudio 

(version 3.2.2) (RStudio Team 2015). 

 

3.3.3.1.1 Constructing capture-recapture matrices  

A capture matrix was constructed for each site. The matrix comprised the presence/absence of each B. 

tropica individual for each night of cage trapping (Santostasi et al. 2016). Each matrix comprised a 

binary table with individuals in rows and sampling occasions in columns (Santostasi et al. 2016). 

Sampling occasions were labelled so that the nine trapping sessions were distinct from each other, 

with each of the four nights within the session also labelled (nights one to four). Within the matrix, a 1 

was entered if the individual was detected and a 0 if the individual was absent (Santostasi et al. 2016). 

Table B.1, B.2 and B.3 in Appendix B show the capture matrix for Davies Creek, Emu Creek and 

Tinaroo Creek. 

 

3.3.3.1.2 Validating model assumptions 

Fundamental assumptions of live capture sampling, such as cage trapping data, are (1) the trapped 

population represents the target population, and (2) there is an equal probability of capturing 

individuals (Bisi et al. 2011). Individuals that are caught too frequently or considered transitory (only 

caught once when others were frequently captured) may produce large residuals that result in poor 

fitting models (Baillargeon & Rivest 2007). This may mean the model is not representative of the 

population (assumption 1). If B. tropica individuals were trap-happy or trap-shy this could result in an 

unequal probability of capturing individuals (assumption 2) (Nichols et al. 1984) and poorly fitting 

models (Baillargeon & Rivest 2007). Demographic estimates of open populations can also be skewed 
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by the influence of trap effect, which is where animal behaviours are substantially influenced by the 

presence of traps (Baillargeon & Rivest 2007). The bias associated with a significant trap effect can be 

overcome by removing large residuals to ensure the model has a high goodness of fit (Baillargeon & 

Rivest 2007). To test whether these assumptions were met, preliminary robust design models were 

undertaken in RStudio (Baillargeon & Rivest 2007), with population abundance models considered 

valid and accurate. The methodology and results of that analysis are detailed in Appendix C. 

 

3.3.3.2 Calculating effective trapping area of each site 

To calculate density estimates, the area that individuals occupied needs to be calculated (Vernes & 

Pope 2006). The effective trapping area, which is the spatial extent of the trappable population (Efford 

2004), was calculated by adding the mean home range radius of a male bettong (431 m, Chapter 4) to 

all sides of each cage trap location following a similar methodology as used by Vernes and Pope 

(2006). Slight alterations were necessary for Tinaroo Creek due to the presence of a wide river barrier 

on one side. The effective trapping area of the three sites was calculated as 324 ha for Davies Creek, 

331 ha for Emu Creek and 261 ha for Tinaroo Creek (Figure 3.2). Appendix D details the 

methodology for calculating the effective trapping area. 

 

  

 

Figure 3.2. Effective trapping area (delineated by the blue outline) with the trap locations (red circles) 

for (a) Davies Creek, (b) Emu Creek and (c) Tinaroo Creek, also showing the dark green vegetation of 

the river just below the lower boundary at this site. (Source: Google Earth®, 2017). 
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3.3.3.3 Assessing population density 

3.3.3.3.1 Comparison between sites and seasons 

Baiting cage traps can also influence population estimates over time, with studies on other mammal 

species determining that bait consumption varies with season, which in turn, affects population density 

estimates (Fitch 1954; Vieira 1997; Rocha et al. 2017). I therefore examined whether the population 

density estimated for a trapping session was an outlier, with outliers classified as two standard 

deviations from the mean (Heard et al. 2012). The first trapping session at Davies Creek was an 

outlier, so was removed.  

 

A repeated measures analysis of variance (ANOVA) was performed to assess whether population 

density varied with site or season (wet or dry). Season was used as a proxy for truffle (food) 

abundance, as truffle abundance is positively related to rain falling during the prior one to two months 

(Abell et al. 2006). Trapping sessions with less than 50 mm of rainfall in the three months prior were 

classified as occurring within dry seasons (Chapter 2). Sessions with over 50 mm of rainfall in the 

prior three months were classified as occurring within wet seasons.  

 

Rainfall data for each site were obtained from weather stations located at Mareeba for Emu Creek and 

Tinaroo Falls Dam for Tinaroo Creek (Bureau of Meteorology (BOM) 2016). The Tinaroo Falls Dam 

weather station is around 1 km from the Tinaroo Creek site, whilst the Mareeba weather station is 

approximately 11 km from the Emu Creek site (measured from Google Earth®, 2017). Rainfall for 

Davies Creek was averaged from the two closest BOM weather stations, Walkamin (20.5 km to the 

south-west) and Mareeba (16 km to the west, north-west). Walkamin has a wetter habitat (Eucalyptus 

woodland with Allocasuarina encroachment) than at Davies Creek (Eucalyptus woodland), whilst 

Mareeba has a drier habitat (dry woodland) (pers. obs.). Data provided by a non-professional weather 

station, located only 7 km from Davies Creek, recorded similar rainfall data as calculated from the two 

weather stations (3 mm less than the rainfall averaged from the BOM stations) (R. Miller and Lloyd, 

2017). Using mean data from the Walkamin and Mareeba weather stations was thus an appropriate 

measure. A repeated measures ANOVA assessed whether rainfall varied between sites and seasons, 

with Tukey honest significance difference (HSD) post-hoc tests undertaken to compare differences 

within factors. 

 

3.3.3.3.2 Comparison to 20 years prior 

To assess whether trap success differed between time periods, a t-test was used to compare estimates 

from previous research in 1994-1996 (Vernes & Pope 2006) with my estimates (2014-2016). Vernes 

and Pope (2006) conducted 12 three-night cage trapping sessions between November 1994 and May 

1996 (1,944 trap nights) at Davies Creek within a Eucalyptus woodland grid with an effective trapping 
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area of 173 ha. Vernes and Pope (2006) did not assess for the trap effect on their estimates and so I 

used all my estimates (no outliers removed) to enable fair comparisons between studies. 

 

Vernes and Pope (2006) calculated population abundance using the Jolly-Seber methodology. To 

enable fair comparisons between studies, I only included trapping sessions that were undertaken 

during the same month and calculated the population abundance at my sites using the Jolly-Seber 

method. Analysis was computed in package Rcapture (Baillargeon & Rivest 2007), with density 

estimates again calculated by dividing by the effective trapping area. 

 

For Emu Creek and Tinaroo Creek, there were insufficient data for statistical comparisons, as Vernes 

and Pope (2006) only undertook one trapping session at Emu Creek and three at Tinaroo Creek 

(Whitlock & Schluter 2009). Therefore, I qualitatively compared the average of my nine trapping 

sessions of data from Emu Creek and Tinaroo Creek with the data from Vernes and Pope (2006). 

 

Food abundance can influence the population density of small mammals (Flowerdew et al. 2017), with 

rainfall influencing food abundance (Abell et al. 2006). I therefore assessed whether rainfall differed 

between the 1994-1996 and my study period using a Kruskal-Wallis and ANOVA. I compared the 

rainfall from two months prior to each cage trapping session for both studies. Rainfall data were 

sourced from BOM weather stations positioned at Walkamin and Tinaroo Falls Dam. Rainfall data 

were not available from the Mareeba BOM weather stations prior to 2000.  

 

3.3.4 Differences in survival between sites and between seasons 

Survival estimates were compared between sites and seasons (wet and dry) using a repeated measures 

ANOVA. Trapping sessions were classified as wet and dry seasons based on rainfall. Survival 

estimates were calculated using robust design analysis in RStudio (McClintock & White 2009; Smith 

et al. 2013a). Survival estimates were generated over the entire trapping session and for each trapping 

session, except the first (Smith et al. 2013a; Ergon & Gardner 2014). 

 

3.3.5 Influence of site, season and gender on body condition 

A repeated measures ANOVA assessed the influence of site, season and gender (nested in site) on 

body condition. An index for body condition was calculated as weight divided by hind foot length 

(Wauters et al. 2007). Hind foot length does not change with age (once adult) and has been used by 

Wauters et al. (2007) to correct for the variation in body mass of mammals resulting from differences 

in skeletal size. If an individual was trapped during both seasons, average weight was calculated 

separately for wet and dry seasons. Only adults were included in the analysis. 
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3.3.6 Influence of site and season on proportion of females with young 

The proportion of females with young was used as a measure of reproductive rates (Gilfillan 2001; 

Hayward et al. 2003). The number of females with pouch young or small young at foot (<250 g, not 

microchipped) was compared between sites and seasons using a repeated measures ANOVA. The 

number of females with young per trapping session was tallied and the proportion with young then 

calculated (females with young/total females per trapping session).  

 

3.3.7 Differences in trap success between sites, seasons and to 20 years prior 

The influence of site and season on trap success was analysed using a repeated measures two-way 

ANOVA. Trap success (captures/trap nights) (Widmer et al. 2017) was calculated at each site for each 

trapping session, with trapping sessions classified by season. 

 

A one-way ANOVA compared trap success at Davies Creek between 1994-1996 (Vernes & Pope 

2006) and my estimates (2014-2016)). At Emu Creek and Tinaroo Creek, trap success was compared 

graphically, but statistical analyses were not possible due to limited data from 1994 to 1996. 

 

3.4 Results 

Between 2014 and 2016, I recorded 1,094 captures of 188 B. tropica individuals (Table 3.1). Most 

individuals and captures were recorded at Tinaroo Creek, with the least at Davies Creek (Table 3.1; 

Appendix E). The number of individuals and captures of B. tropica for each trapping session and the 

influence of site and gender on individuals and captures are presented in Appendix E. 

 

Table 3.1. Number of individual Bettongia tropica caught and total number of captures of males and 

females at Davies Creek, Emu Creek and Tinaroo Creek. 

 Male 

individuals 

Female 

individuals 

Total 

individuals 

Male 

captures 

Female 

captures 

Total 

captures 

Davies Creek 27 16 43 138 111 251 

Emu Creek 36 28 64 210 160 370 

Tinaroo Creek 38 43 81 209 264 473 

All sites (total) 101 87 188 557 535 1094 

 

Individuals at Davies Creek, Emu Creek and Tinaroo Creek were caught up to 25, 25 and 27 times 

respectively (Figure 3.3). Across all sites, >70% of individuals (132 out of 188 individuals) were 

captured more than once, with approximately 74% of individuals (32/43) at Davies Creek, 76% 

(49/64) at Emu Creek and 63% (51/81) at Tinaroo Creek (Figure 3.3). Recapture rates were similar 

between sites (KW test, 2 = 1.17, df = 2, p = 0.56). On average, individuals were caught six times, 

with 22% of individuals (43/188 individuals) caught ≥9 times, or a mean of once per trapping session 
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(Figure 3.3). Individuals were captured multiple times, indicating they live within the area instead of 

dispersing through the site. 

 

 

Figure 3.3. Capture frequency of Bettongia tropica individuals at Davies Creek, Emu Creek and 

Tinaroo Creek. 

 

3.4.1 Assessing population density 

3.4.1.1 Comparison between sites 

The mean number of individuals estimated to occur across the entire trapping program was 33.23േ 

2.14 bettongs (mean േ SE) at Davies Creek, 29.21 േ 2.72 bettongs at Emu Creek and 34.99 േ 1.95 

bettongs at Tinaroo Creek. The average population density per trapping session differed between sites 

(F2,20 = 18.44, p<0.0001). Bettongia tropica had a higher density at Tinaroo Creek (x̅ = 13.40 േ 0.74 

B. tropica/km2) compared with Davies Creek (p<0.001, x̅ = 7.92 േ 0.67 B. tropica/km2) and Emu 

Creek (p<0.001, x̅= 8.82 േ 0.82 B. tropica/km2). Similar population densities occurred at Davies 

Creek and Emu Creek (p = 0.305). The estimated population abundance and density for each trapping 

session is shown in Table 3.2. 
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Table 3.2. Trap success, capture and survival probabilities and population abundance and density estimates (with associated standard errors (SE)) for 

Bettongia tropica sub-populations at Davies Creek, Emu Creek and Tinaroo Creek from nine cage trapping sessions. Population abundance and density for the 

first trapping session at Davies Creek was an outlier (indicated by an asterisk) and removed from the mean density estimate. Survival estimates are unable to 

be computed for the first trapping session.  

 Season Trap nights Trap success (%) Capture probabilities Survival probability (%) 

(േ SE) 

Population abundance 

(േ SE) 

Density estimates 

(individuals/km2) (േ SE) 

Davies Creek        

November 2014 Wet 212 7.1 71.0 േ 14.5 (not computable) 14.1 േ	3.8* 4.4 േ 1.2* 

February 2015 Wet 209^ 5.7 41.2 േ 9.6 100 േ 0.0 24.1 േ	2.4  7.5 േ 0.74 

May 2015 Dry 212 9.9 68.4 േ 9.0 91.2 േ 9.2 22.0 േ 2.3 6.8 േ 0.72 

August 2015 Dry 212 19.8 89.5 േ 4.0 87.1 േ 8.8 23.8 േ1.0 7.3 േ 0.30 

November 2015 Dry 212 17.9 80.6 േ 5.8 99.8 േ 5.4 26.8 േ 1.6 8.3 േ 0.50 

February 2016 Wet 212 7.1 45.6 േ 10.2 93.7 േ 15.0 26.6 േ 4.1 8.2 േ 1.3 

May 2016 Wet 212 10.4 73.0 േ 7.6 70.0 േ 13.9 26.0	 േ 2.3 8.0 േ 0.71 

August 2016 Dry 212 25.5 91.5 േ 3.4 86.8 േ 8.7 25.0	േ 1.1 7.7 േ 0.40 

November 2016 Dry 212 16.0 86.9 േ 6.1 74.8 േ 12.5 20.7 േ 2.3 6.4 േ 0.70 

Mean   211.7 േ 0.33 13.2 േ 2.3 72.0 േ 7.8 87.9 േ 9.2 25.5 േ 1.9 7.9 േ 0.67 

Emu Creek        

November 2014 Dry 200^ 6.0 56.8 േ 19.5 (not computable) 15.8 േ	6.4 4.8 േ 1.9 

February 2015 Wet 212 9.0 69.5 േ 10.5 83.1 േ 15.3 20.4 േ 3.3 6.2 േ 1.0 

May 2015 Wet 212 15.6 78.5 േ 7.0 82.5 േ 11.4 25.5 േ 2.5 7.6 േ 0.70 

August 2015 Dry 212 21.7 88.0 േ	4.2 80.9 േ 9.2 27.4 േ 1.4 8.3 േ 0.41 

November 2015 Dry 212 23.6 86.1 േ 4.4 91.2 േ 7.2 32.1 േ 1.7 9.7 േ 0.52 

February 2016 Wet 212 9.9 49.9 േ 9.0 75.9 േ 9.8 31.5 േ 3.8 9.5 േ 1.2 

May 2016 Wet 212 24.1 81.6 േ 5.0 89.0 േ 8.6 35.5 േ 1.9 10.7 േ 0.58 

August 2016 Dry 212 34.0 94.4 േ 2.0 90.2 േ 5.7 35.5 േ 0.74 10.7 േ 0.22 

November 2016 Dry 212 31.1 88.4 േ 3.9 99.6 േ 7.7 39.6 േ 2.9 12.0 േ 0.87 

Mean   210.5 േ 1.3 19.5 േ 3.3 77.0 േ 7.2 86.6 േ 9.4 29.2 േ 2.7 8.8 േ 0.82  
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Tinaroo Creek        

November 2014 Dry 212 8.02 64.7 േ 15.1 (not computable) 18.6 േ 5.4 7.1േ 2.1 

February 2015 Wet 212 14.62 76.3 േ 7.7 86.6 േ 11.4 24.8 േ 2.7 9.5 േ 1.1 

May 2015 Wet 212 19.81 76.9 േ 6.2 87.2 േ 8.8 34.3 േ 2.8 13.1	േ 1.1 

August 2015 Dry 212 28.77 88.2 േ 3.6 87.0 േ 7.2 36.9 േ 1.6 14.1 േ 0.61 

November 2015 Dry 212 30.19 90.7 േ 3.0 79.9 േ 7.3 34.0 േ 1.1 13.0 േ 0.43 

February 2016 Wet 212 20.75 73.9 േ 6.3 85.9 േ 8.0 34.2 േ 2.3 13.1 േ 0.88 

May 2016 Wet 212 22.17 79.9 േ 5.2 77.9 േ 8.6 35.6 േ 2.0 13.6 േ 0.75 

August 2016 Dry 212 37.74 90.3 േ 2,8 91.8 േ 6.0 45.2 േ 1.7 17.3 േ 0.65 

November 2016 Dry 212 39.15 93.2 േ 2.4 78.4 േ 7.7 41.8 േ 2.0 16.0 േ 0.79 

Mean   212 േ 0.00 24.4 േ 3.5 81.6 േ 5.8 84.3 േ 8.1 35.0 േ 2.0 13.4 േ 0.74 

^Note: Fewer trap nights were conducted in February 2015 at Davies Creek and November 2014 at Emu Creek due to traps being stolen during the day and thus unable to be 

baited for one night. 
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3.4.1.2 Comparison between seasons 

Estimated population density was slightly higher during the dry season (x̅ = 10.52 േ	0.92 

bettongs/km2) compared to the wet season (x̅ = 8.92 േ	0.83 bettongs/km2), with this result approaching 

significance (F1,20 = 3.987, p = 0.0596). For each site, >80% of the total rain during my study fell 

during trapping sessions conducted in the wet seasons (Davies Creek 87.52%; Emu Creek 90.07%; 

Tinaroo Creek 80.73%), with this difference being significant (F1,21 = 117.77, p<0.001). Total rainfall 

also differed between sites (F1,21 = 117.77, p<0.001). Tinaroo Creek was the wettest site (1,382.50 

mm) compared with Davies Creek (p = 0.022, 853.95 mm), and Emu Creek (p<0.01, 725 mm). Davies 

Creek and Emu Creek had similar rainfall (p = 0.76). There was no interaction between site and season 

(F2,20 = 2.655, p = 0.095). 

 

3.4.1.3 Comparison to 20 years prior 

Five trapping sessions from my study and from Vernes and Pope (2006) were conducted during the 

same months. At Davies Creek, 2014-2016 density estimates of 7.43 േ 0.35 (x̅ േ SE) bettongs/km2 

were slightly, but not significantly, higher than 1994-1996 estimates of 6.72 േ 0.62 bettongs/km2 (t = 

0.99, df = 6, p = 0.35; Table 3.3). Population abundance and density estimates for each trapping 

session are provided in Appendix F.  

 

Table 3.3. Comparison of previous (1994-1996) (Vernes & Pope 2006) and current (2014-2016) 

population density estimates of Bettongia tropica at Davies Creek. Current estimates include the mean 

± standard error. Only cage-trapping sessions conducted during the same month were compared 

between studies. Previous estimates only have the mean for each trapping session, as the standard 

error was not computable based on the data available. 

Month Previous (1994-1996) population density 

estimates (B. tropica/km2) 

Current (2014-2016) population density 

estimates (B. tropica/km2) 

February 6.9 6.9 േ 0.81 

May 6.9 6.5 േ 0.02 

August 8.6 7.6 േ 0.32 

November 6.5 7.7 േ 0.06 

February 4.7 8.5 േ 0.62 

Mean 6.7 േ 0.62 7.4 േ 0.35 

 

At Emu Creek, previous estimates of 7 to 10 bettongs/km2 (Vernes & Pope 2006) are equivalent to 

current estimates of 8.7 േ 0.29 bettongs/km2. At Tinaroo Creek, current estimates of 15.1 േ 1.4 

bettongs/km2 were slightly higher than 1994-1996 estimates of between 6.5 and 14.6 bettongs/km2 

(Vernes & Pope 2006).  
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Rainfall in the two months prior to each cage trapping session was similar between my study (x̅ = 

106.39 mm at Walkamin; x̅ = 153.69 mm at Tinaroo Falls Dam) and the 1994-1996 study (x̅ = 121.97 

mm at Walkamin; x̅ = 165.76 mm at Tinaroo Falls Dam) (Kruskal-Wallis (KW) test, 2 = 0.107, df = 

1, p = 0.744 at Walkamin; F1,17 = 0.047, p = 0.831 at Tinaroo Falls Dam).  

 

3.4.2 Differences in survival between sites and between seasons 

Survival probability was similar between sites (F2,12 = 0.709, p = 0.702), averaging >84% at all sites 

for the duration of the study and between 74% and 100% during each trapping session (Table 3.2). 

Survival was similar between seasons (F1,12 = 0.0028, p = 0.958; wet season: 86.39% േ 8.62%; dry 

season: 86.20% േ 9.03%), with the interaction between site and season also being non-significant 

(F2,12 = 0.898, p = 0.638). 

 

3.4.3 Influence of site, season and gender on body condition 

Males and females had similar body condition (F1,512 = 1.47, p = 0.227) (Table 3.4), based on 275 

measures of body condition from 88 males and 253 from 77 females across all sites. The body 

condition index of B. tropica was also similar between sites (F2,512 = 1.54, p = 0.215), season (F1,512 = 

0.018, p = 0.893) (Table 3.4), and there were no significant interactions (site*season: F2,516 = 0.455, p 

= 0.634; site*season*gender: F2,516 = 0.615, p = 0.541). 

 

3.4.4 Influence of site and season on proportion of females with young 

Across all sites, 73.46% (119/162) of females had pouch young or dependent young at foot, with no 

difference between sites (F2,21 = 1.54, p = 0.464, season (F1,21 = 2.67, p = 0.102) or the interaction 

between site and season (F2,21 = 2.202, p = 0.333) (Table 3.4). 

 

Table 3.4. Comparisons of the body condition index (weight/hind foot length) of Bettongia tropica 

and the percentage of females with young (mean േ standard error) at Davies Creek, Emu Creek and 

Tinaroo Creek during the wet and dry season. The body condition of males and females is also shown. 

 Body condition index  

(kg weight/hind foot length) 

Females with young per trapping sessions (%) 

Davies Creek 11.46 77.46 േ 3.89% 

Emu Creek 12.14 70.84 േ 4.69% 

Tinaroo Creek 11.67 74.94 േ 3.15% 

Wet season 11.81 70.39 േ 2.94% 

Dry season 11.72 77.63 േ 3.16% 

Males (all sites) 11.68 N/A 

Females (all sites) 11.86 74.41 േ 2.26 %  
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3.4.5 Differences in trap success between sites, seasons and to 20 years prior 

Trap success was influenced by site (F2,19 =24.72, p<0.001), with the average trap success at Tinaroo 

Creek (24.42%) being higher than at Davies Creek (13.18%) (p<0.0041). Trap success at Emu Creek 

(19.52%) was intermediate between the other two sites and similar to both Tinaroo Creek (p = 0.218) 

and Davies Creek (p = 0.159). Trap success varied from 5% to 40% between trapping sessions (Table 

3.2). Across all sites, trap success was twice as high during the dry season (24.94%) than the wet 

season (12.10%) (F1,21 = 17.083, p<0.001). There was no significant interaction between site and 

season (F2,21 = 0.002, p = 0.998). 

 

At Davies Creek, current trap success of 13.18% was 5.37% higher than the 1994-1996 average of 

7.9% (2.4% to 11.1% per session). However, this difference was not significant (t = -1.80, df = 11, p = 

0.10). Trap success at Tinaroo Creek doubled from 1994-1996 estimates of 10.8% to 25.00%, whereas 

current average trap success at Emu Creek (19.43%) was similar to previous estimates of 20.8%. The 

results for Tinaroo Creek and Emu Creek could not be statistically compared due to insufficient data. 

 

3.5 Discussion 

This is the first study to provide a comprehensive assessment of the population density, life history 

traits and trap success of B. tropica within their three main sub-populations on the Lamb Range. In 

contrast to what I expected, I found that the population density remained similar to 20 years prior. This 

information has important conservation implications, as it suggests that management actions for the 

last 20 years have successfully maintained habitat, enabling population stability, for the species. My 

study also presents new information on how these estimates differ between sub-populations and 

between the wet and dry season. As expected, trap success was higher at the wettest site and during 

the dry season. This study provides baseline information on survival and reproduction rates, which 

have not previously been determined for sub-populations outside Davies Creek. In contrast to 

expectations, I found that body condition, survival and reproductive rates were similar between sites 

and seasons.  

 

3.5.1 Assessing population density 

3.5.1.1 Comparison between sites 

Density varied from 6.45 to 16.30 bettongs/km2 across the Lamb Range, and as predicted, higher 

population density was recorded at Tinaroo Creek (wettest site) than either Davies Creek or Emu 

Creek. Higher density was most likely due to Tinaroo Creek having higher rainfall, with rainfall 

increasing truffle (food) abundance (Abell et al. 2006) and resulting in truffles being more evenly 

distributed (Lehmkuhl et al. 2004). Higher food abundance could increase the carrying capacity of the 

habitat, which would support higher population densities (Marshall & Leighton 2006). Lower and 

similar population densities at Davies Creek and Emu Creek suggest fewer but similar food resources 
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available at these sites. Food abundance also influences population density of other bettong species, 

with Tasmanian bettongs (Bettongia gaimardi) attaining higher population densities within habitats 

where truffle abundance is highest (Taylor 1993a). 

 

3.5.1.2 Comparison between seasons 

In contrast to expectations, population density remained similar between seasons, indicating there are 

sufficient food resources on the Lamb Range to maintain a similar population density throughout the 

year. Seasonal changes in density of mammal populations usually result from species having a peak 

breeding season, which is related to the abundance of food resources (de Andreazzi et al. 2011; Pinot 

et al. 2014). For example, de Andreazzi et al. (2011) studied the population density of small mammals 

in Brazil and determined that agile gracile opossums (Gracilianus agilis) had synchronised, seasonal 

reproduction during the wet season in response to higher food abundance and this higher recruitment 

resulted in a higher population density during the dry season. Bettongia tropica can breed throughout 

the year when there are sufficient resources available (Johnson & Delean 2001). I found that both the 

number of females with young and the survival probability remained similar between seasons and thus 

sufficient food resources throughout the year likely enabled population stability. 

 

3.5.1.3 Comparison to 20 years prior 

Contrary to my predictions, the population density on the Lamb Range remained stable between 1994-

1996 and 2014-2016. Rainfall totals at Walkamin and Tinaroo Falls Dam were similar prior to cage 

trapping between the 1994-1996 and this study. This indicates that food resource abundance has 

remained similar throughout the Lamb Range. It is possible that other environmental or climatic 

conditions on the Lamb Range may also have remained similar between studies. 

 

Population density estimates varied between trapping sessions throughout my study. These differences 

were likely due to the availability of resources or environmental factors (Bantihun & Bekele 2015). 

For example, moonlight, rainfall and temperature can influence the movement patterns or foraging 

time of small mammals, which in turn influences trap success (Stokes et al. 2001; Barros et al. 2015; 

Greenville et al. 2016). At all sites, the first trapping session had substantially lower density estimates 

than the other trapping sessions. The lower trap success during the initial trapping session can most 

probably be attributed to individuals being less habituated to cage traps (Davis 1982). Similarly, 

de Andreazzi et al. (2011) and Rocha et al. (2017) determined that the population density varied 

between trapping sessions for various Brazilian small mammal species, including the Chacoan mouse 

opossum (Cryptonanus chacoensis) (de Andreazzi et al. 2011), hairy-eared cerrado mouse (Thalpomys 

lasiotis), hairy-tailed bolo mouse (Necromys lasiurus) and the delicate vesper mouse (Calomys tener) 

(Rocha et al. 2017). However, the long-term population abundance of these species remained stable 
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and was unaffected by seasonal fluctuations in reproductive success or survival rates (de Andreazzi et 

al. 2011; Rocha et al. 2017).  

 

3.5.2 Differences in survival between sites and between seasons 

Survival estimates were high (>80%) across all sites, contrasting to the expectation that the driest site 

would have the lowest survival rate. Under the relatively stable weather conditions that occurred 

during my study period (no extreme or extended wet or dry periods between August 2014 and 

November 2016), season did not influence survival estimates. Survival of small mammals is often, but 

not always, driven by predation rather than food abundance (Korpimäki et al. 2004). For example, 

Prevedello et al. (2013) found that higher food abundance had limited impact on the survival rates of 

their small mammal populations. This suggests predation levels on the Lamb Range were similar 

between sites and seasons. This conclusion is supported by camera trap capture rates of predators, 

which were similar between sites (Chapter 5). 

 

3.5.3 Influence of site, season and gender on body condition 

Male and female B. tropica maintained a similar weight during both seasons across all sites. This was 

surprising given that B. tropica were expected to have lower body condition during the dry season and 

at the driest site. Body condition of mammals, including bettongs (Johnson 1994; Johnson & McIlwee 

1997), is usually driven by food abundance (Murray 2002). For example, Chambers and Bencini 2010 

found that resource availability resulted in better body condition for tammar wallabies (Macropus 

eugenii) of Garden Island in Western Australia. For example, Johnson (1994) determined that the 

body condition and fecundity of the Tasmanian bettong increased during peak availability of truffles, 

with truffles comprising 90% of their diet during this time. In contrast to my result, Johnson and 

McIlwee (1997) concluded that body condition of bettongs at Emu Creek (driest habitat) declined 

during the dry season in 1993 and 1994, although body condition remained similar throughout the year 

at Davies Creek and Tinaroo Creek. A decline in resources, possibly due to less rain, may have 

resulted in the lower body condition during the dry season. Rainfall estimates for the driest site could 

not be compared between this and the Johnson and McIlwee (1997) study as rainfall data is not 

available from the Mareeba BOM weather station prior to 2000. Rainfall was similar between the 

BOM weather stations at Walkamin and Tinaroo Falls Dam between the two studies (2014-2016 and 

1994-1996). However, in this study I found that rainfall at Tinaroo Falls Dam and Walkamin was 

higher than at Mareeba and so the potential influence of rainfall on the body condition of B. tropica at 

Emu Creek during the 1994-1996 study cannot be discounted.  

 

During my study there was substantially lower rainfall during the dry season compared to the wet 

season and thus it is surprising that body condition of B. tropica did not decline. This indicates that the 
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weather patterns on the Lamb Range during my study were sufficiently stable to maintain adequate 

food resources throughout the year. 

 

3.5.4 Influence of site and season on proportion of females with young 

The proportion of females with young remained high (>70%) across all sites and during both the wet 

and dry seasons. Bettongia tropica were able to maintain their body condition throughout the year, and 

this likely enabled the species to breed throughout the year. Breeding throughout the year appears a 

common strategy amongst all bettong species (rufous bettongs (Aepyprymnus rufescens) (Strahan 

1998), brush-tailed bettongs (B. penicillata) (Christensen 1980), Tasmanian bettongs (B. gaimardi) 

(Rose 1987) and burrowing bettongs (B. lesueur)). The ability of bettongs to breed throughout the year 

is most likely attributable to a continuous supply of food (Short & Turner 1999). 

 

Other studies on small mammals have recorded higher reproduction during the wet season in response 

to higher food abundance (Bronson 2009; de Andreazzi et al. 2011). For example, Phillips et al. 

(2017) studied quokkas (Setonix brachyurus) on Rottnest Island and determined that weaning rates 

were lowest in poorly resourced habitats, with body condition also declining during summer when 

resources were scarce. Willers at al. 2011 studied the population dynamics of the black-flanked rock-

wallaby (Petrogale lateralis lateralis) in the central wheatbelt of Western Australia and found that 

rainfall six months prior affected their body condition. Although it seems likely that rainfall influenced 

the food resources of B. tropica on the Lamb Range, there was no seasonal change in the proportion of 

females with young. This suggests that rainfall was sufficient throughout the year to support B. tropica 

reproductive rates. 

 

Although bettongs may carry pouch young throughout the year, nutritional stress or predation can 

result in pouch young not surviving to pouch emergence (Short & Turner 2000; Priddel & Wheeler 

2004). For example, Priddel and Wheeler (2004) concluded that female brush-tailed bettongs carried 

pouch young throughout the year, but during periods of nutritional stress, pouch young >5 cm were 

unable to be retained and no young at foot were present. Thus no recruitment occurred (Priddel & 

Wheeler 2004). Determining the number of young surviving until maturity, rather than only the 

number of females with young, would provide a more accurate indication of how breeding rates 

impact upon the population density of B. tropica. To accurately monitor the survival of young, pouch 

young must be measured as they develop (Vernes & Pope 2002), but in my study those measurements 

were not recorded in order to minimise stress to mothers and young. 

 

3.5.5 Differences in trap success between sites, seasons and to 20 years prior 

As expected, trap success was higher at Tinaroo Creek than Davies Creek. This likely reflects the 

higher population density at Tinaroo Creek. Trap success of B. tropica was similar at Emu Creek and 
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Tinaroo Creek, despite Tinaroo Creek having a higher population density of B. tropica than Emu 

Creek. A similar trap success between the sites can be attributed to B. tropica individuals at Emu 

Creek being recaptured more frequently than individuals at Tinaroo Creek. Emu Creek has the driest 

habitat (Johnson & McIlwee 1997) and likely had lower food resources. Individuals at Emu Creek 

may thus need to travel further to access resources (Rong et al. 2013), which should provide greater 

opportunity to find extra traps (Larrucea et al. 2007) and increase their capture rates. Additionally, 

lower food resources may have resulted in individuals more frequently consuming bait to maintain 

their nutritional levels. Trap success was also stable compared to 1994-1996 estimates, except for 

Tinaroo Creek, where it was double in my study compared to previous estimates. However, this is 

most likely due to higher trap effort increasing trap success (Barnett & Dutton 1995). 

 

As predicted, trap success was higher during the dry season than the wet season. These seasonal 

differences in trap success means that if populations were surveyed only during the wet or the dry 

season, trap success may not accurately represent the true population density (Roubik 2001). It is 

therefore important to monitor during both seasons to ensure accurate trends (Anderson et al. 2015). 

 

The differences in trap success may be attributed to seasonal changes in food availability, which 

potentially altered the trappable behaviour of B. tropica. Truffle abundance is lower during the late dry 

season, which results in B. tropica becoming more reliant on less nutritious foods, including cockatoo 

grass (Johnson & McIlwee 1997; Abell et al. 2006). The reduced availability of high-quality natural 

food resources (truffles) likely resulted in the baited traps becoming more attractive. Greater bait 

consumption during the dry season is thus a likely explanation for increased trap success compared to 

during the wet season (Vieira 1997; Rocha et al. 2017). Similarly, Fitch (1954) observed the 

behaviours of 14 small mammals and determined that season had an important influence on their 

trappability, including for the California ground squirrel (Otospermophilus beecheyi), Heermann’s 

kangaroo rat (Dipodomys heermanni) and the western harvest mouse (Reithrodontomys megalotis). 

Mammals tended to be trapped more frequently when natural food resources were low and animals 

were hungrier (Fitch 1954). Despite the differences in trap success, population abundance remained 

similar between seasons. 

 

3.6 Management implications 

On the Lamb Range, low-intensity management burns have been undertaken every two to five years 

between the early 1990s and 2005, with burns conducted every two to three years since around 2005 

(R. Miller, pers. comm.). Management burns have the aim of reducing vegetation thickening, 

particularly on the ecotone where the habitat transitions from wet sclerophyll to Eucalyptus woodland 

(Department of Environment and Heritage Protection (DEHP) 2017). Low-intensity burns can also 

promote a grassy understorey and cockatoo grass growth (Bateman & Johnson 2011). Thickened 
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vegetation supports lower densities of B. tropica than Eucalyptus woodlands (Vernes & Pope 2006) so 

reducing thickening is expected to benefit B. tropica. 

 

Although detailed information on the habitat prior to the implementation of fire management is not 

available, current adequate fire management strategies could explain the stable populations at each 

study site. The population density at Tinaroo Creek may even have increased under that management, 

although the data are not sufficient to be certain. Fire management regimes commenced just prior to 

1994 (R. Miller, pers. comm.). Habitat alterations since 1996, particularly a reduction in woody 

thickening (Allocasuarina and lantana encroachment), may have assisted in maintaining the 

populations. Allocasuarina is susceptible to fire (DEHP 2017a), with anecdotal evidence indicating 

that woody thickening and lantana encroachment at Davies Creek has been reduced by up to 10 m 

from the edge of the Eucalyptus woodland and replaced with a grassy understorey since prescribed 

burnings started (R. Miller, pers. comm.). The stability of populations on the Lamb Range indicates 

that fire management regimes have not detrimentally impacted upon B. tropica populations and 

possibly may be improving habitat quality for B. tropica. 

 

Despite the stable population, consistent and regular monitoring should still continue to assess 

population trends (Gerber et al. 2012; Pacheco et al. 2013). Monitoring during both seasons was 

demonstrated to be very important as trap success differed between seasons. Surveys only during the 

one season may produce estimates that are not an accurate reflection of true population abundance 

(Roubik 2001). Additionally, regular monitoring enhances the likelihood of detection of small but real 

changes in populations (Lurz et al. 2008). This is important as small changes often pre-empt larger 

declines that are harder to reverse and can have major ramifications on important processes, including 

ecosystem functioning (Gaston & Fuller 2008). Early detection of changes may also enable the 

implementation of more efficient, long-term management strategies (Antao et al. 2010) designed to 

prevent, reduce or reverse population declines (Redford et al. 2011). Consistent and regular 

monitoring is vital for accurate population estimates for B. tropica. 

 

Future monitoring and management of B. tropica could also be improved by understanding how this 

species moves and utilises its habitat. This includes an understanding of home range size and 

movement patterns to ensure that fire management is being undertaken at an appropriate scale, 

addressed in the next chapter. 
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Chapter 4: Seasonal home range size and movement patterns of Bettongia tropica 

 

4.1 Abstract 

Context. The spatial distribution and behaviour of species within the landscape provides important 

information about habitat requirements that is useful for conservation management. 

Aims. I aimed to determine the home range, home range overlap and movement patterns of Bettongia 

tropica within their three main sub-populations on the Lamb Range. 

Methods. Between February 2016 and February 2017, 51 bettongs were collared with Global 

Positioning System (GPS) units and home range size estimated using Kernel Brownian Bridge 

Movement Models. The GPS fixes of collared B. tropica were visually assessed on Google Earth® to 

ascertain the different types of movement patterns bettongs undertake. These patterns were further 

assessed by calculating the speed B. tropica travelled, creating trajectory plots to assess nightly 

movement patterns and constructing rose diagrams to demonstrate the angle that B. tropica turn when 

moving. 

Key results. Forty-one GPS collars recorded data for between 3 and 42 days, with a total of 1,040 days 

of movement data. The mean home range size was 20.90  1.55 ha (mean  SE), with no significant 

difference in home ranges between sites. Male home ranges were approximately double the size of 

female ranges and mean home range size for both sexes increased in the dry season. This is most 

likely due to fewer resources being available during the dry season, resulting in bettongs travelling 

further for resources and needing larger home ranges. Bettongia tropica had relatively large core 

foraging areas (5.53  0.42 ha, ≈ 26% of home range) and an average of six small core nesting areas 

(0.67  0.10 ha). Although home ranges overlapped (71.66  4.42%), B. tropica maintained almost 

exclusive core areas. Notable movement patterns were recorded: slow, angular movements 

corresponding to foraging, and fast, linear movements indicating travel between resources. 

Conclusion. The spatial distribution of male B. tropica was most likely influenced by female 

distribution and their search for mating opportunities. In contrast, female movements appeared to be 

associated with habitat productivity and the distribution of food resources. Overlap between home 

ranges indicates that defending access to the entire home range was inefficient. Core foraging and 

nesting areas suggests that certain areas within the landscape are able to support B. tropica for 

proportionally longer than other areas.  

Management implications. Management burns on the Lamb Range are currently conducted over a 60 

ha scale, based on previous estimates of B. tropica home rage size. It is recommended that fire 

management be conducted at a 20 ha scale to 60 ha scale, with a 30 ha scale favoured during periods 

that are particularly dry. Females at Tinaroo Creek tended to spend a larger proportion of their time 

foraging and less time travelling, indicating that resources may occur at higher density at Tinaroo 

Creek. This indicates that Davies Creek and Emu Creek may be a more marginal habitat for B. 
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tropica. Future monitoring should focus on these two sites, as this may enable trends in B. tropica 

populations to be detected earlier than at Tinaroo Creek. 

 

4.2 Introduction 

Examining home range size and movement patterns of animals can provide an insight into how species 

respond to their environment (Nathan et al. 2008). The home range for an animal is the area needed to 

acquire mating opportunities and sufficient resources, including food, water, habitat, shelter and 

nesting areas (Burt 1943). Theoretically, species should utilise the smallest area needed to survive and 

reproduce (Saïd et al. 2005; Schradin et al. 2010). However, home ranges of the same species can vary 

between or within populations (Sprent & Nicol 2012; Ofstad et al. 2016) or due to other factors, 

including environmental conditions (van Beest et al. 2011), predation risk (Fisher 2000; Dussault et al. 

2005; Edwards et al. 2013) or the availability, quality and distribution of habitat and food resources. 

An assessment of the difference in home range size between genders or populations can provide an 

indication of the factors influencing species occurrence and behaviour (McLoughlin et al. 2000; 

Powell 2012). 

 

Home ranges often contain core areas that are used disproportionally more than the remainder of the 

home range (Burt 1943). Core areas generally occur within an area with a high density of important 

resources (e.g. nesting, foraging or breeding resources) (Asensio et al. 2012; Feldhamer et al. 2015). 

For example, Rader and Krockenberger (2006) found that the size of core areas used by fawn-footed 

melomys (Melomys cervinipes) was determined by their requirement to achieve a specific level of 

canopy resources. Determining the location of core areas should assist in identifying aggregations of 

important resources (Bingham & Noon 1997). 

 

The spatial distribution of home ranges also provides an insight into species’ behaviours, including 

potential social interactions (Frederick & Johnson 1996). To maximise fitness, according to optimal 

foraging theory (Emlen 1966; MacArthur & Pianka 1966), individuals should defend a territory 

containing sufficient resources for themselves and their offspring (Frafjord 2016). However, if 

resources are clumped yet abundant enough to support multiple individuals, excluding competitors 

may not be cost-effective (Miller et al. 2014). This is because more energy would be used defending 

the territory than gained from the defended resources (Oldfield et al. 2015; Hinsch & Komdeur 2017). 

By sharing resources, the amount available for each individual is reduced, resulting in individuals 

requiring larger home ranges to access a similar abundance of resources (Markham et al. 2015).  

 

The fine-scale movement patterns of animals, including changes in movement speed, distance and 

angle, can also indicate resource distribution and/or habitat heterogeneity within the animals’ home 

range (Wells et al. 2008). Different movement patterns are associated with various behaviours, 
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including competitive interactions, searching behaviours (for mates or resources), foraging, predator 

avoidance and dispersal (Patterson et al. 2009; Davies et al. 2013; Laidre et al. 2013; Chimienti et al. 

2014). For example, Taylor (1993b) studied the home range, nest use and activity of the Tasmanian 

bettong (Bettongia gaimardi) and found that males occasionally undertook more regular movement 

patterns than females, which was potentially related to males searching for females. Tasmanian 

bettongs also commonly moved 500 m to 600 m within half an hour, suggesting they travelled quickly 

when searching for resources (Taylor, 1993b). Vernes and Haydon (2001) used 750 m spool lines to 

track the fine-scale movements of B. tropica at Davies Creek for relatively short distances, concluding 

that B. tropica undertake area-restricted search patterns (short, angular movements) upon initially 

detecting or after encountering food patches. An understanding of movement patterns can also indicate 

the factors that constrain animals (Wells et al. 2008) and indicate populations that are more marginal 

and likely to be under greater stress (Murgatroyd et al. 2016). 

 

The northern bettong, Bettongia tropica, is a small (≈ 1.2 kg) endangered Australian marsupial 

(Burbidge & Woinarski 2016). The specialised diet of B. tropica predominantly dictates the large-

scale distribution of the species (Bateman et al. 2012a), with the species favouring Eucalyptus 

woodlands with a grassy understorey (Vernes & Pope 2006) and containing cockatoo grass (Abell et 

al. 2006; Bateman et al. 2012b). However, little is known about the fine-scale movement patterns of B. 

tropica. 

 

Movement patterns of B. tropica have only previously been assessed in one sub-population (Davies 

Creek), with the variation of space use between B. tropica sub-populations unknown. Radio-tracking 

of 23 individuals every two hours determined that B. tropica have large (59 ha) home ranges for their 

body size (Vernes & Pope 2001). The more recent technology of Global Positioning System (GPS) 

collars can provide higher resolution tracking data, enabling a broader range of ecological questions to 

be answered. By obtaining fine-scale movement data over long periods from multiple sub-populations, 

the factors influencing a species’ spatial distribution across the wider landscape can be investigated. 

 

4.2.1 Aims 

In this chapter I aimed to: 

1) estimate the home range and core areas of B. tropica from the three main sub-populations on the 

Lamb Range, 

2) examine differences in the size of seasonal (monthly) home ranges and seasonal core foraging and 

nesting areas between study sites, genders and sub-populations with different densities, 

3) assess the overlap between B. tropica seasonal home ranges and between seasonal core areas to 

indicate potential social interactions, and 

4) assess movement trajectories of B. tropica to quantify speed and movement directions. 
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It was expected that B. tropica would have larger home ranges at drier sites and during the dry season, 

when resource abundance is assumed to be lower. Bettongs within higher density populations were 

also expected to have larger home ranges, as increased competition was assumed to reduce the 

abundance of resources per individual. Truffles and cockatoo grasses, the main food resources of B. 

tropica (Johnson & McIlwee 1997; Abell et al. 2006), are patchily distributed in clumps throughout 

landscapes (Claridge 2002; O’Malley 2006). Due to the patchy distribution of these resources, I 

expected that both the home ranges and core foraging areas of B. tropica would overlap, as it would be 

energetically inefficient to defend access to these areas. Bettongia tropica were expected to forage 

using slow, angular movements, with the proportion of time spent foraging expected to be similar 

across all sites. Linear movements are the most effective pattern for travelling long distances rapidly ( 

Davies et al. 2013; Bracis et al. 2015; Massa et al. 2015), so I expected B. tropica to travel directly and 

quickly between resources. 

 

4.3 Methods 

This study was conducted at Davies Creek, Emu Creek and Tinaroo Creek on the Lamb Range, 

Queensland, Australia (described in detail in Chapter 3). Tracking collars were deployed on a total of 

51 individuals during five cage trapping sessions (February 2015 to February 2016) (Chapter 3). At 

Davies Creek 10 males and eight females were collared, at Emu Creek nine males and five females 

were collared and at Tinaroo Creek eight males and 11 females were collared.  

 

Cage-trapped B. tropica were selected for tracking if they weighed >960g (collar 4.9% of body 

weight), were healthy and free from injuries (such as substantial fur loss or cuts) and did not have 

pouch young >6 cm or young at foot <500 g. Unless the battery failed to record data for more than 

three days, B. tropica were only collared once to maintain independence of data (Pizzuto et al. 2007).  

 

When collars were being fitted around the necks of B. tropica, individuals were gently restrained by 

holding the shoulders, with paws tucked under their body (Plate 4.1). Collars were fitted around the 

necks of B. tropica. The collar was orientated so the battery canister was underneath the bettong’s 

chin, with the GPS chip on the back of the neck (Plate 4.2). An index finger was placed under the 

collar to ensure the collar was not too tight. Once the equipment was secured, each B. tropica was 

closely monitored until the bettong jumped away normally. The collar was removed if the animal 

showed signs of distress. 
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Plate 4.1. Technique for restraining Bettongia tropica whilst a GPS collar is attached, with (a) B. 

tropica being restrained around the shoulders, and (b) the paws being under the animal, whilst the 

collar was fitted around the neck and secured with a zip-tie. (Photographs by Dr. Miriam Goosem). 

 

  

Plate 4.2. Bettongia tropica with collar attached, showing the orientation of the collar from the (a) 

right hand side, and (b) left hand side. On both collars the antennae has broken off. (Photographs by 

Dr. Miriam Goosem). 

 

Each collar weighed 47 g and was constructed of an adjustable leatherette (artificial leather) band with 

a GPS unit, a very high frequency (VHF) radio-tracking unit and a battery (Plate 4.3). The leatherette 

band was lined with sheepskin to prevent rubbing and was secured with a zip-tie (Plate 4.4). The zip-

tie rubbed against the leatherette band, with the band designed to break within two to three months. 

Band diameter was based on measurements of two captive bettongs at Cairns Tropical Zoo. The GPS 

receiver (i-GotU GT-120 USB GPS Travel and Sports logger by Mobile Action) recorded a GPS fix 

every 10 minutes. Each VHF transmitter emitted a unique VHF signal (Pinter-Wollman & Mabry 

2010), enabling collared B. tropica to be tracked. Collars were dusted with paprika to deter bettongs 

from chewing them and then sealed with heat-shrink tubing to prevent water damage.  

 

Collars had to be recovered to download the GPS data and to re-deploy the collars in future sessions. 

To allow this, dedicated follow-up trapping was conducted a month after each round of collar 
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deployment. Collars were retrieved after a month as the collars had an estimated battery life of around 

one month (based on the manufacturer’s advice). One month of data were assumed to be sufficient to 

estimate seasonal home ranges. Appendix G details the cage trapping methodology for retrieving 

collars. 

 

  

Plate 4.3. GPS collar for Bettongia tropica. (The ruler indicates scale in centimeters). 

 

  

Plate 4.4. Zip-tie being threaded through the leatherette band on a GPS collar that is being attached to 

a Bettongia tropica individual. (Photograph by Maree Baade). 

 

4.3.1 Data cleaning 

Once collars were retrieved, data were downloaded using the computer program @trip PC (Mobile 

Action Technology, 2016). The data comprised GPS fixes approximately every 10 minutes, although 

occasionally no fix was recorded for 20 minutes. For each GPS fix, the devices recorded the date, 
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time, latitude, longitude, altitude, speed of travel, satellite numbers used to record the fix, and the 

estimated horizontal precision error (EHPE). 

 

Bettongs with <3 days of GPS data were excluded from analyses, as there was insufficient data to 

compute home range estimates or movement trajectories. GPS data were then filtered to remove fixes 

that were recorded before the collar was deployed or when B. tropica was within a cage trap. Fixes 

were filtered by firstly removing the fixes where the EHPE was >25 m. Once these outliers were 

removed, the mean error was 8.38 m ± 0.088 m, which was considered appropriate (Ellis et al. 2015). 

Secondly, fixes were removed if the altitude recorded was 100 m higher than the highest altitude or 

100 m lower than the lowest altitude for that site. Using altitude as a discriminatory variable removed 

obviously erroneous fixes and those that appeared to result from satellite drift. Satellite drift was 

recognised when a line of fixes moved away from a cluster of fixes, but the next fix was back within 

the original cluster (Nethery et al. 2014). Fixes were lastly excluded if the speed between two fixes 

was greater than the maximum B. tropica can travel. The speed B. tropica travelled in the 30 minutes 

post-release from a cage trap was considered maximal. Fixes for each B. tropica were separately 

plotted on Google Earth® in hourly periods, with a final visual assessment determining that no 

unrealistic fixes remained. 

 

4.3.2 Data analysis 

The data analysis section is presented in four sections to correspond with the main aims of this 

chapter. 

 

4.3.2.1 Calculating seasonal home range 

I used Kernel Brownian Bridge Movement Models (BBMM) (Horne et al. 2007) to estimate the 

seasonal home range sizes (henceforth referred to as home range size) for each B. tropica. BBMM 

predicts the trajectory an animal is expected to follow between successive points, based on the order of 

fixes and the time and distance between fixes (Horne et al. 2007; Kranstauber et al. 2012; Fischer et al. 

2013). The method also allows for serial autocorrelation between fixes, with fixes only contributing to 

the home range estimate when consecutive fixes occur at short time intervals (Kie et al. 2010; Fischer 

et al. 2013). Analysis was computed in RStudio (RStudio Team 2015) using the adehabitatHR 

package (Calenge 2006). 

 

Home range size for each B. tropica was estimated for the 50%, 95% and 99% utilisation distributions 

(UD). Utilisation distributions are three-dimensional probability densities that calculate the smallest 

area based on the probability of relocating an animal within that area (Cermeño et al. 2015). These 

distributions are based on how intensely animals use parts of their home range (Kranstauber et al. 

2012). A 50% UD is often used to represent the core area (Clapp & Beck 2015), whilst a 95% UD 
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minimises the importance of rarely used areas, but may result in a disjunct distribution if important but 

rarely used areas are excluded (Kie et al. 2010). A 99% UD provides the most inclusive home range 

estimate (Clapp & Beck 2015).  

 

One female at Tinaroo Creek was unintentionally collared twice, once in February 2015 (wet season) 

and once in November 2015 (dry season). To ensure independence of data (Pizzuto et al. 2007), only 

the data from February 2015 was included in analyses that compared home range and core areas 

between sites, genders and seasons. 

 

4.3.2.2 Standardising home range and core areas 

Home range size varies depending on the number of fixes recorded (Bengtsson et al. 2014). My collars 

recorded data for different numbers of days and therefore I standardised the data to enable 

comparisons between individuals. To do this, I undertook preliminary analysis of home range sizes for 

individuals at all sites by calculating the 95% and 99% home ranges for six time periods: 12, 15, 20, 

25 and 30 days/nights (24 hour period, referred to as a day) and all days of data. I selected 15 days of 

data as the most suitable time period for comparisons. Home range estimates using 15 days were most 

similar to those estimated from all the data and also retained a sufficiently large sample size to enable 

comparisons between sites and genders. I therefore calculated the 95% and 99% UDs for home range 

for the first 15 days for each B. tropica. The methodology and justification for using 15 days of data is 

detailed in Appendix H. Appendix H also contains the methodology and results of the analysis for the 

six time periods (for both 95% and 99% home range). 

 

The decision to use 15 days of data meant that at Davies Creek only one female was included in the 

analysis. This limited the accuracy of analyses that compared female home ranges between study sites. 

To ensure at least three females from each site were included in the analyses, the home range of 

females was also calculated using eight days of data. Fifteen days of data were used for all analyses 

where female data were combined across sites to increase the amount of data and accuracy of results. 

 

4.3.2.3 Calculating core nesting and foraging areas 

Some mammals use core areas, with these areas being more intensively used than others (Eccard et al. 

2004). Core areas typically include important nesting and foraging locations (Eccard et al. 2004; 

Goldingay 2015). Core ranges are often calculated using a 50% isopleth, which uses 50% of the data 

to estimate a smaller range (Goldingay 2015). A limitation of using this method is that it generates a 

core area regardless of whether the area is biologically relevant or not to the species (Goldingay 2015). 

Plotting the GPS fixes of each B. tropica on Google Earth® showed that all individuals intensively 

used certain areas within their home range for nesting or foraging. I used the 50% UD to separately 
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calculate the core foraging areas (fixes between 7 pm and 3am) and nesting areas (fixes between 7 am 

and 6 pm). This was done for all data and a subset of the first 15 days. 

 

4.3.2.4 Comparing home range and core areas 

Using separate generalised least squares (GLS) models, with post hoc tests, I examined 1) home range 

size for 95% and 99% UD, 2) core foraging area, and 3) core nesting area, in response to site, season 

and gender (nested within site). Separate analyses were conducted for males and females, with data 

pooled across sites. Cage trapping sessions were separated into wet and dry seasons. 

 

The home ranges of males (using 15 days of data) were compared between sites using a one-way 

ANOVA with Tukey honest significance difference (HSD) post hoc tests, whilst a Kruskal-Wallis test 

was undertaken to compare female home ranges between sites (using 8 days of data). One-way 

ANOVAs were used to compare the core home ranges of females between sites with the core areas of 

males. The core areas of males were compared between sites using a Kruskal-Wallis test (using 15 

days of data). I also calculated the proportion of the home range that was occupied by core nesting and 

foraging areas. The proportion was then separately compared between sites and seasons using 

ANOVAs and Kruskal-Wallis. Separate analyses were conducted for nesting and foraging areas.  

 

Analysis of covariance (ANCOVA) assessed whether the number of nesting areas (for the first 15 

days) was influenced by site, season, home range or core foraging area. Separate analyses were 

conducted using 95% and 99% home ranges and for the core foraging area. To determine the number 

of nesting areas each B. tropica used, nesting fixes (7 am to 6 pm) were plotted (for all and the first 15 

days of data). Nesting areas for each B. tropica were then visually counted, with a nesting area being a 

discrete cluster of points. 

 

4.3.2.5 Influence of population density on home range and core areas 

Linear regressions were performed to assess the relationship between population density and 95% and 

99% home range and core areas (Sanchez & Hudgens 2015). Separate regressions were undertaken for 

males and females, with data from all sites combined. Population density estimates for each trapping 

session were sourced from Chapter 3. Population estimates were converted to number of B. tropica per 

hectare, so that home range area (ha) and population density were in the same units. 

 

4.3.2.6 Calculating overlap of home ranges and core areas 

I plotted the overlap of 95% and 99% home range and core foraging and nesting areas of B. tropica at 

each site, with plots constructed using kernel overlap in RStudio. From each plot, I visually assessed 

the maximum and minimum number of collared B. tropica that had overlapping home ranges and core 

areas. Overlap was calculated individually for each collared B. tropica, with overlap defined as the 
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proportion of a B. tropica’s home range that was shared by at least one other collared individual 

(Fieberg & Kochanny 2005). Overlap was calculated based on all days of GPS data (rather than only 

15 days) and the results were descriptively analysed. I aimed to determine the maximum overlap 

between individuals and, since sites were not being compared, I used all days of data. 

 

I calculated the proportion that the 95% home range of each collared B. tropica was overlapped by 

other collared B. tropica. Data were pooled by gender at each site and classified into eight categories. 

The categories ‘male-male’, ‘male-female’, ‘male-total’ and ‘male-unoccupied’ signify the amount 

that the home ranges of males were overlapped by other males, females, any gender (total overlap) and 

unoccupied respectively. The same four categories were computed but for females (‘female-male’, 

‘female-female’, ‘female-total’ and ‘female-unoccupied’). 

 

Analyses used package adehabitatHR in RStudio (RStudio Team 2015), function kernel overlap (grid 

size 200), method HR, which calculates the proportion of the home range of one animal that is covered 

by another (Calenge 2015). It is noted that the use of kernel overlap assumes that the data points are 

independent (Kie 2013), which is not the case for my data. However, the proportion of overlap 

between home ranges could not be statistically computed using Brownian Bridge Movement Models. 

Kernel density overlap has been successfully used to estimate the overlap in home range in other 

studies where data were also non-independent (Sugishita et al. 2015; Warning & Benedict 2015). 

 

4.3.2.7 Analysing movement patterns of B. tropica 

Movement trajectories whilst foraging (7 pm to 3 am), including distance and turning angles, were 

calculated using package adehabitatLT (Calenge 2011) in RStudio (RStudio Team 2015). GPS fixes 

were programmed to record 10 minutes apart but the time between consecutive fixes actually varied 

between 10 and 11 minutes. Removing outliers also resulted in some fixes being non-consecutive. To 

create a regular trajectory whereby all fixes were constant (10 minutes apart), I followed the procedure 

outlined in Calenge (2011). The resulting output included distance travelled within the 10 minutes and 

relative turn angle (definition below in ‘Turning angle’ section). 

 

4.3.2.7.1 Distance and speed B. tropica travelled 

The distance and speed B. tropica travelled were calculated for each individual. The calculated 

distances are the minimum because a straight line is assumed between each GPS fix, which is in 

general unlikely to be the case. Nevertheless, by applying a standard method to all the data, 

comparisons can be made between the relative speeds and distances travelled by the collared bettongs. 

I compared the mean speed male and female B. tropica travelled during each hour between 7 pm and 3 

am (7-8 pm, 8-9 pm, etc.), with data from all nights pooled. I also compared the average speed per 
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hour B. tropica travelled at each site. Analyses were undertaken using ANOVAs and Kruskal-Wallis 

tests. 

 

4.3.2.7.2 Slow, medium and rapid movements 

A visual assessment of GPS fixes on Google Earth® determined that B. tropica tended to have three 

distinctive movements patterns based on speed of travel; travelling at a slow (<3 m/min), medium (3-

8m/min) and rapid (>8m/min) pace. The percentage of time that males and females travelled at each 

speed was compared using one-way ANOVAs with Tukey HSD post hoc tests and Kruskal-Wallis 

with Dunn’s post hoc test (adjusted with Bonferroni correction). I also calculated the percentage of 

time that males and females travelled at each pace at each site. The percentage was calculated as the 

number of fixes at each speed, divided by the total fixes. Trajectory plots of nightly movement 

patterns of B. tropica were created using adehabitatLT (Calenge 2011) in RStudio (RStudio Team 

2015) to demonstrate movement patterns. 

 

4.3.2.7.3 Turning angle 

Movement patterns were investigated by calculating the relative turning angle between three 

consecutive GPS locations. Relative turning angle is the change in direction between fixes (Calenge 

2011) and is referred to as ‘turning angle’ hereafter. 

 

The turning angle of B. tropica was calculated for each speed category and presented as rose 

diagrams, which were constructed using the program GeoRose (Yong Technology Inc 2015). Separate 

plots were constructed for males and females at each site. The turning angle represents the direction 

relative to the previous direction that the bettong was travelling. Turning angle was classified in 

increments of 15º, with 0° representing a continuation in the same direction (the three points are in a 

straight line) and 180° representing a complete reversal in direction. Turning angles of less and greater 

than 180º indicate bettongs deviated to the right and left respectively. For example, 15° represented a 

divergence of 15° to the right, whilst 345° was a divergence of 15° to the left. 

 

4.4 Results 

Overall, collars on 24 males and 16 females recorded data (Davies Creek = 8 males, 3 females; Emu 

Creek = 9 males, 4 females; Tinaroo Creek = 7 males, 10 females). In total, 30 collars recorded data 

for ≥15 days. Of the 51 collars deployed, 41 (80%) recorded GPS data for between 3 and 41 days (x̅ = 

25.43 ± 1.65 days and nights, mean ± SE). The 41 collars were deployed on 40 individual B. tropica, 

as one female was collared twice due to it being mistakenly microchipped and collared twice. Nine 

individuals did not provide sufficient data for analysis due to battery or programming failure (n = 5) or 

loss of collars (two fell off within a day and two could not be recovered. Appendix Table J.1, J.2 and 

J.3 provides information regarding the deployment and retrieval of collars from each individual. In 
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total, 5,760 targeted cage trap nights were undertaken to attach and remove collars. The number of 

fixes removed as outliers was 6.36% (8,006/125,917 fixes). 

 

4.4.1 Home range and core areas 

4.4.1.1 Home range and core foraging and nesting areas (all data) 

For simplicity, only the 99% UD home ranges will be reported in the text. Appendix H contains the 

results for the 95% UD home ranges. In the following sections, unless specified, home ranges were 

calculated using all valid GPS locations for each individual whose collar recorded >3 days of GPS 

data. 

 

Mean home range size across all sites was 20.90  1.55 ha (99% UD). Home ranges of males were 

almost twice the size of female home ranges (Table 4.1). Core foraging (5.53  0.42 ha, 50% UD) and 

nesting areas (0.67  0.10 ha, 50% UD) comprised 26.45% and 3.21% of the mean home range 

respectively, with males having substantially larger core foraging areas than females (Table 4.1). 

Home ranges and core foraging and nesting areas were 14.23%, 24.92% and 16.22% larger during the 

dry season than the wet season respectively (Table 4.1). Appendix Tables K.1, K.2 and K.3 details the 

home range size and core foraging and nesting areas of each B. tropica at Davies Creek, Emu Creek 

and Tinaroo Creek. 

 

Table 4.1. Gender and seasonal differences in the home ranges (99% UD) and core foraging and nest 

areas (50% UD) of Bettongia tropica, using all valid GPS fixes for each animal. Values are mean and 

standard errors. 

 Home range (ha) Core foraging area (ha) Core nesting area (ha) 

Males 25.76 ± 1.56 6.77  0.52 0.63  0.12 

Females 13.69  2.03 3.67  0.36 0.73  0.18 

Dry season 21.78  2.00 6.02  0.58 0.62  0.12 

Wet season 18.67  2.34 4.52  0.43 0.74  0.18 

 

4.4.1.2 Home range area (standardised by days) 

Home range sizes of females were similar between sites (Kruskal-Wallis (KW) test, 2 = 2.2833, df = 

2, p-value = 0.3193 (eight days); Table 4.2), as were male home ranges (F2,11 = 0.21, p = 0.813 (15 

days); Table 4.2). Males had substantially larger home ranges than females (F3,22 = 6.71, p	=	0.0021 

(15 days); Table 4.2). At Davies Creek and Tinaroo Creek, the home ranges of males were over twice 

the size of female home ranges, however ranges were similar at Emu Creek (Table 4.2). Home ranges 

during the dry season were around one-third larger than home ranges recorded during the wet season 

(F1,22 = 8.74, p = 0.0073; Table 4.2) when data were combined from males and females. 
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Table 4.2. Average size of home range and core nesting and foraging areas after 15 days of GPS 

tracking male Bettongia tropica and after 15 and 8 days of tracking females. Areas were estimated at 

Davies Creek, Emu Creek and Tinaroo Creek and during the wet and dry seasons. Estimates include 

standard errors. 

 Core (50%) UD 

nesting area (ha) 

Core (50%) UD 

foraging area (ha) 

Home range  

95% UD (ha) 

Home Range  

99% UD (ha) 

All males 1.35  0.25 6.66  0.81 13.72  2.35 22.15  1.54 

All females 0.48  0.09 

 

2.30  0.45 

 

7.70  1.61 (15 days) 

5.12  2.08 (8 days) 

11.35  1.77 (15 days) 

8.66  2.71 (8 days) 

Davies Creek males 1.39 ± 0.42 7.61 ± 1.98 13.49 ± 3.27 22.95 ± 3.67 

Davies Creek 

females 

0.60 

 

1.06 

 

5.26 (15 days) 

5.12  2.08 (8 days) 

7.03 (15 days) 

8.66  2.71 (8 days) 

Emu Creek males 1.38 ± 0.53 5.12 ± 0.83 12.41 ± 2.28 20.78 ± 2.39 

Emu Creek females 0.44 ± 0.19 

 

3.18 ± 0.86 

 

10.57 ± 1.09 (15 days) 

7.74  2.33 (8 days) 

18.31 ± 1.87 (15 days) 

12.45  2.33 (8 days) 

Tinaroo Creek males 1.28 ± 0.36 7.52 ± 1.32 15.25 ± 1.51 22.94 ± 2.21 

Tinaroo Creek 

females 

0.49 ± 0.13 

 

2.06 ± 0.56 

 

7.28 ± 2.13 (15 days) 

6.48  1.62 (8 days) 

12.18 ± 3.43 (15 days) 

10.48  2.62 (8 days) 

Dry season (all 

individuals) 1.24  0.26 6.28  0.90 13.54  1.42 20.92  1.88 

Wet season (all 

individuals) 0.69  0.16 3.03  0.51 6.28  0.90 13.68  1.86 

 

4.4.1.3 Core foraging areas after 15 days 

Core foraging areas averaged 5.16 ± 0.67 ha (mean ± SE), with males having significantly larger core 

foraging areas than females (F3,22 = 4.29, p = 0.0158; Table 4.2). Core foraging areas of males were 

similar between sites (KW test, 2 = 0.711, df = 2, p = 0.701), as were those of females (F2,7 = 1.06, p 

= 0.396) and both genders combined (F2,22 = 1.33, p = 0.28; Table 4.2). 

 

Across all sites, the core area comprised 28.44% of B. tropica home range area, with the proportion 

being similar between sites (F1,23 = 1.88, p = 0.175; Davies Creek: 28.88  3.52%; Emu Creek: 22.09 

 2.02%; Tinaroo Creek: 27.04  2.54%). Bettongia tropica used larger core foraging areas during the 

dry season (6.28  0.90 ha) compared to the wet season (3.03  0.51 ha) (F1,22 = 8.19, p<0.001), but in 

each season core foraging areas comprised a similar proportion of the home range (dry season: 27.60  

2.03%; wet season: 22.32  2.02%; F1,23 = 2.86, p = 0.104). 
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4.4.1.4 Core nesting areas after 15 days 

Core nesting areas were similar between males and females (F3,22 = 1.22, p = 0.33), between sites (F2,22 

= 0.38, p = 0.687) and between seasons (F1,22 = 1.81, p = 0.192; Table 4.2). On average, core areas 

comprised only 5.70% of B. tropica home ranges, with a similar proportion during both seasons (dry 

season: 5.68  0.09%; wet season: 5.18  0.78%; KW test, 2 = 2.43, df = 1, p = 0.119). There was no 

difference in the proportion of area covered between sites (F2.26 = 0.625, p = 0.543; Davies Creek: 6.56 

 1.42%; Emu Creek: 4.63  1.32%; Tinaroo Creek: 5.63  0.79%). 

 

4.4.2 Number of nesting areas (all days and 15 days of data) 

When including all days of data, B. tropica utilised on average six nesting areas (5.73  0.35) (mean ± 

SE) during both the wet (5.53  0.40) and dry seasons (5.85  0.50). From the first 15 days of data, B. 

tropica used a mean of four (3.96  0.11) nesting areas, with the number of nesting areas being similar 

across sites (F2,25 = 0.00, p = 1.00) and seasons (F1,25 = 0.00, p = 1.00). There was no interaction 

between the number of nesting areas and season (F2,25 = 0.029, p = 0.971), core foraging area (F1,25 = 

0.036, p = 0.851), or home range area (F1,25 = 0.447, p = 0.510). 

 

A day-by-day visual assessment of the GPS fixes on Google Earth® showed there were multiple nests 

within a nesting area, with multiple nests observed to be only a few metres apart in the field (pers. 

obs.). There was no apparent trend in the number of days B. tropica used each nesting area. Nests 

were often used for a few consecutive days and were often returned to later even when not used for 

multiple days. The number of nests within each nesting area could not be accurately determined due to 

the small errors associated with the GPS fixes. 

 

4.4.3 Influence of population density on home range and core areas 

There was no relationship between population density and home range sizes and core foraging and 

nesting areas of males or females (Table 4.3). 

 

Table 4.3. Results of linear regression assessing the relationship between population density, and the 

home range and core foraging and nesting areas of male and female Bettongia tropica. 

Gender Area t value p-value (<0.05 being important) R2 

Male Home range 99% UD 0.672 0.51 0.0259 

Home range 95% UD 0.106 0.246 0.0784 

Core foraging area 0.976 0.343 0.0530 

Core nesting area 0.269 0.791 0.00425 

Female Home range 99% UD -1.057 0.32 0.123 

Home range 95% UD -1.093 0.36 0.13 

Core foraging area 0.582 0.58 0.0406 

Core nesting area -0.034 0.97 0.00014 
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4.4.4 Overlap of home ranges and core areas (all days of data) 

On average, there was high (≈ 73.45  %) overlap between B. tropica home ranges. Between 77% and 

96% (x̅ = 87.55  4.56%) of female and 57% to 79% (x̅ = 65 86  5.37%) of male home ranges were 

occupied by at least one other collared individual (Table 4.4).  

 

More B. tropica were collared at Tinaroo Creek (n = 17) and thus the results from Tinaroo Creek are 

more likely to be accurate in terms of overlap than at the other sites. At Tinaroo Creek, around 80% of 

male and 90% of female home ranges were overlapped by another collared B. tropica. Over 79% of 

female home ranges were overlapped by at least one collared male (female-male overlap), which 

equated to less than 50% male-female overlap (Table 4.4). 

 

Table 4.4. Average percentage of overlap between 99% UD home ranges of collared Bettongia 

tropica at Davies Creek, Emu Creek or Tinaroo Creek. ‘Total’ indicates that the home ranges of both 

collared male and female bettongs overlapped with that of another collared individual. ‘M’ and ‘F’ 

represents the number of males and females collared within each site. Standard errors are shown 

Site Male-

Male 

Male-

Female 

Male-

Total 

Male-

Nil 

Female-

Male 

Female-

Female 

Female-

Total 

Female- 

Nil 

Davies Creek 

(M = 8, F = 3) 

52.97 ± 

10.01 

18.40 ± 

3.98 

57.19 ±  

8.07 

42.81 ± 

8.07 

96.01 ± 

2.62 

0.00 96.07 ±  

2.62 

3.93 ± 

2.62 

Emu Creek 

(M = 9, F = 4) 

49.86 ± 

7.79 

29.75 ± 

5.08 

61.67 ± 

9.06 

38.33 ± 

9.06 

77.42 ± 

14.67 

7.25 ± 

0.00 

77.44 ± 

12.76 

22.56 ± 

21.36 

Tinaroo Creek 

(M = 7, F = 10) 

69.21 ± 

12.97 

44.60 ± 

3.58 

79.76 ± 

9.80 

20.24 ± 

9.80 

71.46 ± 

11.36 

62.98 ± 

10.48 

88.15 ± 

6.33 

11.85 ± 

6.33 

Note: Male-female denotes overlap of male home ranges by females, whilst female-male denotes the overlap of 

female home ranges by males. 

 

At all sites, home ranges of multiple collared B. tropica partially overlapped. Some males completely 

overlapped the home range of one female and partially overlapped with other females (Figure 4.1, 4.2 

and 4.3). The home range of each individual overlapped (either partially or completely) with up to 

seven others (Table 4.5). 

 

Across all sites, up to four collared bettongs had partially overlapping core foraging areas (Table 4.5). 

Most individuals maintained separate or only partially shared foraging areas, although a few B. tropica 

had largely overlapping areas (Figure 4.1, 4.2 and 4.3). Most collared B. tropica had separate core 

nesting areas (Figure 4.1, 4.2 and 4.3). For the few B. tropica that did overlap, overlap tended to occur 

at the periphery of the area (Figure 4.1, 4.2 and 4.3).  
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Table 4.5. The minimum and maximum number of collared Bettongia tropica that occurred within 

another collared individual’s home range (99% UD and 95% UD) and core foraging and nesting areas 

at Davies Creek, Emu Creek and Tinaroo Creek. 

 Bettongs within 

99% UD home 

ranges 

Bettongs within 

95% UD home 

ranges 

Bettongs within core 

foraging areas 

Bettongs within 

core nesting areas 

Davies Creek 2 – 6 1 – 5 0 – 3 0 – 1 

Emu Creek 1 – 5 0 – 4 0 – 3 0 – 1 

Tinaroo Creek 0 – 7 0 – 5 0 – 4 0 – 1 

 

 

                
 

 

                 

Figure 4.1. Overlap of Bettongia tropica (a) 99% and (b) 95% home ranges, and (c) core foraging and 

(d) nesting areas at Davies Creek. The microchip numbers of collared B. tropica are shown in the 

legend. 
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Figure 4.2. Overlap of Bettongia tropica (a) 99% and (b) 95% home ranges, and (c) core foraging and (d) 

nesting areas at Emu Creek. The microchip numbers of collared B. tropica are shown in the legend. 

 
 

             

             

Figure 4.3. Overlap of Bettongia tropica (a) 99% and (b) 95% home ranges, and (c) core foraging and (d) 

nesting areas at Tinaroo Creek. The microchip numbers of collared B. tropica are shown in the legend. 
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4.4.5 Movement patterns 

4.4.5.1 Distance and speed B. tropica travelled 

Across the whole night, males travelled at similar speeds at each site, travelling around 190 ± 16.3 

m/hr (KW test, 2 = 5.47, df = 2, p = 0.0648). The mean distance male B. tropica travelled at Davies 

Creek was 1,840 ± 167 m/night, 1,873 ± 166 m/night at Emu Creek and 1,938 ± 154 m/night at Tinaroo 

Creek (Figure 4.4a). 

 

Throughout the night, females at Tinaroo Creek travelled significantly slower (109 ± 7.6 m/hr) (KW 

test, 2 = 38.46, df = 2, p<0.001) and shorter distances (x̄ = 1,176 ± 76.7 m/night) than females at 

Davies Creek (136 ± 15.5 m/hr, x̄ = 1,344 ± 155 m/night) (p<0.01) and at Emu Creek (162 ± 23.0 m/hr, 

x̄ = 1,659 ± 230 m/night) (p<0.001) (Figure 4.4b). Interestingly, at Tinaroo Creek females appeared to 

return to their nest around 1am, rather than 3 am. This is evident by the movement rate between 1 and 

2 am and 2 and 3 am being similar to the rate between 3 and 4 am when individuals were assumed to 

be nesting (Figure 4.5b). 

 

 

 

Figure 4.4. Mean speed travelled by (a) male and (b) female Bettongia tropica each hour between 7 pm and 3 

am at Davies Creek (blue), Emu Creek (red) and Tinaroo Creek (purple). The movement rate recorded when B. 

tropica were nesting (and stationary) is caused by variations in the accuracy of GPS fixes. 
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Across all sites, males travelled 199.7 m/hr and 1,884 m/night. This was significantly (24 m/hr to 90 

m/hr) faster (KW test, 2 = 1110.3, df = 1, p<0.001) and 493 m/night further than females (Figure 4.5). 

Females travelled on average 126.8 m/hr and 1,391 m/night. Males travelled faster (235 m/hr) in the 

first hour of foraging (7-8pm) compared to any other hourly time period (KW test, 2 = 873.41, df = 7, 

p<0.001; Figure 4.5). In contrast, female B. tropica travelled at a similar speed throughout the night 

(KW test, 2 = 4.69, df = 7, p = 0.0957; Figure 4.5). Seasonally, both males and females travelled 

significantly further (roughly 300 m/night) during dry seasons (males: 2,030 m/night, females: 1,544 

m/night) than during wet seasons (males: 1,704 m/night, females: 1,227 m/night) (males: KW test, 2 

= 4.98, df = 1, p = 0.026; females: KW test, 2 = 3.93, df = 1, p = 0.047). 

 

 

Figure 4.5. Mean speed travelled by male (blue) and female (green) Bettongia tropica each hour 

between 7 pm and 3 am, with data pooled for all study sites (Davies Creek, Emu Creek and Tinaroo 

Creek). Standard errors are shown. The movement rate recorded when B. tropica were nesting (and 

stationary) is caused by variations in the accuracy of GPS fixes. 

 

4.4.5.2 Slow, medium and rapid movements 

Across all sites, both males and females spent most (>60%) of the time travelling slowly, with around 

20% to 30% of their time travelling at a medium pace and minimum time (<10%) travelling rapidly 

(Table 4.6). Males travelled at a medium and rapid pace significantly more than females (Figure 4.5; 

medium: F1,39 = 20.77, p<0.001; rapid: KW test, 2 = 22.69, df = 1, p<0.001). Females spent a greater 

proportion of time travelling at a slow pace compared to males (Table 4.6; slow: F1,39 = 28.81, 

p<0.001). 
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Table 4.6. Percentage of time male and female Bettongia tropica spent travelling at a slow (<3 

m/min), medium (3-8 m/min) and rapid (>8 m/m) pace across all sites and at Davies Creek (DC), Emu 

Creek (EC) and Tinaroo Creek (TC).  

 All B. 

tropica 

Males Females Males at 

DC 

Males at 

EC  

Males at 

TC 

Females 

at DC 

Females 

at EC 

Females 

at TC 

< 3m/min 68 62 77 60 66 62 75 64 82 

3-8 m/min 26 29 20 31 26 30 22 30 17 

> 8 m/min 6 9 3 9 8 8 3 6 1 

 

4.4.5.3 Turning angle 

When travelling slowly, both male and female bettongs used each 15º turning angle increment 

relatively evenly (Figure 4.6). This indicates B. tropica undertake relatively random movements when 

travelling slowly. There was a slight tendency for bettongs to reverse their direction of travel (with 

angles around 180º preferred), especially for females (Figure 4.6). At a medium pace, males tended to 

continue travelling straight or with a low turning angle (turning up to 30º to the left or right) (Figure 

4.6). In contrast, females tended to reverse their direction of travel (turned 180º) (Figure 4.6). When 

travelling quickly, males tended to maintain a similar direction of travel, with females generally either 

continuing straight ahead or reversing their direction (Figure 4.6).  
 

 
 

                

             

Figure 4.6. Turning angle of male and female Bettongia tropica, when travelling at (a) slow (<3 m/min), 

(b) medium (3-8 m/min) and (c) rapid (>8 m/min) pace. The frequency for each radius (rings within the 

rose diagram) is shown, whilst n indicates the total number of fixes recorded for each speed category. 
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Analysis of B. tropica movement trajectories from one night showed bettongs travelled slowly and 

moved back and forth (i.e. high angle of deviation) within a small area. These are considered to be 

foraging movements (Figure 4.7). Bettongia tropica undertook medium pace movements when 

travelling to a foraging area to and from their nest and between nearby foraging patches (Figure 4.7). 

When moving rapidly, B. tropica usually travelled from their nest to a foraging area or, less 

commonly, between two foraging areas that were far apart (Figure 4.7). 

 

        

Figure 4.7. Movement patterns of two different Bettongia tropica travelling at slow, medium and 

rapid paces throughout a night (7 pm to 3 am) during the February 2016 trapping sessions. Slow 

movements patterns with fixes close together are thought to indicate foraging and are circled in pink. 

Medium and rapid movements are highlighted in green and yellow respectively. The blue triangle 

represents the starting point of travel (after B. tropica emerge from their nest), whilst the red square 

indicates the nesting area when B. tropica finish foraging for the night. The numbers along the x- and 

y-axes are spatial co-ordinates for plotting the GPS fixes. 

 
4.5 Discussion 

This study is the first to use Global Position System (GPS) technology to track B. tropica and to assess 

their home range and movement ecology across the three main sub-populations within the Lamb 

Range. This study provides baseline and detailed information on the movement patterns of B. tropica. 

 

Home range estimates from this study are around a third of the size of the previous estimate of 59 ha 

obtained using radio-telemetry collars (Vernes & Pope 2001). This difference is likely due to Vernes 

and Pope (2001) radio-tracking B. tropica over 3 to 17 months, with their data therefore accounting 

for seasonality. Tracking animals for longer time periods generally increases home range estimates 

(Conner et al. 1999). Seasonal changes in habitat use also have an important influence on home range 

size (Girard et al. 2002). For example, Conner et al. (1999) determined that as the duration of 

monitoring increased, the annual home range size of bobcats (Lynx rufus) increased, whilst the home 
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range size of females decreased from the previous year. My home range estimates are seasonal 

estimates only and likely underestimate the home range size an individual would require for an entire 

year. Additionally, Vernes and Pope (2001) determined that nest area of B. tropica increased with 

each new fix until an asymptote was reached. It is likely that my home range estimates would have 

been larger if more fixes were recorded. 

 

4.5.1 Home range area 

Bettongia tropica had similar home ranges across sites. This was in contrast to expectations, as I had 

expected that B. tropica at Emu Creek would have larger home ranges due to Emu Creek being on the 

drier, western margin of B. tropica’s distribution (Bateman et al. 2011) and having the driest habitat of 

the three sites (Chapter 3; Vernes & Pope 2006). The diversity and/or abundance of truffles are 

typically lower and more affected by seasonality within drier habitats (Abell et al. 2006; Danks et al. 

2013). Similar home range size of B. tropica and similar body condition between sites (Chapter 3) 

suggests the sites had equally productive habitats, including similar food and nesting resources, for the 

duration of my study. This is also reflected in similar population density between the three sites 

(Chapter 3). 

 

It is possible that habitat productivity, in terms of sufficient food resources and safe nesting sites for 

raising young, were the drivers of female home range size. The use of space by females is usually 

focussed on maximising offspring survival (Bond & Wolff 1999) and the high cost of reproduction 

often results in females primarily competing with other females for food and space (Bond & Wolff 

1999). The distribution of resources is thus an important factor influencing female home range size 

(Maher & Burger 2011; Schoepf et al. 2015). Finlayson and Moseby (2004) studied the home range of 

female burrowing bettongs (Bettongia lesueur) within two enclosures in the Arid Recovery Reserve. 

The researchers found that in areas with more food, bettongs had slightly small home ranges and 

higher reproductive rates (Finlayson and Moseby 2004). Fisher and Owens (2000) reviewed the home 

range size and social organisation in 28 species of Australian or Papua New Guinean macropod 

marsupials, including bettongs, musky rat-kangaroos, potoroos, kangaroos, wallabies, wallaroos, tree 

kangaroos, pademelons and hare-wallabies. Habitat productivity had the greatest influence on 

marsupial home range size and females had smaller home ranges in productive habitats compared to 

less productive habitats (Fisher and Owens 2000).  

 

Males had larger home ranges than females, despite both genders having similar body condition 

(Chapter 3). For mammal species with polygynous mating systems, such as B. tropica (Pope et al. 

2012), the size or location of male home ranges is often influenced by access to mates (Loe et al. 

2009) and female movements, as well as food resources (Bond & Wolff 1999; Hanski et al. 2000). It is 

likely that males required larger home ranges as they searched for and defended access to receptive 
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females, with these behaviours also increasing their energy expenditure. Similarly, Fisher and Owens 

(2000) found that in high rainfall areas where habitats are productive, there is a large sex difference in 

the home range size of macropod marsupials. Males competed with each other for females by 

searching widely and in productive habitats increased their home range size to overlap with more 

females (Fisher and Owens 2000). In contrast, in less productive habitats, males were unable to 

increase their already large home range and females also required larger home ranges (Fisher and 

Owens 2000). Resultantly, in less productive habitats, males and females had similar sized home 

ranges (Fisher and Owens 2000). Larger home ranges of male B. tropica suggests that the Lamb 

Range supports highly productive habitat for B. tropica.  

 

Bettongia tropica that were collared during the wet season had smaller home ranges than those 

collared during the dry season. Higher rainfall increases the abundance of highly nutritious truffles 

(Abell et al. 2006) reducing the need for individuals to travel long distances to access food. This 

would allow for smaller home ranges at that time. Similarly, Cook (2010) radio-tracked the 

movements of northern quolls (Dasyurus hallucatus) in Mitchell Plateau on the Kimberly (Australia) 

during the wet and dry seasons and also determined that home ranges were smaller during the wet 

season when there was a higher abundance of food resources (invertebrates). In contrast, Taylor 

(1993b) radio-tracked Tasmania bettongs (Bettongia gaimardi) for three weeks in August and 

November 1986 and February and May 1987 and determined that there was no major shift in the size 

or location of individuals’ home ranges between seasons.  

 

4.5.2 Core foraging areas 

Bettongia tropica had relatively large core foraging areas (≈ 26% of the home range). Core areas often 

contain a high density of resources (Asensio et al. 2012; Feldhamer et al. 2015). The presence of core 

areas indicates that resources used by B. tropica occur within higher density patches in parts of the 

landscape. For B. tropica, males had larger core foraging areas than females, likely reflecting their 

larger home ranges and higher nutritional requirements. In contrast, Vernes and Pope (2001) 

concluded that B. tropica at Davies Creek did not have core areas. The difference between results is 

likely due to difference in analysis methods and my study having more fixes at a fine-scale, which 

enables intensely used areas to be determined.  

 

Core foraging areas were substantially smaller (around half the area) during the wet season than the 

dry season, corresponding with smaller home ranges in the wet season. Interestingly, the core foraging 

area comprised a similar proportion of the home range during both wet and dry seasons (20 to 30%). 

This suggests that there may be a relationship between the size of home ranges and foraging areas, 

with the habitat being sufficiently productive that B. tropica are supported by 20 to 30% of their range 

for most, but not all, of the time.  
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The core foraging areas of B. tropica are relatively large for an Australian marsupial. For example, the 

core foraging areas of brush-tailed rock-wallabies (Petrogale penicillata) (≈ 5 to 10 kg (Eldridge & 

Close 1998)) were only 2.5 ha ± 0.24 (mean ± S.E) and comprised 9.62% of their 26 ha ±1.69 (mean ± 

S.E) home range (Molyneux et al. 2010). This indicates that the resources that B. tropica rely upon are 

sparsely distributed, even when at higher density within core areas, compared to resources used by 

other mammals. This accords with the recognised sparse distribution of truffles (Claridge 2002; 

O’Malley 2006), one of the major food resources of B. tropica. 

 

4.5.3 Core nesting areas 

Nesting areas were similar across all sites and between genders. Field observations identified multiple 

nests within a nesting area. Constructing multiple nests within a relatively small area may reduce 

predation risk when B. tropica are nesting. Constructing more nests may provide greater camouflage 

from predators (Wallis et al. 1989; Vernes & Pope 2001) and using multiple nests may also decrease 

the chance of predators learning the movement patterns of prey species (Ji et al. 2003) and then 

returning to hunt prey within their nest (Weidinger 2010). Predator abundance influences nesting 

behaviours of other species (Sherry et al. 2015), with common brushtail possums (Trichosurus 

vulpecula) usually favouring one den tree but having multiple dens to minimise predation risk, assist 

in territorial defence and/or decrease ectoparasite infestations (Statham & Statham 1997; Ji et al. 2003; 

Harper 2005; Carthew et al. 2015).  

 

My result contrasts with Pope et al. (2012), who radio-tracked B. tropica and found that male nesting 

areas were double the size of females. Pope et al (2012) calculated nesting area based on triangulating 

radio-tracking signals. The difference in the size of nesting areas between studies is most likely due to 

the difference in methodologies and the spatial scale at which data were recorded.   

 

4.5.4 Number of nesting areas 

Bettongia tropica used multiple nesting areas throughout their home range. This result differs from 

previous studies, which found that B. tropica have a central nest range (Seebeck et al. 1989; Pope et 

al. 2012). The difference between studies may be due to the difference in number of fixes used. 

Vernes and Pope (2001) used between 3 and 32 fixes throughout the year to estimate nesting area, 

whereas my study used an average of 1,419 fixes per individual during a season to calculate nesting 

area. The distance between nesting and foraging areas usually depends on food availability (Catry et 

al. 2013), as nesting far from foraging areas is generally inefficient (Kerbiriou et al. 2006). The 

location of B. tropica nests appears to have minimised travel between nesting and foraging areas, with 

these areas tending to be either in the centre or at the two peripheral ends of home ranges (Figures 4.4, 

4.5 and 4.6). For example, Taylor 1993b found that Tasmanian bettongs used different sets of nests in 

different months, despite the home range size and location not shifting substantially between seasons. 
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Other bettong species, including the Tasmanian bettong (Bettongia gaimardi) and rufous bettongs, 

also tend to have a clumped distribution of nesting areas, with nests of Tasmanian bettongs usually, 

but not always, being near the periphery of their range (Mooney & Johnson 1979; Wallis et al. 1989; 

Taylor 1993b).  

 

Both male and female Bettongia tropica used a similar number of nesting areas across all sites and 

during both seasons. This was surprising considering home range size varied between genders and 

seasons and it was expected that an increase in home range size would correspond with an increase in 

the number of nesting areas. It is possible that B. tropica can only maintain a certain number of nests, 

after which the cost of constructing nests is greater than the energy that would be saved by having 

additional nests. Alternatively, there may have been insufficient resources for B. tropica to create 

more nesting areas. However, this seems unlikely given that some individuals had up to 10 nesting 

areas and B. tropica utilise a variety of commonly available materials for nesting (Chapter 5; Vernes 

& Pope 2001). 

	

4.5.5 Influence of population density on home range, core foraging and core nesting areas 

Interestingly, the home ranges and core areas of both males and females were unrelated to population 

density. This is surprising considering an increase in population density usually increases overlap of 

individual home ranges (Schoepf et al. 2015), which then reduces the availability of productive habitat 

and/or resources available per individual (Nummi et al. 2015). Tinaroo Creek had the highest 

population density and a wetter habitat and thus should support more productive habitat and/or food 

resources than other sites (Chapter 3). It was expected that female home ranges at Tinaroo Creek 

would be smaller than at other sites, as individuals would not need to travel as far to access resources, 

whilst male home range size was expected to be larger or smaller depending on their proximity to 

females. For example, both male gray-tailed voles (Microtus canicaudus) and brushtail possums 

(Trichosurus vulpecula) expanded their home range sizes in response to population density to maintain 

contact with females (Bond & Wolff 1999; Ramsey et al. 2002). For B. tropica, competition for 

resources may balance resource density, resulting in a lack of relationship between population density 

and home range size or core areas. Although the habitat at Tinaroo Creek should provide more food 

resources, the higher population density means those resources are likely shared between more 

individuals. This results in home ranges being larger than would be required without the influence of 

competition (if only food resources were considered). In contrast, the drier habitat and fewer food 

resources at Davies Creek and Emu Creek, where population density is lower (Chapter 3), means that 

fewer resources are shared amongst fewer individuals. This results in the home ranges being similar in 

size to the home ranges of B. tropica at Tinaroo Creek. This indicates that overall competition per 

resource may be similar between populations and result in home ranges being similar sizes. Since 

home ranges are similar, this means that core areas are also similar (as the core area is proportional to 
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the home range size). Alternatively, there might have been insufficient variation in population density 

between trapping sessions and sites to detect a relationship between home range size and population 

density. 

 

4.5.6 Overlap 

4.5.6.1 Overlap between home range areas 

As expected, there was large overlap between B. tropica home ranges. Mammals often have 

overlapping home ranges in order to access sufficient food resources (Di Pierro et al. 2008). When 

resources are patchily distributed, it is inefficient for animals to defend access to their entire home 

range (Oldfield et al. 2015; Hinsch & Komdeur 2017). For B. tropica, the sparse distribution of 

resources, especially their main food resources (truffles and cockatoo grasses), means it is likely to be 

more energy efficient for home ranges to overlap. 

 

Home ranges of male B. tropica tended to overlap with multiple females, with some males completely 

overlapping with one female and partially overlapping with other female ranges. Due to their smaller 

size, female home ranges usually only overlapped with small areas of male B. tropica home ranges. 

Male home ranges did not completely overlap with that of another male, suggesting that the location 

of male home ranges is likely influenced by the distribution of females. Females had no consistent 

trend in use of nesting areas meaning male B. tropica need to cover large areas to find females. By 

locating their home range so it overlaps with multiple females, males would increase their chance of 

encountering a female. This suggestion is supported by genetic studies by Pope et al. (2012), which 

found that mating primarily occurred between individuals that had home ranges close to one another. 

Previous studies on other small mammals, including rufous bettongs, found that when females were 

sparsely or uniformly distributed, male home ranges overlapped with female ranges and females were 

shared amongst males (Ostfeld 1990; Frederick & Johnson 1996; Hanski et al. 2000; Kjellander et al. 

2004; Aronsson et al. 2016). Frederick and Johnson (1996) found that male rufous bettongs 

maintained transitory contact with multiple females likely to maximise their mating opportunities. For 

management, it is important to understand the degree of overlap between individuals to ensure the 

habitat is managed to support multiple individuals (Porolak et al. 2014). 

 

Some collared B. tropica did not overlap with any other collared individuals. However, this was most 

likely due to those individuals being collared near the edge of the trapping grid and the majority of 

their home range being outside of the grid. It is probable that these B. tropica overlapped with other 

bettongs outside of the trapping area. Only the overlap of collared B. tropica was analysed. Non-

collared bettongs were cage trapped within the home ranges of collared bettongs and it is likely that 

more B. tropica have overlapping ranges than suggested by my data. 
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4.5.6.2 Overlap between core foraging areas 

At all sites, there was little or no overlap of core foraging areas of most collared B. tropica. This was 

surprising considering the high overlap between home ranges. This suggests B. tropica may be 

territorial in defending foraging areas. Fighting was also occasionally observed on camera trap photos 

(Whitehead, 2017 unpublished data). The energy gained from sole access to the resources must 

outweigh the associated cost of their defence (Frafjord 2016). Similarly, Sharpe and Goldingay (2007) 

concluded that the Australian squirrel glider (Petaurus norfolcensis) had 50% overlap of home ranges 

with gliders from different social groups, but only a 12% overlap of core areas. Alternatively, if 

individuals depleted the resources within their core area, there would be no attraction for others to use 

it. 

4.5.6.3 Overlap between core nesting areas 

Collared B. tropica also tended to have no or minimal overlap between core nesting areas. Defending 

these resources may also have a net benefit. Bettongia tropica may also avoid sharing nesting areas to 

minimise predation risk. Increased prey density can enhance the ability of predators to detect prey, 

which increases predation risk (Ioannou et al. 2009). Christensen and Leftwich (1980) determined that 

brush-tailed bettongs typically had territorial nesting areas, with overlap occasionally occurring 

between males and females. In contrast, Pope et al. (2012) determined that the nesting areas of radio-

tracked B. tropica overlapped, although there was minimal female-female overlap. Mooney and 

Johnson (1979) and Taylor (1993b) also used radio-tracking and determined that the nesting areas of 

multiple female Tasmanian bettongs overlapped, whilst male Tasmanian bettongs had partially 

overlapping nesting areas. Differences in predation pressure between study sites may cause differences 

in nesting behaviours between bettongs.  

 

4.5.7 Movement patterns 

4.5.7.1 Distance and speed B. tropica travelled 

Bettongia tropica travelled substantially faster in the hour following nest emergence. Travelling 

quickly through areas indicates either that the habitat is high risk or of low quality and individuals are 

trying to minimise time within these areas (Calcagno et al. 2014; Mäkeläinen et al. 2016). Individuals 

often undertook fast, relatively linear and direct movements to foraging areas. Similarly, Thompson 

(1982) determined that the desert woodrat (Neotoma lepida lepida) moved rapidly from their den to 

foraging areas and between foraging areas, with few exploratory movements undertaken. 

 

Travelling quickly after nest emergence possibly reduces the chance of predators learning the location 

of nesting areas (Borgo 2008). Whilst radio-tracking B. tropica to their nest, all individuals rapidly 

exited their nests when approached to within 5 to 10 m and travelled quickly away from the nest for at 

least 50 m (pers. obs.). Based on the GPS tracks, these collared B. tropica fled to another known 

nesting area. Only on one occasion did an individual flee to a previously non-tracked nesting area. 
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Fleeing behaviour has also been observed for rufous bettongs, and is thought to be a response to 

predators (Jarman 1991). 

 

Upon emerging from the nest, B. tropica often travelled rapidly and directly to a previously used 

foraging area. In contrast, when returning to the nest, individuals often moved slower, with their last 

foraging area often close to the nesting area. This pattern was evident even when a bettong returned to 

the same nesting area. Similarly, Hanski et al. (2000) found that 49% of nesting areas of Siberian 

flying squirrels (Pteromys volans) were situated near foraging areas, whilst José-Domínguez et al. 

(2015) concluded that 77% of the time, northern pigtailed macaques (Macaca leonina) nested close to 

their last feeding area or the first used the next morning. For B. tropica, this strategy should minimise 

energy spent in travel. It also indicates that individuals might plan their foraging routes so that they 

travel towards a nesting area at the end of the night. Interestingly, in the 20 minutes prior to reaching 

their nest, some B. tropica occasionally travelled faster and relatively directly (linear movements) to 

the nest. This behaviour is thought to assist in avoiding detection by predators at the nest site. 

 

Interestingly, female B. tropica at Tinaroo Creek appeared to return to their nest at around 1 am rather 

than 3 am. Undertaking fewer medium- and rapid-paced movements indicates Tinaroo Creek females 

spent less time travelling between resources. Travelling slower and foraging for a shorter time (until 1 

am) indicates that resources at Tinaroo Creek occur at much higher density than at the other sites. 

Thus B. tropica can spend more time foraging (indicated by slower movements) and can acquire 

sufficient resources within a shorter time period. Similarly, studies on birds show that longer foraging 

trips and greater distances from nest to foraging areas indicate fewer or less preferred resources within 

the habitat (Catry et al. 2013; Heldbjerg et al. 2017). 

 

4.5.7.2 Slow, medium and rapid movements 

Bettongia tropica commonly undertook three different speeds of travel. Both male and female B. 

tropica spent the majority of their time travelling slowly, indicative of foraging. Vernes and Pope 

(2001) previously found that slow, highly angular movements were indicative of B. tropica foraging, 

although it is acknowledged that it might indicate moving through dense vegetation. Medium and 

rapid movements were assumed to indicate travelling between resources, searching for mating 

opportunities or possibly fleeing from predators. Females spent more time (77%) moving slowly, and 

assumed to be foraging, than males (62%). This is likely due to males also spending time searching for 

mating opportunities, a result also found for short-beaked echidnas (Sprent & Nicol 2012). 

 

4.5.7.3 Turning angle 

When travelling slowly, both males and females appeared to move at random, with all angle 

increments being used in similar proportions. Vernes and Haydon (2001) previously used spool-and-
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line tracking and determined B. tropica at Davies Creek undertook area-restricted searching patterns 

(slow, angular movements) when food resources were detected. Area-restricted searching improves 

the efficiency of locating resources, as animals move slower and turn at greater angles to increase their 

use of high-density resources (Vernes & Haydon 2001; de Knegta et al. 2007). My results suggest that 

B. tropica display this movement pattern across all study sites. 

 

When moving at a medium and rapid pace, both male and female B. tropica tended to travel in a linear 

direction (either continuing straight or turning at 180º). This indicates B. tropica might use linear 

features for orientation, and either follow ridges or valleys or maintain a constant elevation along the 

side of a ridge when travelling between resources or nesting and foraging areas (Davies et al. 2013; 

Bracis et al. 2015; Massa et al. 2015). Vernes (2003) found that B. tropica were more frequently cage 

trapped when cages were placed along ridgelines compared with cages placed on mid-slopes or 

gullies. It is likely that B. tropica utilise ridgelines when travelling quickly to or between resources. 

Interestingly, males tended to continue travelling straight (or with minimal deviation), whilst females 

tended to reverse their direction of travel and travel back and forth along a ridgeline within a night. 

This may indicate males who are seeking females continue on a linear search path to find females 

when initially unsuccessful. Based on the movement trajectory plots (Figure 4.7), B. tropica alternated 

between slower (foraging) and faster (travelling) movements throughout the night. Switching between 

movement patterns provides an efficient way for species to forage and cover large distances when 

resources are limited or patchily distributed (Davies et al. 2013; Bracis et al. 2015; Massa et al. 2015). 

 

4.6 Management implications 

Bettongia tropica populations within the Lamb Range are currently managed at a 60 ha scale (R. 

Miller, pers. comm.), based on the previous home range estimate of 59 ha (Vernes & Pope 2001). My 

study determined that B. tropica had a seasonal mean home range size of 20.90  1.55 ha. 

Management actions tend to be undertaken at a seasonal scale (e.g. management burns are conducted 

during one season) and therefore a 20 ha scale is a more appropriate measure for management. It is 

noted that fire management conducted at a 60 ha scale was being applied regularly across the Lamb 

Range since 2005 and the population density of B. tropica remained stable during this time. This 

suggests that management burns of between 20 ha and 60 ha are suitable for B. tropica. During dry 

years when resources are likely to already be scarce, it is recommended that management burns be 

applied at a 20 ha scale to ensure there are sufficient nesting and foraging resources for B. tropica 

post-burn. The fine-scale nesting and foraging requirements of B. tropica are discussed in the 

following chapter. 
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Chapter 5: Fine-scale habitat use by Bettongia tropica 

 

5.1 Abstract 

Context. Information regarding microhabitat selection is crucial for the conservation of endangered 

species, as it enables managers to promote and protect the resources that are important to species.  

Aims. For three sub-populations on the Lamb Range, Queensland, I aimed to determine the 

microhabitats that the northern bettong (Bettongia tropica) selected whilst nesting and foraging. I also 

assessed the nesting materials B. tropica used and the presence of predators and competitors in each 

sub-population. 

Methods. Bettongia tropica were radio-tracked to their nest and the nesting material they used was 

recorded. Vegetation surveys were conducted at 90 nesting and foraging areas of 18 GPS-collared B. 

tropica and compared with the microhabitat at 90 areas not known to be used for nesting or foraging 

(random areas). Additionally, camera trapping was undertaken for 12 nights targeting bettongs and 12 

nights for predators and competitors every two to three months, with 4,320 camera trap nights 

conducted at each site (12,960 in total). 

Key results. Bettongia tropica predominantly constructed nests from grass (Poaceae spp.) or nested 

underneath grass trees (Xanthorrhoea johnsonii). Nesting areas had higher grass cover, more grass 

trees, and were situated on steeper slopes than random areas. In contrast foraging habitats of B. tropica 

had more cockatoo grass (Alloteropsis semialata) (food resource) and diggings (indicating consumed 

food resources) and were situated on steeper slopes than non-foraging areas. At all sites, mammalian 

predators included dingoes/wild dogs (Canis lupus), with a cat also detected at Tinaroo Creek. Feral 

pig competitors (Sus scrofa) occurred throughout the landscape, whilst rufous bettongs (Aepyprymnus 

rufescens) and cattle (Bos taurus) were also present at Emu Creek. There was a ratio of around one 

predator image per 60-70 B. tropica images and an average of one competitor to 92 B. tropica images 

across all three sites. 

Conclusions. Microhabitats selected for nesting appeared influenced by variables that increased 

camouflage from predators, whilst microhabitats chosen for foraging had a higher abundance of food 

resources and offered cover from predators. 

Management implications. Predation risk appeared to influence both nesting and foraging microhabitat 

selection in B. tropica and further research into predation pressures would benefit the conservation of 

this species. The microhabitat variables important for nesting and foraging should guide the focus of 

future conservation management. Bettongia tropica populations require maintenance of high levels of 

grass cover, grass trees and cockatoo grass on steeper slopes. By concentrating in areas with those 

attributes, the efficiency of future bettong surveys can also be improved.  
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5.2 Introduction  

An understanding of where species occur should provide an insight into their habitat requirements 

(Beerens et al. 2015) and other factors that influence habitat use and distribution (Stirnemann et al. 

2015). Biotic factors, such as species interactions, habitat variables and food availability, usually drive 

species occurrence on a local scale, whilst abiotic factors are important on a large scale (Anson & 

Dickman 2012; Anson et al. 2013; Allen et al. 2015). Small mammals are often associated with 

specific broad or fine-scale habitat features (Tulloch & Dickman 2006; Pizzuto et al. 2007) or 

topography (Claridge et al. 1993). Claridge et al. 1993 studied the foraging patterns of the long-nosed 

potoroo (Potorous tridactylus) in mixed-species and regrowth eucalypt forests in southeastern 

Australia by examining the occurrence and abundance of diggings as a measure of foraging effort. 

They found that in multi-aged forests, long-nosed potoroos preferred foraging in midslope-shelter 

aspects and in gullies compared to other habitats, such as midslope-exposed aspects (Claridge et al. 

1993). In southern Brazil, Melo et al. (2013) studied microhabitat selection by six small mammal 

species in deciduous forest and determined that rodents favoured ferns, tree trunks or lianas, whilst 

opossums selected fallen or standing trunks, Piper spp. shrubs and/or lianas. Subtle habitat changes 

may substantially impact upon the population size or survival of a species (Entwistle & Stephenson 

2000). It is thus important that managers know which microhabitats are important for species and 

tailor their management practices to promote them (Entwistle & Stephenson 2000). 

 

Mammals may use different habitats for foraging and nesting (Killeen et al. 2014). Some mammals 

use nests to rest, shelter from harsh environmental conditions, avoid predators and/or raise young 

(Korb 2008; Cudworth & Koprowski 2011; Minias 2014). These species typically nest in natural 

cavities (e.g. logs or tree hollows), under vegetation, within burrows or dens (Lesmeister et al. 2008) 

or construct nests from vegetation (Naughton 2012; Juškaitis et al. 2013). Optimal foraging theory 

(Emlen 1966; MacArthur & Pianka 1966) suggests that animals should select habitats that maximise 

fitness, whilst reducing the costs associated with acquiring resources (Morellet et al. 2013; Favreau 

2014; Stirnemann et al. 2015). These costs can include predation risk, competitive interactions 

(Morellet et al. 2013; Favreau 2014; Stirnemann et al. 2015) and distance required to travel to 

resources (Fanson et al. 2008). Ideally species would nest and forage either within the same area or 

nearby to minimise travel between areas (Chapman et al. 1989). However the different purposes of 

nesting areas (to provide safety whilst resting (Korb 2008; Minias 2014)) and foraging areas (to 

maximise food intake (Pyke et al. 1977)), often results in different habitat requirements for nesting and 

foraging (Lee et al. 2010). 

 

Species interactions can also influence habitat use (Young et al. 2017). Predation is often the main 

factor influencing survival at nesting areas (Ricklefs 1969) and theoretically habitat features at nesting 

areas should be selected to minimise predation risk (Chiavacci et al. 2014). Predation risk is usually a 
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large cost associated with foraging, with habitat selected for foraging being a balance between 

maximising food intake and minimising predation risk (Brown & Kotler 2004; Stone et al. 2017). A 

typical response to predation risk is that individuals will select denser vegetation when predation 

pressure is high and more open vegetation when predation risk is low (Matessi & Bogliani 1999). 

Alternatively, animals may avoid habitats used by predators (Santin 2016). For example, Santin 

(2016) determined that in the Pilbara region in Western Australia, northern quolls (Dasyurus 

hallucatus) avoided habitats favoured by feral cats, including open habitats, spinifex grasslands and 

recently burnt areas. Instead, quolls utilised rocky outcrops, which appeared to act as refugia for the 

species (Santin 2016). Predation can also influence nest design or nesting materials (Beyer & 

Goldingay 2006; Le Roux et al. 2016). Competition between and within species can also affect habitat 

use, with high inter- or intra-specific competition potentially limiting the availability of high-quality 

nesting or foraging areas for non-dominant individuals or species (Young et al. 2017). Determining 

the presence of predator species and the level of competition within habitats is vital to understand the 

extent that predators and competitors influence habitat selection (Luttbeg & Sih 2004). 

 

Interestingly, where species nest may influence where they forage and vice versa (Bjørneraas et al. 

2012). For example, regardless of forage availability, animals may choose open habitats that only 

provide reasonable, rather than ideal forage, due to a preference for well protected resting habitats 

nearby (Bjørneraas et al. 2012). An understanding of both nesting and foraging habitat requirements is 

thus crucial for a comprehensive assessment of habitat use and to allow management that maintains or 

improves habitat quality (Beerens et al. 2015; Stirnemann et al. 2015). Maintaining habitat quality is 

important, as small changes in habitat or microhabitat features can result in substantial changes in 

predation risk, food availability or cover from inclement temperatures (Arthur et al. 2004; Brown & 

Kotler 2004). This may influence fitness and ultimately population abundance (Arthur et al. 2004). 

 

The northern bettong (Bettongia tropica) is an example of a cryptic species with little known about its 

usage of nesting or foraging microhabitat. Bettongia tropica rest during the day in a nest they 

construct in locations designated as nesting areas (Vernes & Pope 2001). Between 1994 and 1996, 

Vernes and Pope (2001) studied the nesting material of B. tropica within one sub-population (Davies 

Creek) and determined that B. tropica constructed dome nests on the ground typically from grass, as 

well as building nests near logs or under grass trees. Microhabitat requirements were also assessed by 

relating cage-trapping capture rates with the habitat variables at each trap location (Vernes 2003). 

Bettongia tropica was trapped more frequently along open ridgelines than within more densely 

vegetated mid-slopes and gullies (Vernes 2003). However, in the Vernes (2003) study, the 

microhabitat surveyed was dependent on the placement of cages. Prior to my study, areas where 

bettongs naturally prefer to forage had not been assessed without the bias of baited traps. Additionally, 

microhabitat requirements for B. tropica were previously assessed at only one sub-population (Vernes 
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2003). Microhabitat requirements may differ between populations (Bjørneraas et al. 2012) and thus, a 

more comprehensive assessment of the microhabitat requirements of B. tropica was necessary. 

 

5.2.1 Aims 

This chapter aimed to determine the materials used for nesting and the microhabitat variables that 

were selected for nesting and foraging by B. tropica across the three main study sites on the Lamb 

Range (Davies Creek, Emu Creek and Tinaroo Creek). It was expected that at nesting areas, B. tropica 

would select locations that provided camouflage to increase protection from potential predators, 

including areas with high grass cover. Bettongia tropica was expected to forage within areas 

containing a higher abundance of food resources, including cockatoo grass. I also aimed to assess 

predator and competitor pressure at each site. 

 

5.3 Methods 

Tracking collars were deployed on B. tropica at the three study sites during cage trapping sessions, as 

detailed in Chapter 3. 

 

5.3.1 Nesting materials 

Most collared B. tropica were radio-tracked to a nest between one and four times during trapping to 

remove collars. Each individual had multiple nesting areas (Chapter 4). By surveying the multiple 

nesting areas, I obtained a clear indication of the habitat requirements for nesting. Bettongia tropica 

would flee when approached whilst radio-tracking, allowing the nest to be detected and the nest shape 

and construction materials to be recorded. Nesting materials were classified into five groups; grass 

trees, grass, logs, rocks and teepee nests constructed from sticks and grass (Plate 5.1). Very 

occasionally a nest was constructed from Allocasuarina branchlets and grass, with this nest type also 

classified as a grass nest (Plate 5.1). A nest was classified as a ‘grass tree’ when B. tropica built a 

grass nest under the ‘skirts’ of the grass tree (Xanthorrhoea johnsonii). Other features of nests were 

noted, including the plant species used for constructing nests and the grass within the nesting area. 

Plant species were identified based on expert knowledge (wildlife rangers) and personal knowledge.  
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Plate 5.1. Nests of B. tropica constructed from (a) and (b) grass, with (b) showing the top view 

outlined in red, (c) grass and Allocasuarina needles, (d) and (e) under the skirts of grass trees, and (f) 

teepee structure. 

 

5.3.2 Habitat requirements at nesting, foraging and random areas 

To determine whether B. tropica selected particular microhabitats for foraging or nesting, habitat 

surveys were conducted at foraging and nesting areas, as well as non-foraging and non-nesting areas 

(henceforth referred to as random areas). The locations of nesting and foraging areas were determined 

by plotting the fine-scale movement patterns (obtained from GPS data) on Google Earth® (Chapter 4). 

Nesting areas were identified as described in Chapter 4 (cluster of fixes between 7am and 6 pm). 

Bettongia tropica foraged between 7 pm and 3 am regardless of time of year (Chapter 4), with a high 

concentration of GPS fixes between these times indicating areas where individuals frequently foraged. 

The centre of each nesting and foraging cluster was selected for microhabitat sampling. 

 

To select random areas, I plotted all GPS fixes and home ranges of collared B. tropica on Google 

Earth® (Chapter 4). I chose random areas (ones without any GPS fixes) based on random numbers 

 

f) 
Teepee nest 

a)  b) 

c)  d) 

 

e) 
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that were generated to correspond with the latitude and longitude of the animal’s home range. Areas 

selected were 25 m x 25 m to account for potential errors in GPS fixes. Although the random areas 

were not used for nesting or foraging by collared B. tropica, non-collared individuals may have used 

them.  

 

Habitat surveys were conducted for three males and three females at each site. Individuals that had the 

most data recorded by their GPS collar were selected. At Davies Creek, only three GPS that were 

deployed on females recorded data (Chapter 4). Surveying the habitats of three individuals of each 

gender at each site provided an equal sample size across gender and sites. For each of the 18 selected 

B. tropica, habitat surveys were undertaken at five foraging, five nesting and five random (non-nesting 

and non-foraging) areas (15 areas per individual). A total of 270 areas were surveyed across the three 

study sites. Females used an average of five nesting areas (Chapter 4) and sampling at five areas (for 

each category) was deemed appropriate to accurately estimate habitat requirements. 

 

At each foraging, nesting and random area, 15 habitat variables were measured. Habitat variables were 

sampled within a 20 m2 area (2.5 m radius from each sampling location). Grass trees (Xanthorrhoea 

johnsonii) were counted and the diameter at breast height (dbh) for all trees ≥10 cm dbh was measured 

to calculate tree basal area (Plate 5.2). At the centre of the 20 m2 area, tree canopy cover was measured 

in each cardinal direction using a densitometer (Paletto & Tosi 2009) (Plate 5.2). Cover for each of the 

four directions was averaged to ascertain overall canopy cover (Paletto & Tosi 2009). Soil volumetric 

water content (soil moisture) was measured at the central location within each 20 m2 area using a 

HydroSense II to an accuracy of ± 3% (Campbell Scientific 2011). Soil resistance (R) was measured to 

15 cm depth at six random points using a soil penetrometer. This depth was chosen as field 

observations indicated bettongs dig to a depth of up to 15 cm for truffles and around 5 cm for the 

shoot base of cockatoo grass (pers. obs.). Soil resistance was calculated using the equation R = 2.439 × 

mean number of blows (simplified from Alameda and Villard (2012)). Tree height (of a tree that was 

flush with the canopy) was calculated using trigonometry, with the angle measured using an 

inclinometer (Plate 5.2) and the distance to the base of the tree measured with a tape. Slope was 

measured as the angle of inclination from two points 10 m apart. 

 

Every cockatoo grass (Alloteropsis semialata) stem (from the shoot base) and bettong digging was 

counted along a 5 m x 1 m transect through the centre of the 20 m2 area (Plate 5.3). Diggings indicated 

consumed food resources. Leaf litter depth and grass height were averaged from 10 randomly sampled 

points along the 5 m transect (Plate 5.2). Three 1 m2 quadrats were randomly placed within the 20 m2 

area and the percent cover of coarse woody debris (≥2.5 cm), leaf litter, rock, grass and bare soil 

estimated and averaged (Plate 5.4). 
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Plate 5.2. Measuring (a) tree diameter, (b) canopy cover using a densitometer, (c) angle of inclination 

to the tree canopy and (d) grass height. Photographs: (a) Peter Whitehead and (b) and (d) Elaine 

Whitehead. 

 

            

Plate 5.3. (a) Cockatoo grass (Alloteropsis semialata) and (b) digging of Bettongia tropica.  

 

           

           

Plate 5.4. Examples of 1 m2 quadrats at (a) and (b) foraging areas and (c) and (d) nesting areas.  

 

a)   b)  c) 

a)  b) 

a)  b) 

c)  d) 

d) 
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5.3.3 Camera trapping 

Camera trapping was conducted at Davies Creek, Emu Creek and Tinaroo Creek, with 30 cameras 

(Recoynx white-flash, heat-and-motion sensor camera traps) deployed at each site. Cameras operated 

between 5 pm and 7 am, with no lag time programmed between animal detection and photographs. 

Each time a camera was triggered, three consecutive photographs were taken a minimum of one 

second apart, with no delay between each set of photographs. 

 

Cameras were deployed for six trapping sessions at each site between September 2014 and March 

2016. Each session commenced several days after the cage trapping session and comprised 12 

consecutive nights targeting B. tropica, with another 12 consecutive nights targeting potential 

mammalian predators (dingoes/dogs (Canis lupus dingo/familiaris) and cats (Felis catus)) and 

competitor species (rufous bettong (Aepyprymnus rufescens), pigs (Sus scrofa) and cattle (Bos 

taurus)). The second 12 nights occurred between 0 and 24 days after the first set. Dingoes/dogs 

(MacKenzie et al. 2002; McDonald et al. 2015) and feral cats are known predators of bettongs 

(Fancourt 2014; Priddel & Wheeler 2004). Rufous bettongs overlap in diet (Vernes 2000; Brook & 

Kutt 2011), cattle compete for grass, as well as alter vegetation cover and compact soil structure 

(Yates et al. 2000; Oldfield & Evans 2016; Wang 2017) and feral pigs potentially consume cockatoo 

grass and truffles, as well as uproot vegetation (Laurance 1997; Laurance & Harrington 1997; 

Crowley et al. 2004). Pigs may also predate juvenile bettongs. However, no study has verified this and 

therefore pigs will only be classified as known competitors.  

 

A pilot study conducted in April 2014 determined that baiting the camera traps doubled trap success 

and increased the clarity of photographs. Camera traps were therefore baited for the main study. Type 

of bait can alter species capture rates (Astúa et al. 2006), so when targeting bettongs, camera traps 

were baited with a 2.5 cm diameter ball of peanut butter, rolled oats, vanilla essence, honey and 

sardines. The ball of bait was placed in a bait container, made from PVC pipe and wire mesh, which 

was attached to a wooden plank (60 cm x 5 cm x 3 cm) and pegged into the ground. The camera trap 

set up is shown in Plate 5.2. At each camera location, three smaller (1 cm diameter) balls were placed 

outside of the bait container and buried to a depth of around 3 cm to 5 cm to provide a food reward for 

attracted individuals. 

 

Cameras targeting predators and competitors had 2 cm pieces of minced beef, tuna and chicken placed 

inside each bait container and three 1 cm pieces of each of these meats were placed under rocks, 

buried or placed in tree branches or in Xanthorrhoea (grass trees) within 2 m of the bait container. 

New bait was used for each camera trapping session. 
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Plate 5.5. Camera trap set up, comprising a camera secured to a tree trunk and facing downwards 

towards a bait container. 

 

Cameras were positioned 1.5 m up a tree trunk. The bait container was positioned 1.5 m from the base 

on the tree and the camera was angled downwards towards the container using pre-cut wooden chocks. 

Cameras were housed in metal security cases and secured to a tree with a python cable and bungee 

cord. When setting up the camera, it was programmed to flash red when the bait board was in the 

centre of the field of view. This assisted in ensuring cameras were directed towards the bait container 

and meant that if an animal approached the bait board, it was likely to be detected. Grass in the camera 

field of view was trimmed to around 5 cm to 10 cm to minimise camera detections due to grass 

movement. 

 

The trapping grid used for camera trapping was similar to that used for cage trapping (Chapter 3), 

except the transect lines for camera trapping were extended by 100 m or 200 m (depending on the 

transect) (Figure 5.1). Cameras were also offset 25 m alternating to the right and the left from the cage 

trapping transects to minimise the chance of theft. The first camera trap was positioned 50 m after the 

first cage trap. At Davies Creek, four cameras were spaced 200 m along the 800 m transect, whilst five 

cameras were placed 200 m apart along the 1 km transects. At Emu Creek and Tinaroo Creek, four 

cameras were placed along the 800 m transects and two along the 400 m transects. On the longer 

transects, the first three cameras were positioned 200 m apart, with the last camera being only 100 m 

further on. This was to avoid placing the camera within Allocasuarina forest, a habitat where B. 

tropica occurs in lower density (Vernes & Pope 2006). The effective trapping area of camera traps 

was calculated for each site using the methodology described in Chapter 3, except that 431 m was 

added to the camera trap locations rather than the cage locations. The effective trapping area for 

camera trapping was 323 ha at Davies Creek, 359 ha at Emu Creek and 240 ha at Tinaroo Creek. 
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Figure 5.1. Camera trapping grid at (a) Davies Creek, (b) Emu Creek and (c) Tinaroo Creek, 

comprising 30 camera traps along eight transect lines. Camera trap locations are shown by blue 

squares and were located between and slightly offset from cage traps (indicated by the red circles). 

(Source: Google Earth®, 2014).  

 

5.3.4 Data analysis 

5.3.4.1 Nesting materials 

The proportion of use for each of the five groups of nesting material was calculated for each site. 

These data were compared using a Chi-square test of independence (package MASS) (Venables & 

Ripley 2002), with post-hoc tests (adjusted with Bonferroni correction) (package fifer) (Fife 2017).  

 

5.3.4.2 Habitat requirements at nesting, foraging and random areas 

I assessed whether B. tropica selected different microhabitat variables between nesting and random 

areas, and foraging and random areas. I performed non-metric multi-dimensional scaling (NMDS) 

ordinations comparing: 

1) nesting or foraging and random areas, with habitat variables combined from all sites to provide an 

insight into the habitat variables that were important for B. tropica across the Lamb Range (i.e. 

nesting/foraging vs. random), 

2) nesting or foraging and random areas between sites to indicate similarities in important habitat 

variables between the three sites (i.e. nesting/foraging vs. random at Davies Creek, Emu Creek and 

Tinaroo Creek), and 
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3) nesting or foraging and random areas separately at each site (i.e. nesting/foraging vs. random at 

Davies Creek/Emu Creek/Tinaroo Creek). 

 

Habitat variables were standardised using the mean and standard deviation and correlated at the 0.05 

significance level in package hmisc (Harrell & Dupont 2015) in R Studio (RStudio Team 2015). For 

each pair of correlated variables, I retained the variable that was likely to be more ecologically 

important based on previous knowledge of the species ecology (Melles et al. 2003; Vernes 2003). If a 

variable was highly correlated with many other variables, it was removed so there were fewer habitat 

variables overall, with the exception of retaining highly correlated variables that were ecologically 

important (Clark et al. 2014). 

 

Using PCOrd 6.08, each habitat variable and each nesting, foraging and random area were investigated 

for outliers (≥2 standard deviations), which were removed. Ordinations computing highly orthogonal 

principal axes used a Sorensen distance matrix and Monte Carlo p<0.05 for stress of 1000 runs of 

habitat data compared with 10,000 random runs. Axes were correlated with each habitat variable using 

Bonferroni corrections for multiple tests. I used a permanova test, with function adonis (package 

vegan) (Oksanen et al. 2017) and pairwise permanovas (with Bonferroni correction) (package 

RVAideMemoire) (Hervé 2017) to determine whether habitat at nesting or foraging areas differed 

from that of random areas. I also compared whether habitat differed between study sites, with post-hoc 

Kruskal-Dunn tests (package PMCMR) (Pohlert 2014)) used to examine which sites differed. 

Ordination plots were produced comparing nesting or foraging and random areas for the combined 

analysis and also for each of the three sites separately. Kruskal-Wallis tests with Bonferroni correction 

were used to examine which habitat variables differed between nesting or foraging and random areas 

for each site. As a conservative measure, I used a p value of 0.01 with Bonferroni corrected values of 

0.0083 (0.1/14 habitat variables) at Davies Creek and Tinaroo Creek and 0.0071 (0.1/12 habitat 

variables) at Emu Creek. 

 

5.3.4.3 Camera trapping 

Photographs were visually examined to identify captures of B. tropica, potential predators 

(dingoes/dogs and cats) and competitors (rufous bettong, pigs and cattle) for each night cameras were 

deployed at each camera location. For each photograph, the species, study site, trapping session, date, 

camera trap location, bait type, time of first and last images and the number of images were recorded. 

Species captures, rather than individuals, were recorded, as bettongs and feral pigs could not be 

individually distinguished. Consecutive images at the same camera location taken more than 30 

minutes apart were classified as a new capture (Symonds & Moussalli 2011). Predators (cats and 

dingoes/dogs) were individually identifiable based on their fur colour and the number of individuals 

for these species was recorded. Trap success for each species was also calculated at each site (number 
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photographs/total photographs). Other potential predators, such as snakes and birds of prey, that may \ 

predate bettongs were observed at each field site but were not detected on camera traps and not 

included in the analysis. 

 

The area captured by the camera varied based on the angle of the camera lens, with differences in area 

influencing the probability of detecting animals (Glen et al. 2013). However, by baiting camera traps 

animals were attracted to the bait container, increasing the likelihood that animals would be 

photographed (Fleming et al. 2014b). This minimised differences in the probability of detecting B. 

tropica. Bait boards were sometimes moved away from camera traps by animals (usually dingoes/wild 

dogs, pigs or giant-white tailed rats (Uromys caudimaculatus)) or the camera angle was altered due to 

animals climbing or cows rubbing against the camera. To standardise for this, I removed images that 

had noticeably different sampling areas from the majority of photographs. For each trapping session, 

between 3  0.7 % and 26  3% (average of 12.7  1.2%) of camera trap photos were misaligned and 

not pointing at the bait container and were removed from analyses. 

 

5.4 Results 

5.4.1 Nesting materials 

Nesting material was recorded for 121 nests across the three study sites. The amount that B. tropica 

used each nesting material differed (Chi-squared test, 2 = 27.589, df = 8, p<0.001), with nesting 

material significantly differing between Emu Creek and both Davies Creek (p<0.001) and Tinaroo 

Creek (p = 0.0255) and approaching significance between Davies Creek and Tinaroo Creek (p = 

0.057). 

 

Bettongia tropica predominantly constructed nests from grass (Poaceae spp.) or nested under the 

‘skirts’ of grass trees (Xanthorrhoea johnsonii), with rocks, logs or teepee structures utilised less often 

than grass and grass trees (Table 5.1). Bettongia tropica at Davies Creek favoured nesting under grass 

trees (65.38%), whilst at Emu Creek and Tinaroo Creek grass nests were most commonly utilised 

(75.56% and 50% of nests respectively) (Table 5.1). Grass nests were generally ovoid in shape and 

well camouflaged. Most grass nests were constructed of grass species from the immediate area, with 

kangaroo grass (Themeda australis) primarily used. Blady grass (Imperata cylindrica) was also used, 

typically for nests positioned within stands of blady grass near creeks. Some grass nests and nests 

under grass trees were situated within a shallow depression, which appeared to have been excavated, 

with this most commonly observed at Davies Creek (Plate 5.6). Nests constructed under grass trees 

were usually more difficult to detect in the field compared to the other nest types. Tinaroo Creek was 

the only site where individuals constructed teepee nests from sticks and grass. These nests were often 

constructed around a narrow (<10cm diameter) tree trunk and situated in small (an estimated 1.5 m2) 
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open areas surrounded by dense patches of lantana and/or Allocasuarina seedlings, with sparse grass 

cover. 

 

 

Plate 5.6. Front view of a Bettongia tropica nest, showing a small area where vegetation has been 

flattened and removed. 

 

Table 5.1. Nesting material of B. tropica at Davies Creek, Emu Creek and Tinaroo Creek. ‘Nests’ and 

‘B. tropica’ refers to the number of nests and individual B. tropica. The numbers of B. tropica in each 

column does not equal the total as multiple nesting areas of the same individuals were surveyed.  

Nesting 

microhabitat 

Davies Creek Emu Creek Tinaroo Creek 

Nests % total B. tropica Nests % total B. tropica Nests % total B. tropica 

Grass trees 

(Xanthorrhoea 

johnsonii) 

17 

 

 

65.38 

 

 

16 

 

 

8 

 

 

17.78 

 

 

6 

 

 

16 

 

 

32 

 

 

12 

 

 

Grass 

(Poaceae spp.) 8 30.77 5 34 75.56 15 25 50 16 

Logs 1 3.85 1 0 0 0 3 6 3 

Rocks  0 0 0 3 6.66 2 2 4 2 

Teepee (sticks 

and grass) 

0 0 0 0 0 0 4 8 3 

Total 26 100 16 45 100 16 50 100 18 

 

5.4.2 Habitat requirements at nesting and foraging areas 

The results are presented in two sections below, comparing the habitat variables at 1) nesting areas to 

random areas and 2) foraging areas to random areas. Each of these two sections are further divided 

into three sections, as listed below: 

1) comparing nesting or foraging and random areas, with habitat variables combined from all sites, 

2) comparing nesting or foraging and random areas between sites, and 

3) comparing nesting or foraging and random areas separately at each site. 
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5.4.2.1 Comparing nesting and random areas 

5.4.2.1.1 Habitat variables combined from all sites 

The three-dimensional solution of the NMDS ordination comparing habitat variables at nesting and 

random areas of all three sites, explained 77.9% of variation in 11 uncorrelated habitat variables, 88 

nesting areas and 85 random areas (after removal of outliers) (Table 5.2). Permanova demonstrated 

significant differences in microhabitat between nesting and random areas (F1,168 = 17.93, p<0.001; 

Table 5.2). Overall, B. tropica selected nesting areas that were situated on steeper slopes with more 

grass trees, grass cover and less bare soil cover than random areas (Figure 5.2; Table 5.2). At all sites, 

values of grass trees, grass cover, cockatoo grass, grass height, slope and coarse woody debris cover 

were significantly higher in nesting areas than random areas (Table 5.2). Tree basal area was 

significantly lower in nesting areas than random areas, except at Emu Creek, where basal area was 

lower throughout the landscape than at Davies Creek and Tinaroo Creek (Table 5.3). However, only 

grass cover, slope, grass trees and bare soil cover, which approached significance, separated nesting 

and random areas (Figure 5.2). 	

 

      
 

 

Figure 5.2. Microhabitat variables (more grass cover, more grass tress, less bare soil cover and steeper 

slopes) at Bettongia tropica nesting areas (blue) than at random areas (pink). Nesting and random 

areas are plotted in habitat space of a three-dimensional NMDS ordination of 11 habitat variables.  
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Table 5.2. Microhabitat variables significantly correlated with axis 1, 2 and 3 of an NMDS ordination of nesting and random areas at Davies Creek, Emu 

Creek and Tinaroo Creek and at all sites. The final stress value and the percentage of the total variance explained by the ordination are also shown. A dash (-) 

indicates the variable was correlated with other variables and excluded from analyses.  

Davies Creek Emu Creek Tinaroo Creek All three sites 

Stress value 0.151 0.164 0.164 0.181 

No. variables  12 14 12 11 

No. of sampling areas 58 58 57 173 

Bonferroni-corrected p value 0.00028 0.00024 0.00028 0.0000001 

 Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3 

Variance explained 44.1% 30.4% 12.9% 39.9% 23.3% 16.9% 31.8% 31.2% 16.9% 40.2% 22.5% 15.2% 

Variables             

Grass trees     -0.468   0.718    0.525  

Grass cover (%) -0.705   0.669   -0.749   -0.719   

Cockatoo grass  0.465  0.480         

Grass height (cm) - - - 0.746   -0.477   - - - 

Rock cover (%)  -0.750           

Tree height (m)         -0.529    

Slope (º) -0.585  0.529 0.683     -0.662  0.583   

Coarse woody debris cover (%)             

Soil resistance (mPa) 0.778            

Tree basal area (m2/20 m2) 0.496            

Bare soil cover (%) 0.481      - - -    

Soil moisture (%)   -0.472   -0.772  -0.472  0.662  -0.708 

Diggings - - -    - - -    

Leaf litter cover (%) - - - - - - 0.738 -0.491  - - - 

Canopy cover (%) 0.655    0.766  0.569   - - - 

a Conservative significance levels of Bonferroni-corrected <0.01 (r>0.460) for single sites, and <0.000005 (r>0.390) for all three sites combined were used to focus interpretation on most 
important variables.
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Table 5.3. Microhabitat variables at nesting and random areas at Davies Creek, Emu Creek and Tinaroo Creek, with mean value (x̅) and standard error (SE) 

for each habitat variable. The Kruskal-Wallis test statistic (2) and Bonferroni corrected significant values are shown in bold. An asterisk (*) indicates that the 

habitat variable was correlated with another habitat variable and excluded from the ordination. 

 Davies Creek Emu Creek Tinaroo Creek All sites 

Habitat variables 
Nesting 
x̅ ± SE 

Random 
x̅ ± SE 

2 p-
value 

Nesting 
x̅ ± SE 

Random 
x̅ ± SE 

2 p-value Nesting 
x̅ ± SE

Random 
x̅ ± SE

2 p-value Nesting 
x̅ ± SE 

Random 
x̅ ± SE 

2 p-value 

Grass trees (/20 
m2) 

3.93 ± 
0.86 

0.23 ± 
0.079 

1.28  ± 
0.84

± 
0.35

1.06 0.302 22.30 ± 
4.01 

9.24 ± 
2.89 

10.37 0.0013 8.17 ± 
1.72 

3.52 ± 
1.05 

8.56 0.0034 

Grass cover (%) 
 

64.94 ± 
3.98 

30.63 ± 
4.73 

21.40 <0.001 53.40 ± 
5.05 

± 
4.30

9.17 0.0025 32.01 ± 
4.88 

12.38 ± 
2.92 

12.66 <0.001 50.14 ± 
3.03 

24.99 ± 
2.50 

34.07 <0.0001 

Cockatoo grass  
(/m2) 

3.83 ± 
0.76 

2.37 ± 
0.41 

0.42 0.519  ± 
0.78 

± 
0.39

4.74 0.0294 7.17 ± 
1.38* 

2.53 ± 
0.51* 

8.99* 0.0027* 4.89 ± 
0.60 

2.06 ± 
0.26 

12.46 <0.001 

Grass height 
(cm) 

50.66 ± 
2.69* 

42.32 ± 
2.97* 

4.39* 0.036* 52.50 ± 
4.10 

31.98 ± 
3.55 

11.98 <0.001 34.31 ± 
2.72 

21.57 ± 
2.05 

12.10 <0.001 45.82 ± 
2.04 

31.94 ± 
1.90 

22.77 <0.0001 

Rock cover (%) 
 

1.57 ± 
0.63

7.03 ± 
2.78 

  0.57 3.57 ± 
2.05 

2.43 ± 
1.49 

0.83 0.36 3.51 ± 
1.27 

4.32 ± 
1.70 

0.379 0.54 2.88 ± 
0.83 

4.60 ± 
1.20 

0.27 0.61 

Tree height (m) 
 

18.85 ± 
1.29 

15.91 ± 
0.89 

2.78 0.096 15.63 ± 
0.70 

15.23 ± 
1.26 

1.35 0.25 16.24 ± 
0.90 

14.23 ± 
0.86 

1.28 0.26 16.91 ± 
0.59 

15.12 ± 
0.59 

4.61 0.032 

Slope (º) 
 

12.87 ± 
1.76 

2.82 ± 
0.58 

26.25 <0.001 12.73 ± 
1.57 

± 
1.66

3.74 0.053 12.11 ± 
1.26 

8.60 ± 
1.32 

4.25 0.039 12.57 ± 
0.88 

6.89 ± 
0.78 

29.37 <0.0001 

Coarse woody 
debris cover (%) 

2.19 ± 
0.96 

4.13 ± 
2.68 

0.228 0.63 2.52 ± 
0.71 

0.67 ± 
0.32 

7.52 0.0061 1.64 ± 
0.53 

0.12 ± 
0.07 

11.00 <0.001 2.13 ± 
0.43 

1.64 ± 
0.91 

13.40 <0.001 

Soil resistance 
(mPa) 

4.69 ± 
0.38 

10.78 ± 
1.27 

26.02 <0.001 8.75 ± 
0.74 

10.45 ± 
0.78 

2.17 0.14 7.24 ± 
0.53 

5.63 ± 
0.43 

5.43 0.020 6.89 ± 
0.37 

8.95 ± 
0.57 

6.45 0.011 

Tree basal area 
(m2/20 m2) 

0.13 ± 
0.035 

0.61 ± 
0.091 

25.35 <0.001 0.46 ± 
0.14 

± 
0.20

0.0014 0.97 0.15 ± 
0.021 

1.05 ± 
0.41 

17.14 <0.0001 0.24 ± 
0.055 

0.61 ± 
0.23 

25.22 <0.0001 

Bare soil cover 
(%) 

4.63 ± 
1.38 

16.53 ± 
4.25 

3.40 0.065 3.59 ± 
1.07 

8.97 ± 
2.71 

0.38 0.54 3.84 ± 
1.61 

31.04 ± 
6.94 

4.63 0.031 4.03 ± 
0.79 

18.85 ± 
2.99 

7.34 0.0067 

Soil moisture 
(%) 

4.26 ± 
0.45 

4.31 ± 
0.40 

0.11 0.74 6.97 ± 
0.57 

5.11 ± 
0.46 

7.28 0.0069 6.25 ± 
0.35 

6.59 ± 
0.68 

0.0035 0.95 5.82 ± 
0.29 

5.34 ± 
0.32 

2.04 0.15 

Diggings (/m2) 
 

0.47 ± 
0.16* 

0.67 ± 
0.16* 

1.29* 0.26* 0.27 ± 
0.12 

0.067 ± 
0.046 

1.62 0.20 1.33 ± 
0.25 

0.60 ± 
0.18 

2.43 0.12 0.62 ± 
0.11 

0.44 ± 
0.085 

0.72 0.40 

Leaf litter cover 
(%) 

24.49 ± 
2.93* 

46.37 ± 
4.85* 

10.07* 0.0015
* 

36.93 ± 
4.92* 

58.90 ± 
6.04* 

7.17* 0.0074* 57.93 ± 
5.11 

50.87 ± 
8.00 

0.0035 0.95 39.78 ± 
2.92* 

52.05 ± 
3.71* 

5.22* 0.022* 

Canopy cover 
(%) 
 

27.40 ± 
1.15 

37.98 ± 
3.23 

14.22 <0.001 29.88 ± 
1.88 

31.51 ± 
2.28 

1.23 0.27 42.39 ± 
1.75 

44.86 ± 
1.87 

0.43 0.50 33.22 ± 
1.16* 

38.12 ± 
1.55* 

12.01
* 

<0.001* 
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5.4.2.1.2 Comparing nesting and random areas between sites 

The overall nesting and random habitat differed significantly between the three study sites (F2,168 = 

9.71, p<0.001), with post-hoc tests concluding that the overall habitat at Davies Creek differed from 

Emu Creek (p = 0.012) and Tinaroo Creek (p = 0.003). Habitat also differed between Emu Creek and 

Tinaroo Creek (p = 0.003). There was also a significant interaction between study sites with nesting 

and random areas (F2,168 = 4.33, p<0.001; Appendix Table L.1). Appendix L contains the results from 

the permanova post-hoc tests comparing habitat at nesting and foraging areas with habitat at random 

areas. 

 

The importance of habitat variables also differed at nesting and random areas between study sites, 

with grass cover, slope and grass trees influencing where B. tropica nested (Table 5.3). Grass cover 

was higher at nesting areas than random areas across all study sites (Figure 5.3a and 5.3b; Table 5.3), 

with the percentage grass cover in nesting areas greater at Davies Creek than Tinaroo Creek (p<0.001; 

Appendix Table L.1). Bettongs at Davies Creek favoured nesting areas with steeper slopes than 

randomly sampled (Table 5.3). At Tinaroo Creek, nesting areas had significantly more grass trees than 

random areas and also more than nesting areas at Davies Creek and Emu Creek (p<0.001; Table 5.3; 

Appendix Table L.1). Surprisingly, selection of nesting habitat by bettongs did not appear to be guided 

by the presence of grass trees at Davies Creek or Emu Creek, even though grass trees were commonly 

used for nesting at Davies Creek (Table 5.1). Bettongia tropica appeared to avoid nesting in areas with 

higher cover of bare soil (Axis 1, Figure 5.3a and 5.3b), despite there being no difference in bare soil 

cover between nesting and random areas (Table 5.3). Soil moisture was lower at nesting areas at 

Davies Creek than nesting areas at other sites (Table 5.3; Appendix Table L.1).  

 

5.4.2.1.3 Comparing nesting and random areas separately at each site 

At Davies Creek, nesting areas comprised significantly different habitat from random areas (F1,57 = 

15.37, p<0.001). Nesting areas were well separated from random areas (axis 1), due to the occurrence 

of greater grass cover and steeper slopes than random areas (Figure 5.3a; Tables 5.2 and 5.3). Random 

areas had significantly steeper slopes, harder soils, greater canopy cover and greater tree basal area 

than nesting areas (Table 5.3), but other than slope, these variables did not significantly separate 

nesting from random areas (Figure 5.3a). 

 

For Emu Creek, separation between habitat at nesting and random areas was also well defined (F1,58 = 

4.61, p<0.001), especially along the horizontal axis 1 (Figure 5.3b). Bettongia tropica more often 

nested at areas with significantly more grass cover and taller grass (Axis 1, Figure 5.3b), and moister 

soils (vertical axis 2, Figure 5.3b; Table 5.3).  
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At Tinaroo Creek, habitats at nesting and random areas were significantly different (F1,53 = 6.87, 

p<0.001), with nesting habitats divided into two types. One type of nesting habitat occurred where 

bettongs favoured taller grasses, greater grass cover and fewer grass tress and appeared to avoid high 

levels of leaf litter and canopy cover (Figure 5.3c; Table 5.3). The second type of nesting habitat 

comprised more grass trees and possibly steeper slopes and/or taller trees (Figure 5.3d; Table 5.3). 

Due to the division into two nesting habitats, habitat variables that were significant in the ordination 

did not significantly differ between nesting and random areas, except for grass cover and grass trees 

(Table 5.3). Although the vertical axis was positively correlated with coarse woody debris and canopy 

cover and negatively related to grass height (Figure 5.4, Table 5.4), only coarse woody debris differed 

significantly between foraging and random areas (Table 5.5). 

 

  

 

 

    

 

Figure 5.3. Microhabitat variables at Bettongia tropica nesting areas (blue) and at randomly sampled 

areas (pink) at (a) Davies Creek, (b) Emu Creek and (c) and (d) Tinaroo Creek. The plotted variables 

separated nesting and random areas. Differences were significant except for variables with brackets. 
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5.4.2.2 Comparing foraging and random areas 

5.4.2.2.1 Habitat variables combined from all sites 

The three-dimensional NMDS ordination comparing foraging and random areas over all three sites 

explained 76.9% of the variation in 13 uncorrelated habitat variables associated with 84 foraging and 

88 random areas (Table 5.4). Foraging habitat differed from random areas (Permanova F1,166 = 20.07, 

p<0.001), containing a higher abundance of food resources, including cockatoo grass and diggings 

(indicating consumed food resources), as well as steeper slopes, more grass trees, taller trees and more 

coarse woody debris cover (Table 5.5). These variables were the main variables separating foraging 

and random habitats (Figure 5.4). Bare soil cover was a driver of the horizontal axis 1 (Figure 5.4), but 

did not differ significantly between random and foraging areas (Table 5.5). The vertical axis 3 was 

positively correlated with coarse woody debris and canopy cover and negatively related to grass height 

(Figure 5.4; Table 5.4). However, none of these variables significantly differed between foraging and 

random areas when all sites were considered (Table 5.5). 

 

   

 
 

Figure 5.4. Microhabitat variables at Bettongia tropica foraging areas (blue) and at randomly sampled 

areas (pink) for all three sites. Foraging areas were situated on steeper slopes with more cockatoo 

grass and B. tropica diggings, taller trees and more coarse woody debris than randomly sampled areas. 

Foraging and random areas are plotted in habitat space of a three-dimensional NMDS ordination of 13 

habitat variables. The plotted variables separated foraging and random areas. Differences were 

significant except for variables with brackets. 
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Table 5.4. Microhabitat variables that are significantly correlated (at the 0.01 level, after Bonferroni correction) with axis 1, 2 and 3 of a three-dimensional 

ordination of foraging and random areas at Davies Creek, Emu Creek, Tinaroo Creek and all sites. The final stress value, number of variables and sampling 

areas and the variance explained by each ordination are shown. A dash (-) indicates the variable was excluded from analyses as it was correlated with at least 

one other variable. 

 Davies Creek Emu Creek Tinaroo Creek All three sites 

Stress value 0.1588 0.1515 0.1456 0.1937 

No. variables  12 13 12 13 

Number of sampling areas 58 58 56 172 

Bonferroni p value 0.0028 0.0026 0.0028 0.0000001 

 Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3 

Variance explained 33.9% 31.6% 17.1% 41.4% 25.8% 17.2% 48.2% 29.6% 10.8% 36.7% 19.5% 20.7% 

Variables             

Grass trees (/m2)      -0.464        

Grass cover (%)    - - - - - - - - - 

Cockatoo grass (/20 m2) -0.501 -0.487  0.688   -0.720   -0.669   

Grass height (cm)    0.684    0.702      -0.618 

Rock cover (%)             

Tree height (m)    0.576   -0.739   -0.614   

Slope (º) -0.828         -0.554   

Coarse woody debris cover (%)  0.503   -0.804        0.445 

Soil resistance (mPa)  -0.573   -0.501 0.535        

Tree basal area (m2/20 m2)   0.596     0.738 -0.485   -0.414  

Bare soil cover (%)  0.503  -0.501       0.400 0.437  

Soil moisture (%)        0.664     

Diggings (/m2) - - -       -0.588   

Leaf litter cover (%) - - - - - - - - - - - - 

Canopy cover (%)       - - -  -0.589 0.455 

a Conservative significance levels of Bonferroni-corrected <0.01 (r>0.460) for single sites, and <0.000005 (r>0.390) for all three sites combined were used to focus interpretation on most 
important variable



	 101	

Table 5.5. Microhabitat variables at foraging and random areas at Davies Creek, Emu Creek and Tinaroo Creek, with mean value (x̅) and standard error (SE) 

for each habitat variable. The Kruskal-Wallis test statistic (2) and Bonferroni-corrected significant values are shown in bold. An asterisk (*) indicates that the 

habitat variable was correlated with at least one other variable and excluded from the ordination. Grass cover and leaf litter cover are excluded as they were 

correlated in all analyses. 

 Davies Creek Emu Creek Tinaroo Creek All sites 

Habitat 

variables 

Foraging 

x̅ ± SE 

Random 

x̅ ± SE 

2 p-value Foraging 

x̅ ± SE 

Random 

x̅ ± SE 

2 p-value Foraging 

x̅ ± SE

Random 

x̅ ± SE

2 p-value Foraging 

x̅ ± SE 

Random 

x̅ ± SE 

2 p-value 

Grass trees (/20 

m2) 

3.07 ± 0.23 ±  

0.079 

 <0.001 ± 

0.58

± 

0.35

0.693 0.405 1.77 ± 

0.66 

9.24 ± 

2.89 

0.94 0.33 1.29 ± 

0.0.30 

0.51 ± 18.39 <0.0001 

Grass cover (%) 

 

20.29 ± 

2.71* 

30.63 ± 

4.73* 

 0.12* 34.92 ± 

2.69*

± 

4.30*

0.80* 0.37* 12.62 ± 

2.63* 

12.38 ± 

2.92* 

3.49

* 

0.062* 22.61 ± 

2.68* 

24.99 ± 

2.50* 

14.55

* 

<0.001* 

Cockatoo grass 

(/m2) 

5.80 ± 

1.07 

2.37 ± 

0.41 

3.36 0.067  ± 

1.31 

± 

0.39

26.62 <0.001 7.00 ± 

1.65 

2.53 ± 

0.51 

2.52 0.11 7.06 ± 

0.79 

1.08 ± 

0.22 

50.89 <0.0001 

Grass height 

(cm) 

45.57 ± 

2.91 

42.32 ± 

2.97 

0.603 0.44 45.84 ± 

2.20 

31.98 ± 

3.55 

9.79 0.0018 30.37 ± 

2.93 

21.57 ± 

2.05 

5.81 0.016 40.56 ± 

1.72 

44.26 ± 

2.15 

2.39 0.12 

Rock cover (%) 

 

1.75 ± 

0.59

7.03 ± 

2.78 

0.542  4.07 ± 

1.56 

2.43 ± 

1.49 

2.80 0.095 0.46 ± 

0.29 

4.32 ± 

1.70 

5.96 0.15 2.09 ± 

0.58 

4.38 ± 

1.30 

0.36 0.55 

Tree height (m) 

 

17.02 ± 

0.59 

15.91 ± 

0.89 

0.126 0.72 17.57 ± 

1.19 

15.23 ± 

1.26 

3.90 0.048 19.04 ± 

1.67 

14.23 ± 

0.86 

5.64 0.018 17.87 ± 

0.79 

13.24 ± 

0.47 

25.87 <0.0001 

Slope (º) 

 

15.59 ± 

1.46 

2.82 ± 

0.58 

37.03 <0.001 11.13 ± 

1.12 

± 

1.66

4.13 0.042 9.13 ± 

1.15 

8.60 ± 

1.32 

0.31 0.58 11.95 ± 

0.77 

5.21 ± 

0.76 

55.70 <0.0001 

CWD^ cover 

(%) 

1.35 ± 

0.43 

4.13 ± 

2.68 

0.401 0.53 2.66 ± 

0.51 

0.67 ± 

0.32 

15.12 <0.001 1.44 ± 

0.61 

0.12 ± 

0.07 

2.39 0.12 1.82 ± 

0.30 

0.81 ± 

0.20 

8.70 0.0032 

Soil resistance 

(mPa) 

5.51 ± 

0.45 

10.78 ± 

1.27 

14.66 <0.001 11.39 ± 

1.01 

10.45 ± 

0.78 

0.30 0.58 6.64 ± 

0.69 

5.63 ± 

0.43 

0.64 0.43 7.85 ± 

0.51 

8.95 ± 

0.57 

2.30 0.13 

Tree basal area 

(m2/20 m2) 

0.23 ± 

0.055 

0.61 ± 

0.091 

15.06 <0.001 0.11 ± 

0.029 

± 

0.020

8.97 0.0028 0.34 ± 

0.70 

1.05 ± 

0.41 

6.89 0.0087 0.22 ± 

0.26 

0.61 ± 

0.18 

9.23 0.0024 
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Bare soil cover 

(%) 

14.45 ± 

2.46 

16.53 ± 

4.25 

0.922 0.34 14.39 ± 

2.41 

8.97 ± 

2.71 

7.24 0.0071 16.32 ± 

3.89 

31.04 ± 

6.94 

0.76 0.38 15.05 ± 

1.71 

20.77 ± 

3.28 

0.24 0.62 

Soil moisture 

(%) 

4.03 ± 

0.48 

4.31 ± 

0.40 

 0.41 ± 

0.44

± 

0.46

2.21 0.14 5.46 ± 

0.44 

6.59 ± 

0.68 

1.54 0.21 5.15 ± 

0.27 

5.34 ± 

0.32 

0.11 0.74 

Diggings (/m2) 

 

2.16 ± 

0.49* 

0.67 ± 

0.16* 

* 0.0021*  ± 

0.39 

0.067 ± 

0.046 

9.72 0.018 1.00 ± 

0.31 

0.60 ± 

0.18 

0.40 0.53 1.38 ± 

0.24 

0.23 ± 

0.07 

30.77 <0.0001 

Leaf litter cover 

(%) 

62.05 ± 

4.17* 

46.37 ± 

4.85* 

 0.018* 43.68 ± 

2.86*

58.90 ± 

6.04* 

5.46* 0.019* 65.22 ± 

4.73* 

50.87 ± 

8.00* 

0.36

* 

0.55* 56.98 ± 

3.92* 

52.05 ± 

3.71* 

26.72

* 

<0.0001

* 

Canopy cover 

(%) 

26.16 ± 

0.89 

37.98 ± 

3.23 

15.47 <0.001 27.35 ± 

1.43 

± 

2.28

3.56 0.059 39.25 ± 

1.93* 

44.86 ± 

1.87* 

3.70

* 

0.055* 30.92 ± 

1.05 

28.77 ± 

1.36 

0.87 0.35 

CWD^ = Coarse woody debris 
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5.4.2.2.2 Comparing foraging and random areas between sites 

Foraging habitat also differed between study sites (F2,166 = 10.04, p<0.001), with all comparisons 

between sites significant (p = 0.03). There was also an interaction between study sites and foraging 

and random habitat (F2,171 = 4.79, p<0.001). Post-hoc tests showed all site-habitat comparisons 

differed (p = 0.015 all interactions, except p = 0.045 comparing foraging habitat at Emu Creek and 

Tinaroo Creek), other than between foraging areas at Davies and Emu Creeks, which were similar (p = 

1.00). 

 

When all sites were considered, Bettongia tropica foraged within areas with more cockatoo grass, 

more diggings, taller trees, steeper slopes and less tree basal area than randomly sampled areas (Table 

5.5). There were some differences in the important habitat variables between sites (Table 5.5; 

Appendix Table L.2). Cockatoo grass, diggings and soil resistance separated foraging from random 

areas at Davies Creek, whereas only cockatoo grass was important at Emu Creek (Table 5.5; Appendix 

Table L.2). This was despite the abundance of cockatoo grass being statistically similar at foraging 

and random areas at Davies Creek (Table 5.5). Taller grass was important at Tinaroo Creek, but not at 

the other two sites (Table 5.5; Appendix Table L.2). 

 

5.4.2.2.3 Comparing foraging and random areas separately at each site 

At Davies Creek, microhabitat in foraging areas was significantly different from that in random areas 

(F1,56 = 9.99, p<0.001). Foraging areas had steeper slopes, more cockatoo grass and softer soils (Figure 

5.5a and 5.5b). However, the difference in cockatoo grass between areas was not significant (Table 

5.5) and the preference for softer soil appeared influenced by a few locations (Figure 5.5a and 5.5b). 

Random areas had greater tree basal area (Figure 5.5a and 5.5b; Table 5.5). Although all the 

aforementioned variables separated foraging and random areas, slope, soil resistance and tree basal 

area are thought to be most important, with these variables being significantly different between 

foraging and random areas (Table 5.5).  

 

At Emu Creek foraging and random habitats differed (F1,56 = 10.65, p<0.001). Bettongia tropica 

selected habitats with significantly more cockatoo grass, more coarse woody debris cover and taller 

grasses for foraging, whilst areas with high bare soil cover were not prime foraging habitat (Figure 

5.5c; Table 5.4 and 5.5). Foraging areas also tended to have taller trees (Figure 5.5c; Table 5.4), 

although there was no significant difference in this habitat variable between foraging and random 

areas (Table 5.5).  

 

At Tinaroo Creek, the habitat appeared to be more uniform in terms of foraging and random areas, 

despite foraging and random areas having significantly different habitats (F1,54 = 7.14, p<0.001). 

Foraging areas appeared to be separated from random areas by taller trees, more cockatoo grass, 
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moister soils, shorter grass and lower tree basal area, although no comparisons were significant 

(Figure 5.5d; Table 5.5).  

 

 

 

 
 

 

        

	
 

Figure 5.5. Microhabitat variables at Bettongia tropica foraging areas (blue) and at randomly sampled 

areas (pink) at (a) and (b) Davies Creek, (c) Emu Creek and (d) Tinaroo Creek. The plotted variables 

separated foraging and random areas. Differences were significant except for variables with brackets. 

 

5.4.3 Camera captures 

In total, 4,320 camera trap nights occurred at each study site resulting in a total of 154,047 camera 

images with animal detections. Bettongia tropica comprised 18.10% (8,152/45,061), 16.99% 

(8,408/49,497) and 31.24% (18,584/59,489) of all photographs of animals at Davies Creek, Emu 

Creek and Tinaroo Creek respectively. At Davies Creek, each camera location had an average trap 

success for B. tropica of 22.64%, whilst at Emu Creek and Tinaroo Creek trap success per camera 

averaged 23.36% and 51.62% respectively per trap night. In contrast, predator and competitor species 

only constituted 3.89% (1,751/45,061), 2.64% (1,307/49,497) and 2.36% (1,405/59,489) of the images 

captured at Davies Creek, Emu Creek and Tinaroo Creek. Based on the number of camera captures 

and the effective trapping areas, there were 2.35, 2.00 and 4.31 B. tropica camera captures per ha at 

Davies Creek, Emu Creek and Tinaroo Creek respectively. 
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There was over three times the number of camera captures of feral pigs at Davies Creek than at the 

other sites (Table 5.6). However, only two dingoes/dogs were photographed at Davies Creek 

compared to four dingoes/dogs present at both Emu Creek and Tinaroo Creek (Table 5.6). Emu Creek 

was the only site where rufous bettongs and cattle were recorded (Table 5.6). Cattle were only 

observed on camera traps located on the lower slopes. Areas where cattle were assumed to graze 

(cropped grass) were very distinctive in the field (pers. obs.). Tinaroo Creek was the only site where a 

cat was detected (Table 5.6).  

	

Table 5.6. Camera captures of B. tropica and its potential predators, dingoes/dogs and feral cats, and 

competitors, rufous bettong, feral pigs and cattle, at Davies Creek, Emu Creek and Tinaroo Creek. The 

number of individuals of dingoes/dogs, feral cats and cattle are also shown in brackets. The number of 

individual bettongs and feral pigs could not be identified. 

 Bettongia tropica Dingoes/dogs Feral cat Rufous bettongs Feral pigs Cattle 

Davies Creek 760 10 (2) 0 0 121  

Emu Creek 720 13 (4) 0 99 13 25 (8) 

Tinaroo Creek 1,035 16 (4) 1 (1) 0 44  

 

Many other small mammal species were recorded on camera traps, including the northern brown 

bandicoot (Isoodon macrourus), giant white-tailed rat, common brushtail possum (Trichosurus 

vulpecula), northern quoll (Dasyurus hallucatus), black-footed tree-rat (Mesembriomys gouldii), 

common ringtail possum (Pseudocheirus peregrinus), fawn-footed melomys (Melomys cervinipes) 

and grassland melomys (Melomys burtoni). Larger mammals including agile (Macropus agilis) and 

whiptail wallabies (Macropus parryi) were also recorded. Time constraints meant the number of 

captures of other small mammal species has not yet been evaluated. 

 

5.5 Discussion 

At all study sites, there were subtle differences in the nesting and foraging microhabitat requirements 

of B. tropica. Overall, B. tropica predominantly favoured nesting within habitats with high grass 

cover, an abundance of grass trees and steep slopes. Steeply sloping areas with an abundance of 

cockatoo grass were generally favoured by B. tropica when foraging. 

 

5.5.1 Nesting materials 

Bettongia tropica mainly constructed nests from grass and grass trees, with 82% of nests constructed 

from these materials, whilst logs, rocks and sticks were rarely used. Field observations indicated B. 

tropica utilised commonly available resources. This strategy probably increased camouflage with the 

surrounding area (Taylor 1993b; Lovell et al. 2013) and/or reduced energy expended when collecting 

nesting materials (Cantarero et al. 2015) in their semi-prehensile tails (Rose 1986; pers. obs.). 
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Bettongia tropica had multiple nests and nesting areas, with the same B. tropica individual using both 

grass trees and grass for nesting materials (Chapter 4). It seems likely that choice between these 

materials may be related to availability within the particular area. 

 

Grass trees were the favoured nesting resource at Davies Creek, whilst grass was the main nesting 

resource at Emu Creek and Tinaroo Creek. This was surprising since there were more grass trees 

recorded at Tinaroo Creek than Davies Creek, more grass cover at Davies Creek than Tinaroo Creek 

and a similar amount of grass cover at Davies Creek and Emu Creek. However, at Tinaroo Creek grass 

trees were often distributed in clumps, with either many or few grass trees within the surveyed 20 m2 

area (high standard error compared to the other sites). At Emu Creek, there were fewer grass trees than 

at the other study sites. This explains why microhabitats with grass trees were not favoured by B. 

tropica at Emu Creek, despite grass trees still being used as a nesting material when available. In 

contrast, at Davies Creek grass trees were at a slightly higher density and scattered evenly throughout 

the habitat (low standard error). This indicates grass trees would be available for B. tropica throughout 

the habitat, explaining why they were preferred there. Additionally, grass trees were small (< ≈0.7 m) 

and B. tropica often nested at the base of multiple grass trees (pers. obs.). This suggests that if small 

grass trees were used for nesting, their proximity to other grass trees may be a limiting factor. 

 

Building grass nests under the ‘skirts’ of grass trees may increase camouflage compared to nesting in 

simple grass nests. Nests under grass trees were harder to find in the field (pers. obs.) and appeared 

easier and thus more energy efficient to construct (as nests are constructed from less grass). Grass 

trees may be an especially important resource when grass cover is low and insufficient to camouflage 

grass nests. Additionally, animals often shelter under vegetation during heavy rainfall (Kingdon et al. 

2013), with grass trees likely to provide additional cover during high rainfall events. Nesting under 

grass trees may also reduce the chance of trampling on nests by other animals (Bowman & Panton 

1991), such as wallabies, pigs or cattle, with these species observed on camera traps and in the field. 

 

Grass nests were favoured in areas with few grass trees or high grass cover. These variables would 

assist in camouflaging nests against their background (Vernes & Pope 2001). Constructing nests from 

grass provides B. tropica with greater flexibility in selecting where to nest. This can benefit a species’ 

fitness (Pearson & Knapp 2016), as nests constructed closer to foraging areas would minimise energy 

expended travelling between nesting and foraging areas (Chapter 4; Lutermann et al. 2010; De Vere et 

al. 2011). Building grass nests may be especially advantageous where foraging areas are sparsely 

distributed or where grass trees only occur far from foraging areas. Maintaining sufficient density of 

both grass and grass trees for nesting materials is essential within bettong habitat. 
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At Tinaroo Creek, B. tropica occasionally constructed teepee-shaped nests from sticks and small 

amounts of grass. This nest design has not previously been reported for bettongs. Teepee nests were 

generally poorly camouflaged and located within lantana thickets or areas dominated by Allocasuarina 

with a sparse understorey and no grass trees (pers. obs.). Allocasuarina thickening and rainforest 

expansion into Eucalyptus woodlands has occurred over the last 50 years across north Queensland and 

may be impacting the viability of B. tropica populations (Harrington & Sanderson 1994; Tng et al. 

2012). Allocasuarina and lantana thickets shade out grasses (Harrington & Sanderson 1994), support 

lower food resources (truffles and cockatoo grass) for B. tropica and are considered sub-optimal 

habitat compared to Eucalyptus woodland (Abell et al. 2006; Vernes & Pope 2006). Constructing 

teepee nests within lantana thickets and Allocasuarina at Tinaroo Creek indicates the habitat was sub-

optimal for B. tropica. This indicates at Tinaroo Creek there is competition between individuals and 

limited availability of better quality nesting habitat.  

 

Poorly camouflaged nests can increase the risk of predation compared with well-camouflaged nests 

(Matessi & Bogliani 1999; Albrecht & Klvana 2004; Stevens et al. 2017) and this could ultimately 

impact upon the survival of individuals and even populations (Vögeli et al. 2011). For B. tropica, 

managers should ensure the habitat contains sufficient nesting resources. An assessment of whether 

nesting materials and nest design (especially of teepee nests) influence B. tropica survival rates is a 

future research avenue.  

 

Interestingly, at Davies Creek more nests were built underneath grass trees (65.38%) or constructed 

from grass (but not under grass trees) (30.77%) than previously reported by Vernes and Pope (2001). 

Vernes and Pope (2001) studied nesting materials at Davies Creek before and after fire and concluded 

that pre-fire, 46.4% of nests were situated under grass trees, 28.6% near or in logs, whilst only 10.7% 

were constructed from grass. I found only 3.85% of nests were situated within or next to logs. 

Differences in nesting material between studies may be due to individual requirements or could 

signify habitat changes. Low intensity management burns have been conducted every two to three 

years on the Lamb Range since around 2000 (R. Miller, pers. comm.), with regular fires potentially 

reducing the availability of suitable logs (Collins 2012). After a large low to medium intensity fire 

occurred at Davies Creek, Vernes and Pope (2001) found that only 7.9% of individuals utilised logs 

(compared to 28.6% pre-fire), with boulders being the most used resource (44.7%) post-fire. This 

indicates that B. tropica are flexible in their choice of nesting materials and adjust their choice based 

on resources available at the time (Vernes & Pope 2001). However, both studies suggested that B. 

tropica prefer grass trees for nesting and in this study B. tropica also favoured grass. 
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5.5.2 Habitat requirements at nesting areas 

When all sites were considered, B. tropica selected nesting areas situated on steeper slopes within 

habitats comprising more grass cover and grass trees than random areas. Nesting areas with high grass 

cover and an abundance of grass trees would assist in camouflaging grass and grass tree nests from 

predators (Vernes & Pope 2001). Selection of these variables were consistent with my expectations, as 

minimising predation risk is often crucial for survival (Lawes et al. 2015a). Many small mammals in 

relatively open (non-rainforest) or sparsely vegetated habitats in northern and southern Australia have 

suffered population declines primarily due to predation by feral cats, with declines exacerbated by 

reduced ground cover at shelter, nesting and foraging areas (Woinarski et al. 2010; Fisher et al. 2013; 

Lawes et al. 2015a). Grass cover and grass trees may also help to regulate environmental conditions 

within nests by providing shade for animals during the day and cover from rain and wind (Fisher 

2000). Choosing habitats with sufficient ground cover may be crucial for the survival of B. tropica 

whilst nesting. 

 

Nesting on steeper slopes may also reduce the chance of predators detecting nests, as steeper slopes 

are often less utilised by predators (Buckmaster 2011; McGregor et al. 2015). Cats and dingoes/dogs 

occur on the Lamb Range (see camera trapping section below), with these species being major 

predators of bettongs (Vernes 2000; Brook & Kutt 2011; Fancourt 2014). Cats and dingoes/dogs both 

usually forage on flatter, more open ridgelines (Buckmaster 2011; McGregor et al. 2015) and by 

foraging on steeper slopes B. tropica may reduce their risk of predation. Additionally, steeper slopes 

may facilitate better drainage during periods of heavy rains (Holtmeier 2014). These results have 

important management implications, as when fire management burns occur throughout the Lamb 

Range there are patches of habitat where all grass cover is temporarily lost (pers. obs.). Bettongia 

tropica remain within their home range during and after fire (Vernes & Pope 2001) and ensuring that 

sufficient grass cover is maintained post-fire is important, especially at Davies Creek and Emu Creek. 

 

When nesting areas were analysed separately at each study site, grass height was not selected at 

Davies Creek. Grass was generally taller throughout the landscape at Davies Creek, meaning B. 

tropica would not need to select for grass height. At Emu Creek, which was the driest site, nesting 

locations had significantly wetter soils than random areas. Interestingly, Tinaroo Creek was the only 

site where two distinctive types of nesting habitats were favoured, with taller grasses and more grass 

cover as one habitat and more grass trees as the second habitat. This indicates Tinaroo Creek is the 

only site with sufficient grass cover and grass trees for B. tropica to regularly utilise both resources. 

 

5.5.3 Habitat requirements at foraging areas 

Bettongia tropica selected foraging habitats that had a higher abundance of food resources, facilitated 

ease of travel and offered cover from predators. Similar environmental variables were generally 
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preferred for foraging across all sites. Under similar climatic conditions, it is thus likely that B. tropica 

would select the same habitat variables for foraging throughout their distribution (Pietersen et al. 

2014). As expected, when all sites were considered, B. tropica foraged within habitat with more 

cockatoo grasses (dry season resource) and more bettong diggings (representing either truffles or 

cockatoo grass) than random areas. 

 

Foraging areas also had significantly lower (or approaching significance) tree basal area than 

randomly available. Bettongia tropica selected more open habitats (more bare soil cover at Emu Creek 

and Davies Creek and lower tree basal area at Davies Creek and Tinaroo Creek). This is expected to 

increase the ease of travel for B. tropica when escape from predators is required. Other mammal 

species also select habitats that increase ease of travel (Lawhead 1984; Reid & Jinchu 1991; Vynne et 

al. 2011). For example, Killeen et al. (2014) studied the fine- and broad-scale habitat selection of GPS 

tracked elk (Cervus elaphus) and determined that at a fine scale, elk avoided the most rugged terrain 

that was difficult to traverse, whilst at a broader scale habitat selection was driven by forage 

availability and the terrain being slightly less rugged. 

 

Bettongia tropica at Emu Creek and Davies Creek selected foraging areas with a higher abundance of 

coarse woody debris cover, with debris cover being significantly higher at Emu Creek. Coarse woody 

debris may help to provide camouflage from predators (Doherty et al. 2015). Increased ground cover, 

including taller grass and more coarse woody debris, can increase shelter and refuge for small 

mammals (Doherty et al. 2015) and reduce the hunting success and habitat quality of introduced 

predators, such as feral cats (McGregor et al. 2014). Woody debris has the advantage of not 

substantially hindering the movement of B. tropica, with bettongs observed easily hopping over logs 

and fallen branches (pers. obs.). At Davies Creek, B. tropica foraged on steeper slopes than random, 

which may reduce the chance of predators detecting bettongs (Buckmaster 2011; McGregor et al. 

2015).  

 

Predation pressure can drive habitat selection by small mammals and bettongs may choose to forage 

within more open areas to increase their ability to escape predators. For example, Spencer et al. (2014) 

found that spinifex hopping-mouse (Notomys alexis), an Australian desert rodent, foraged primarily in 

open areas and most likely used avoidance behaviours when foraging to manage predation risk, with 

their bipedal movement allowing them to move efficiently across open environments. Similarly, B. 

tropica use bipedal hopping to travel for long distances at high speed (Claridge et al. 2007) and 

rapidly flee when approached by predators (Chapter 4).  

 

Surprisingly soil moisture did not significantly affect foraging habitat selection. This contrasts with 

other studies on bettongs, with Yeatman and Wayne (2015) determining that brush-tailed bettongs 
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(Bettongia penicillata) favoured low-lying valleys and slopes with greater water holding capacity, as 

these regions potentially had greater truffle (food) abundance. Soil moisture may not have varied 

sufficiently between foraging and random areas for a significant trend to be detected. This is likely 

given that most foraging areas were sampled during the late dry season/early wet season when soil 

moisture is likely to be low. Truffle abundance was unable to be sampled in this study due to sampling 

difficulty and time constraints. The direct association between habitat selection and truffle presence is 

unknown. Considering truffles comprise around 30% to 90% of B. tropica diet throughout the year 

(Johnson & McIlwee 1997; McIlwee & Johnson 1998; Nuske 2017), truffle abundance is assumed to 

strongly influence where B. tropica forage. 

 

5.5.4 Camera trapping 

Camera trapping data suggests that B. tropica need to select habitat that reduces their exposure to 

predation risk. There was a ratio of 1:76 (predator to B. tropica sightings) at Davies Creek, 1:55 at 

Emu Creek and 1:60 at Tinaroo Creek. The cat detected at Tinaroo Creek is of concern, as only a few 

cats have the potential to cause substantial population declines in bettong populations (Short & Turner 

2000; Fancourt 2014). Additionally, the population viability analysis indicates B. tropica populations 

on the Lamb Range would rapidly (<50 years) decline to extinction if a cat population established 

within the area (Chapter 2). The feral cat was recorded during the camera trapping session conducted 

in November 2015. However, no decline was detected in the population density of B. tropica in the 

following cage trapping sessions (November 2015 to 2016) (Chapter 3). If the cat had only recently 

intruded into the area, a decline might occur in future, with any decline currently too minor to be 

detected. It is also possible that the cat may not regularly forage within the habitat, although this is not 

known. It is recommended that monitoring of predator populations within the Lamb Range continues. 

Predators are often difficult to detect, with different species and individuals either being deterred or 

attracted to camera traps (Meek et al. 2016). Consequently, it is possible that predator numbers were 

much higher than detected. Additionally, habitat surveys were undertaken within a relatively small 

proportion of the landscape (600 m2 or 0.06 ha compared to an average effective camera trapping area 

of 307.33 ha for the three sites). The presence of other predators, such as snakes and owls, was not 

assessed, with further study into predator density required on the Lamb Range.  

 

Davies Creek and Emu Creek had similar camera capture rates of competitors, with a ratio of 

approximately 1:6 (potential competitor to B. tropica), whilst Tinaroo Creek had a lower ratio of 1:24. 

Pigs were present at each site, although uprooted vegetation, consistent with pig foraging (Laurance 

1997), was only observed at Davies Creek in two small locations (<3 m2) (pers. obs.), with no habitat 

damage observed at Emu Creek or Tinaroo Creek. Cattle were only detected at Emu Creek. Feral pigs 

and cattle can alter habitats by reducing grass cover, changing plant community composition to favour 

invasive plant species and altering soil fertility and structure (Yates et al. 2000; Oldfield & Evans 
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2016; Wang 2017). Feral pigs may also selectively graze and uproot cockatoo grass (Crowley et al. 

2004) and may also forage for truffles (Laurance 1997; Laurance & Harrington 1997). When 

management burns are undertaken in far north Queensland, cattle often congregate in areas of new 

growth (A. Hedges, pers. comm.). This may result in fire-adapted grass species that re-shoot quickly 

after fire, such as cockatoo grass (Bateman & Johnson 2011), being targeted by cattle. The detrimental 

impacts of predation and fire on small mammals can be exacerbated by habitat alteration caused by 

competitors and grazing (Fisher et al. 2013; McGregor et al. 2014). It is recommended that the extent 

of competition (and possibly predation) between B. tropica and feral pigs as well as competition by 

cattle be assessed in future. 

 

Rufous bettongs were detected on camera traps at Emu Creek, with all captures in the lower section 

(300 m) of four transects. In this region the vegetation was drier with a sparse understorey of shrubs 

and less grass cover (pers. obs.). Rufous bettongs utilise very similar nesting materials to B. tropica 

(Wallis et al. 1989) and have a similar diet, although grass constitutes a greater proportion of their diet 

(around 80%) (McIlwee & Johnson 1998). Bettongia tropica are likely to be under stronger 

competitive pressure from rufous bettongs where truffle abundance is lower and B. tropica relies more 

on grasses for food, such as during the dry season and within drier habitats (such as Emu Creek) 

(Bateman et al. 2011). A more comprehensive study is required to determine both predator and 

competitor densities on the Lamb Range and to assess their influence on B. tropica. 

 

5.6 Management implications 

Overall, B. tropica foraged within relatively open habitats, with these habitats potentially making it 

easier to travel throughout the landscape and to flee from predators. In contrast, habitats that provided 

cover from predators were selected at nesting areas. This suggests predation pressure is a major factor 

governing habitat use by B. tropica. Competitor pressure may also influence habitat use, especially at 

Emu Creek. At Emu Creek managers need to consider the competitive interactions between rufous 

bettongs and B. tropica to ensure there are sufficient resources to support both bettong species, 

particularly during the dry season. 

 

Poorly camouflaged nests may increase the predation risk of B. tropica, highlighting the importance of 

ensuring the habitat contains high grass cover and an abundance of grass trees. Vegetation thickening 

(lantana infestation and Allocasuarina thickening) may be reducing the abundance of nesting 

resources at Tinaroo Creek, resulting in the construction of less well-camouflaged teepee nests. Fire 

can reduce the rate of woody thickening or rainforest encroachment and may enable the weedy and/or 

thickened habitat to transition back to Eucalyptus woodland (Scott et al. 2012; Department of 

Environment and Heritage Protection 2017). When undertaking management burns throughout the 
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Lamb Range, managers should focus on burning the patches of thickened vegetation, especially 

lantana and Allocasuarina stands (DEHP 2017a).  

 

The presence of B. tropica outside of the Lamb Range is poorly known, with current distribution maps 

largely based on modelling of the distribution of truffles and cockatoo grass (two main food resources 

of B. tropica) (Bateman et al. 2011). Modelling the occupancy of B. tropica based on the fine-scale 

habitat requirements of the species would enable the presence/absence outside of the Lamb Range to 

be predicted. On-ground surveys should focus on surveying within areas with a grassy understorey 

with an abundance of grass trees and cockatoo grass, steep slopes and low tree basal area, as these 

variables were important to B. tropica. Such a focused survey would increase the chance of detecting 

B. tropica in the field (McDonald et al. 2015). Monitoring programs are often time and labour 

intensive (Garden et al. 2007) and improving the efficiency of monitoring will enable greater coverage 

during surveys. Once presence within an area is confirmed, managers can focus on protecting B. 

tropica at all locations where the species is present, rather than mainly within the core population on 

the Lamb Range. This new knowledge of habitat requirements for nesting and foraging can assist in 

preserving or improving habitat quality throughout the range of the species (Beerens et al. 2015; 

Stirnemann et al. 2015) and ultimately benefit the species’ conservation (Griffen & Drake 2008).  
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Chapter 6: Synthesis and management recommendations 

 

6.1 Thesis summary and implications 

The overall aim of my research was to determine the population trends and habitat requirements of B. 

tropica to understand more about their ecology and improve the conservation management of the 

species. This is the first study on B. tropica that used the combination of cage and camera trapping and 

GPS collars to assess multiple aspects of the species ecology, including movement patterns, habitat 

requirements at nesting and foraging areas, the presence of predator and competitor species and the 

population density of B. tropica. This chapter highlights the major findings and significance of the 

research and makes recommendations for implementing management actions to improve the 

conservation of the species.  

 

6.1.1 Population viability of B. tropica (Chapter 2) 

Population viability modelling indicated that within all sub-populations (Bridle Creek, Davies Creek, 

Emu Creek and Tinaroo Creek) on the Lamb Range, B. tropica were highly vulnerable to increases in 

predation by feral cats. More frequent or intense droughts and fires, as expected with climate change, 

were not expected to substantially impact the viability of B. tropica populations. However, the 

interaction between fire and predation can influence the viability of B. tropica, as fire reduces the 

vegetation cover that conceals prey species, thereby increasing the hunting success of predators 

(Cherry et al. 2017). Viability analyses also determined that under current conditions, B. tropica sub-

populations were resilient to fluctuations in population abundance. The most important finding from 

Chapter 2 was that mortality in juvenile and sub-adults rather than adults, has the largest impact on the 

viability of B. tropica populations. 

 

Increasing the survival rate of juveniles and sub-adults may increase the population size of B. tropica. 

This would benefit the species viability as larger populations have greater resilience to change 

(Spradling et al. 2010). However, B. tropica populations may already exist at their optimal carrying 

capacity, given that the population has remained stable but not increased despite 10 years of changed 

fire management. When populations are at carrying capacity, increasing the survival rates of particular 

age classes can result in the habitat becoming heavily oversaturated and consequently cause over-

compensatory mortality of the age class (Ayllón et al. 2012). This then prevents the population from 

reaching carrying capacity in the following years (Ayllón et al. 2012). Habitat area, as well as quality, 

would need to be increased to allow B. tropica populations to expand.  
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6.1.2 Population trends of B. tropica (Chapter 3) 

The population density on the Lamb Range has remained stable for the last 20 years. This is the first 

study to provide evidence indicating that low-intensity mosaic burns have not detrimentally impacted 

upon B. tropica populations. Tinaroo Creek had the highest population density, potentially due to the 

site having a more productive habitat. Seasonality or site did not influence body condition or the 

number of females with pouch young, indicating that under the stable weather conditions experienced 

during and prior to my study, the Lamb Range provided sufficient resources to sustain B. tropica 

populations throughout the year. 

 

Although the population on the Lamb Range appears stable, consistent and regular monitoring needs 

to continue in order to detect potential changes in the species’ population density and/or distribution. 

Trap success fluctuated seasonally, meaning population density estimates are likely to be inaccurate if 

the population is inconsistently monitored or monitored only during one season. It is recommended 

that camera trapping be conducted twice a year for one month in February (wet season) and August 

(dry season). This would minimise the influence of seasonality and time of year on camera capture 

rates. If camera trapping twice a year is not feasible, it is recommended that camera trapping be 

conducted once a year for two to three months from November (late dry season) to December 

(transition from late dry to early wet season), or preferably, to January (early wet season). Cage 

trapping each year would be preferable, as it would enable B. tropica to be individually identified and 

the population density to be accurately ascertained. However, cage trapping is much more time and 

labour intensive than camera trapping and would not be logistically possible for long-term monitoring. 

Cage trapping should be conducted every five to 10 years to reassess the population density, with 

camera trapping undertaken once or twice a year to monitor population trends. If camera trapping 

indicates a continual population decline, cage trapping should be conducted to verify the decline 

before extensive management strategies are undertaken. 

 

Future monitoring should be undertaken along the same sampling transects, with cages placed in the 

same locations for each survey and preferably in the locations used in this study to allow comparisons 

of density estimates over time. Regular monitoring ensures long-term trends can be accurately 

assessed and maximises the chance of early detection of changes in population density (Lurz et al. 

2008). More frequent monitoring also increases the likelihood of detecting trends and correctly 

interpreting their direction (Nuno et al. 2014). Systematic information regarding population trends can 

provide insights concerning the causes of decline (Bonebrake et al. 2010), which is crucial for 

mitigating declines (Holsinger 2000). 
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6.1.3 Home range and movement patterns of B. tropica (Chapter 4) 

The assessment of the home range and movement patterns of B. tropica provided information 

regarding the habitat quality and broad-scale distribution of resources at each of the study sites. The 

home ranges of B. tropica were similar across all sites, indicating similar resource distributions. 

However, females at Tinaroo Creek spent more time foraging, compared to travelling, indicating 

resources occurred at higher density.  

 

Some collared B. tropica at Tinaroo Creek constructed teepee nests within sub-optimal nesting areas. 

Increasing the area and quality of habitat may increase the carrying capacity of the habitat and 

potentially enable non-dominant individuals to have higher breeding success (Griffen & Drake 2008). 

This may increase the population size and improve the population viability of B. tropica.  

 

Fire management is currently conducted at a 60 ha scale based on the previous estimate of home range 

(Vernes & Pope 2001). It seems likely that current fire regimes are suitable for maintaining the 

population density of B. tropica given that the population density is stable from estimates 20 years 

ago. However, as seen in the population viability analysis, if fire intensity or the abundance of 

predators increased on the Lamb Range, B. tropica may be more reliant on sufficient grass cover to 

provide camouflage from predators. It is therefore recommended that management burns be conducted 

at a 20 to 60 ha scale, with a 20 ha scale highly recommended during particularly dry periods.  

 

6.1.4 Microhabitat requirements of B. tropica (Chapter 5) 

The habitat requirements of B. tropica on the Lamb Range differed between the three study sites. 

Habitat selection whilst nesting appeared to be influenced by predation pressure and nests were often 

well camouflaged and difficult to detect in the field. For nesting, B. tropica selected habitats with 

steep slopes, high grass cover and an abundance of grass trees. Foraging areas were selected for their 

abundance of food resources (cockatoo grass), to minimise predation risk (by using steep slopes) and 

to increase ease of travel throughout the landscape including areas with low tree basal area. Variables 

that are selected across all sites are expected to be important throughout the rest of the species 

distribution. Based on these results, management can be tailored to increase the microhabitat 

suitability for B. tropica. 

 

This study provides an insight into the predator (dingoes and cats) and competitor species (feral pigs, 

cattle and native rufous bettongs) that are present on the Lamb Range. The results from this study 

provide an approximate baseline of the number of predator individuals and camera capture rates of 

competitor species and predator species. The stability of B. tropica populations on the Lamb Range, 

together with the camera capture rates, indicate that cats and dingoes rarely occur within the study 

sites. However, B. tropica selected nesting habitats that increased camouflage and foraging habitats 



	 116	

that were open enough to allow them to flee from predators. This indicates that predation pressure 

strongly impacts on the habitat use and movements of B. tropica, even if the population density is 

currently not adversely affected. 

 

Bettongia tropica at Emu Creek are likely to be under greater predation risk than at other sites, as there 

was a higher ratio of predators to B. tropica individuals. In addition, B. tropica competed with rufous 

bettongs and cattle, neither of which were detected at the other sites. Monitoring at Emu Creek may 

thus provide the earliest indication of changes in competitor and/or predator pressure.  

 

It is recommended that the competitive interaction between B. tropica and non-native species be 

comprehensively assessed, with competitor and predator populations to regularly monitored. To assess 

the competition between species, the area uprooted by feral pigs could be measured as a proportion of 

the total habitat. Measuring the area where there is very short, cropped grass (indicative of grazing) 

(Kuiper & Parker 2013) could assess the influence of cattle. At Emu Creek, cattle are able to intrude 

into the area due to a downed fence from the nearby cattle property (pers. obs.). It is recommended 

that the fence is repaired and maintained to stop cattle grazing within the area. If competition between 

feral pigs or cattle and B. tropica is high, it is recommended that pigs are controlled, cattle excluded 

from the area and grazing leases not be renewed within habitats where bettongs occur. 

 

6.2 Future research 

6.2.1 Using habitat requirements to determine the distribution and population abundance of B. tropica 

The total population abundance of B. tropica has not yet been accurately estimated, as my study only 

ascertained the population density within a specified area. It is not logistically possible to cage trap 

throughout the entirety of the Lamb Range to ascertain the species population density across the whole 

landscape. Instead, future studies should focus on using cameras traps to estimate population 

abundance and occupancy. 

 

Areas of potentially suitable habitat for B. tropica have been modelled (Bateman et al. 2011; Bateman 

et al. 2012) and camera trapping commenced in late 2017 to assess for the presence of B. tropica 

within potentially suitable habitat elsewhere in the Wet Tropics bioregion (outside of the Lamb 

Range). Cameras were spaced one camera/km2 (Todd et al. 2017, unpublished) based on the mean 

home range diameter of a male B. tropica being 862 m (Chapter 3). Bettongia tropica individuals 

cannot be identified visually and it is unknown how many individuals are represented by multiple 

camera captures at the same location. However, since B. tropica seasonal home ranges are less than 1 

km2 (or 100 ha) (Chapter 4), it can be assumed that a B. tropica individual recorded at one camera trap 

would be unlikely to travel to another camera trap if trapping was conducted within the same season. 
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This allows a surrogate of population abundance to be calculated using occupancy modeling (Burton 

et al. 2015) and also provides crucial information on the species detectability and presence/absence. 

 

The accuracy of population estimates, calculated using occupancy modelling, should be verified by 

comparing them to my estimates calculated from camera and cage trapping. Verification is important 

as occupancy does not necessarily reflect population abundance, especially on a small-scale or when 

the maximum distance for detecting animals on cameras is unknown or variable between cameras due 

to various factors, such as vegetation density, weather or background noise (Matthews et al. 2011; 

Efford & Dawson 2012). I found across the three study sites, there was an average camera trapping 

density of approximately 289 B. tropica captures per km2 (converted from density estimates per ha 

from Chapter 5). This equated to a population density of approximately 10 per km2 across the three 

study sites based on cage trapping (Chapter 3). This equates to a ratio of one B. tropica individual to 

28.9 B. tropica camera captures. Future studies could also calculate a ratio of camera captures to 

population density calculated using occupancy modelling. Although the ratio may vary throughout the 

landscape, comparing the ratios between studies may provide an indication of whether the occupancy 

estimates are likely to be accurate.  

 

Trap placement can influence trap success rate, as mammals are more likely to be trapped within 

habitats or areas they favour (Astúa et al. 2006). To detect for the presence/absence of species in order 

to ascertain the species’ distribution, I recommend camera traps be placed on steep slopes within areas 

with a high abundance of cockatoo grass. Surveying within favoured habitats can increase the 

efficiency of detecting animals, provide a more accurate assessment of a species distribution (Gibson 

et al. 2004; McDonald et al. 2015) and improve population density estimates (Plumptre 2000). To 

estimate population densities, it is recommended that future studies be conducted within both favoured 

and non-favoured habitats (Plumptre 2000). Sampling within only favoured habitat should be avoided 

for detecting population trends, as populations may concentrate within these habitats when the species 

is declining elsewhere (Plumptre 2000). 

 

6.2.2 Tracking the fate of juveniles 

There is minimal information on juvenile B. tropica and no study has studied juvenile survival rates. 

Future studies should track the long-term survival rates of juveniles from within the pouch until 

adulthood. If the current stable population density of B. tropica on the Lamb Range was to decline, my 

models suggest that juvenile mortality would be the likely driver. Research should therefore also 

determine the factors that contribute to juvenile mortality including verifying the assumption that 

predation is the major cause. Management would then be able to focus on undertaking strategies to 

minimise the most likely threat/s to juvenile mortality, 
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6.2.3 Tracking dispersing sub-adults 

My study determined the fine-scale movement patterns of adults over a relatively short time period (up 

to 42 days) at three sub-populations. However, little is known regarding the movements of sub-adults 

(250 to 950 g). The high genetic diversity within the Lamb Range suggests the sub-populations are 

connected, with around 20% dispersal of male sub-adults (Pope et al. 2012). Research into the 

movements of sub-adults may help verify this and determine the location of dispersal corridors. 

Managers could then focus on maintaining or improving habitat quality of these corridors to maximise 

connectivity between sub-populations. It is important that sub-populations remain connected as 

isolated and small populations tend to have low genetic diversity (Schwartz et al. 2003; Mimura & 

Aitken 2009; Pacioni et al. 2013), low viability (Spradling et al. 2010) and are often the first to 

disappear (Gedir et al. 2015). 

 

6.3 Conclusion 

This study provided comprehensive baseline information on the population density, movement 

patterns and habitat requirements of B. tropica. Managers can use this information to tailor 

management strategies to improve habitat quantity and quality for B. tropica. Management has often 

been reactive, with actions implemented once a decline is observed (Rodrigues 2006). However, 

declines can be difficult to accurately detect (Lurz et al. 2008), especially since many populations are 

not regularly or consistently monitored (Oakley et al. 2003). Consequently, substantial or catastrophic 

declines often occur before control measures are undertaken (Plumptre 2000). This is especially the 

case when threats, such as disease (Daszak et al. 2011) or increased predation, have a severe and rapid 

impact upon the population (Fancourt 2014). It is thus crucial for management to be pre-emptive and 

focus on preventing declines before they occur and safe-guarding populations against extinction 

(Norris & Harper 2003; Biebly et al. 2008; Weldon et al. 2013). 

 

Bettongia tropica is an example of a species where pro-active, rather than reactive, management has 

been undertaken within the core population. This strategy appears successful, with the B. tropica 

population on the Lamb Range so far remaining stable. The Lamb Range has had a relatively stable 

climate, which may have assisted the persistence of B. tropica. However, environmental changes 

resulting from climate change are predicted to worsen with time (Steffen et al. 2017) and are predicted 

to exacerbate or increase the number of threats operating upon species (Didham et al. 2007; Bellard et 

al. 2012). This may result in unstable weather patterns or more predators intruding into the Lamb 

Range (Burbidge & Woinarski 2016), which my models show may threaten the viability of B. tropica. 

It is thus important to continue and improve habitat management as recommended and to undertake 

monitoring of B. tropica and potential competitors and predators. 
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Conserving B. tropica may provide conservation benefits for other species within Eucalyptus 

woodlands. Protecting keystone species (Jonnson & Holbrook 2014), such as B. tropica (Nuske 2017) 

may also benefit the health and viability of the entire ecosystem and the species dependent on the 

ecosystem (Norris & Harper 2003). Maximising the conservation benefit from one management 

program is especially important considering climate change could have dire consequences for many 

species, including species that are not currently threatened (Jetz et al. 2007) and it is not feasible to 

individually manage all species. Therefore, continuing to increase the population viability and 

recovery of a keystone species such as B. tropica is a high conservation priority. 
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Appendix A. Base model of life-history parameters and age class mortalities used in population viability analyses of Bettongia tropica on 

the Lamb Range, north-eastern Queensland. 

Scenario settings Data input Justification 

Duration of simulations (years) 100  

Number of iterations 1000  

Number of populations 4 
Vernes and Pope (2006) showed that Davies, Tinaroo, Emu and Bridle Creeks all had viable populations. All four were modelled 

as a metapopulation.  

Dispersal   

Dispersing Class males aged 1 year  

% Surviving Dispersers 
87%, but no dispersal into 

saturated populations 
See below for discussion of survivorship 

Percent dispersing/immigrating 20% Pope et al. (2012) showed 80% of males are sedentary, whilst 20% disperse. Bridle Creek and Tinaroo Creek are the most 

northerly and southerly populations, with 20% of individuals modelled to disperse to adjacent populations at Davies Creek and 

Emu Creek respectively. Davies Creek and Emu Creek provide 10% dispersal to populations located to north and south.  

Life-history parameters 

Inbreeding  No  

Mating system Short-term monogamy or 

polygyny 

Pope et al. (2012) defined B. tropica mating system as ‘overlap promiscuity,’ however it may be ‘serial monogamy’. 

Female breeding age (years) 1 Vernes and Pope (2002) estimated earliest age of reproduction for females was at 9-12 months; Johnson and Delean (2001) 

suggested captive B. tropica females can breed at 1 year. 

Male breeding age (years)  1 Males estimated to reach sexual maturity at same age as females (1 year) (Vernes & Pope 2002).  

Maximum breeding age (years) 5 Vernes and Pope (2002) recorded individuals alive at 4.9 years of age, so it is estimated that animals can breed to 5 years.  

Maximum age (including non-

breeding senescence) 

7 Seebeck and Rose (1989) suggested that potoroids live up to (perhaps beyond) 7 years in the wild. However, older animals (≥ 8 

years) in a captive colony of Aepyprymnus rufescens at University of New England (unpublished) could not produce young.  

Sex ratio at birth (% males) 50 Vernes and Pope (2002) found no significant difference in sex ratio at birth. 
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Number of broods per year 3 Johnson and Delean (2001) recorded continuous breeding in a captive population, as is typical of other potoroids (Seebeck & 

Rose 1989). Vernes and Pope (2002) recorded B. tropica pouch life of 106 days, with young born in all months. A female can 

thus theoretically rear three successive pouch young to permanent pouch emergence each year. 

Number of progenies per brood 1 Single young have only ever been recorded (Vernes & Pope 2002), although twins may occur in extremely low rates (as found in 

other macropod species). 

Percentage of females breeding 

each year 

96 Vernes and Pope (2002) found that of 120 captures of adult females, 115 (96%) were carrying a pouch young at the time of 

capture. 

Standard deviation (SD) in percent 

of females breeding 

3.9 Using VORTEX 10 and data from Vernes and Pope (2002), a SD of 3.9 was estimated (8%/2.06 SD units (over 4 years) 

Of females breeding, percentage 

producing 1, 2, or 3 offspring? 

1 offspring = 8 

2 offspring = 34 

3 offspring = 58 

The likelihood of a female having 1, 2 or 3 young/year was calculated from Table 2 in Vernes and Pope (2002). 8% of females 

were estimated to have had 1 young (and lost the others), 34% had two young (but lost the third) and 58% carried all 3 young to 

permanent pouch emergence. 

Age class mortalities (percent for males and females including environmental variation/standard deviation) 

0-1 year 48 (SD = 10) 

Vernes and Pope (2002) recaptured 6 of 29 pouch young as sub-adults, indicating 79% of pouch young did not survive. About 

50% did not survive until permanent emergence from the pouch. Therefore, assumed mortality was 40%. Of sub-adults tagged (21 

animals: 9 females, 12 males) only 6 females (6/9 = 67%) and 3 males (3/12 = 25%) were recaptured as adults. Pope et al. (2012) 

estimated that male:female dispersal is 80:20 biased towards males. Mortality of sub-adults was therefore estimated at 13% 

(67+20 = 87% survival). 40% mortality from pouch to sub-adult, and 13% from sub-adult to adult yields average mortality of 

approx. 48%.  

1+ years 15 (SD = 2) 
Adult survivorship probability has been estimated at ≥80% (Vernes & Pope 2002). Adult mortality was therefore estimated as 

15% (85% survivorship), with low (2%) standard deviation. 

All adult males breeding Yes  

Start at stable age distribution Yes  

Initial population size (N) 

BC = 105 

DC = 225 

EC = 300 

TD = 435 

 

Each population was treated as a 30 km2 cell (5 km long x 6 km wide - the width of the dry end of wet sclerophyll occupied by B. 

tropica on the Lamb Range). Applying maximum densities calculated by Vernes and Pope (2006), initial population sizes for 

each location are: Bridle Creek (BC): 30 km2 x 3.5 bettongs/km2 = 105 animals; Davies Creek (DC): 30 km2 x 7.5 ± 1.20 

bettongs/km2 = 225 ± 26 animals; Emu Creek (EC): 30 km2 x 10 bettongs/km2 = 300 animals; Tinaroo Creek (TC): 30 km2 x 14.5 

bettongs/km2 = 435 animals. Population densities were calculated by undertaking Jolly-Seber analysis of B. tropica captures at 
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each site, with 10 three-night trapping sessions conducted between November 1994 and December 1996. Sampling effort varied 

between sites, with 125 trap nights conducted at Bridle Creek, 4,267 at Davies Creek, 130 at Emu Creek and 334 at Tinaroo 

Creek. It is thus acknowledged that differences in sampling effort may have influenced population abundance estimates. 

Carrying capacity (K) As above 
Observations 17 years ago suggest the carrying capacity was equal to the initial population size. Although the current carrying 

capacity might be lower, this is the best estimate available.  

Standard deviations in carrying 

capacity 
10% A 10% deviation allows for population fluctuation.  

Trend in carrying capacity No  

Harvest of individuals No  

Supplementation No  

Specify exact distribution Yes  
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Appendix B. Presence/absence matrices of Bettongia tropica individuals at Davies Creek, Emu Creek and Tinaroo Creek based on cage 

trapping mark-recapture data. 

 

Table B.1. Presence/absence matrix of Bettongia tropica individuals at Davies Creek based on mark-recapture data. A ‘1’ indicates presence, whilst ‘0’ 

indicates absence. ‘S’ represents trapping session, with 1 to 9 indicating the first to ninth trapping session. ‘D’ represents trap night and the number relates to 

the first to fourth night of trapping within the trapping session (e.g. S1D1 is the first night of the first trapping session). The number of captures is listed in the 

last column. The orange shading highlights the first capture for each individual, whilst the purple shading highlights individuals’ presence. The last 5 digits of 

the microchip number are shown. 
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24253 F 1 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 16 
24651 M 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 
24139 M 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25 
25096 F 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
24646 F 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 5 
34853 M 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 1 19 
E4720 M 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 13 
25135 M 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 
35187 M 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 1 1 12 
24213 M 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 
25129 F 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 11 
24454 F 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0 9 
24386 M 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 8 
24424 F 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
25433 M 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 13 
25229 M 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
24982 F 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 1 0 1 0 0 11 
24463 M 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 5 
25002 F 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 0 12 
25190 M 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 0 1 10 
24011 M 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
24879 M 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 7 
24765 F 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
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23973 M 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
24787 F 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
24570 M 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 
25290 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 4 
31782 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 
24972 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
53368 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 
25195 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
07099 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 4 
24889 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 
07252 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 4 
24649 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 4 
24243 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 
24520 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 4 
03932 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 4 
24762 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
03909 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 2 
12738 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 
38116 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 
38113 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 
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Table B.2. Presence/absence matrix of Bettongia tropica individuals at Emu Creek based on mark-recapture data. A ‘1’ indicates presence, whilst ‘0’ 

indicates absence. ‘S’ represents trapping session, with 1 to 9 indicating the first to ninth trapping session. ‘D’ represents trap night and the number relates to 

the first to fourth night of trapping within the trapping session (e.g. S1D1 is the first night of the first trapping session). The number of captures is listed in the 

last column. The orange shading highlights the first capture for each individual, whilst the purple shading highlights individuals’ presence. The last 5 digits of 

the microchip number are shown. 
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23900 M 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 25 
25242 M 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 6 
24595 M 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
25008 M 0 1 1 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 1 18 
25395 M 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 18 
24224 F 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
24626 F 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 8 
24143 M 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
24786 F 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 
24892 M 0 0 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 17 
24878 F 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0 0 1 1 14 
10781 M 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
25015 F 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 4 
25285 M 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 
24753 M 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 1 23 
24837 M 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
23897 F 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
53370 M 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
25149 F 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
24474 F 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 13 
25438 F 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
24868 F 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
25393 M 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
25379 F 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 17 
25061 M 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 13 
24232 F 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 
24898 F 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 6 
24748 F 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 8 
24183 M 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
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25438 F 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
31905 M 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 1 9 
24261 M 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 4 
24479 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
31863 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 10 
31891 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 6 
53371 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
24779 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 4 
24391 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 10 
24249 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
53311 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 7 
07195 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
53365 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
24126 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 4 
07083 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 
07304 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
07185 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 5 
24203 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 8 
24846 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 4 
94393 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 5 
25101 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 2 
24942 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 0 6 
24577 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 8 
07196 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 7 
03899 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
25203 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
07320 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 3 
12748 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 3 
25167 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 4 
24136 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 2 
35100 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 
07118 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 3 
38095 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
25098 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
00000 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
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Table B.3. Presence/absence matrix of Bettongia tropica individuals at Tinaroo Creek based on mark-recapture data. A ‘1’ indicates presence, whilst ‘0’ 

indicates absence. ‘S’ represents trapping session, with 1 to 9 indicating the first to ninth trapping session. ‘D’ represents trap night and the number relates to 

the first to fourth night of trapping within the trapping session (e.g. S1D1 is the first night of the first trapping session). The number of captures is listed in the 

last column. The orange shading highlights the first capture for each individual, whilst the purple shading highlights individuals’ presence. The last 5 digits of 

the microchip number are shown. 
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25179 M 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
24834 F 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 25 
23980 F 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 15 
24446 F 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 17 
24954 F 0 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 21 
24503 F 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 17 
24531 F 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 1 1 0 1 0 1 1 1 1 16 
24619 M 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 20 
24866 F 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 27 
22644 M 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
25330 F 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
24897 M 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 22 
25294 M 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 15 
25329 M 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 11 
24120 F 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 0 14 
24791 F 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
24354 M 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 
24910 M 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 
24749 M 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 6 
24188 M 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 5 
24827 F 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 7 
10779 F 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
10782 F 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
25407 F 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 19 
24993 M 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
24766 F 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
25147 M 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 1 0 0 1 0 11 
25116 F 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 
25191 F 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
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24902 F 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 5 
24168 F 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
24720 M 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 6 
25146 M 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 15 
24422 F 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 11 
53366 M 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 6 
53309 F 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 9 
53373 M 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 
53310 F 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 6 
24838 F 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
53372 F 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 4 
24564 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
24941 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 8 
10783 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
24602 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
53312 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
53369 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
53313 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
24498 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 4 
53367 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
94386 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
24702 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
07312 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
24935 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 
24605 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 4 
24385 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 7 
24301 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 2 
24212 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 5 
94390 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 6 
94396 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 
24640 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 
24996 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 4 
12733 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 3 
12753 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
12736 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 5 
12746 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 3 
12732 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 



	 170	

Micro-
chip 
number 

Sex S
1
D
1 

S
1
D
2 

S
1
D
3 

S
1
D
4 

S
2
D
1 

S
2
D
2 

S
2
D
3 

S
2
D
4 

S
3
D
1 

S
3
D
2 

S
3
D
3 

S
3
D
4 

S
4
D
1 

S
4
D
2 

S
4
D
3 

S
4
D
4 

S
5
D
1 

S
5
D
2 

S
5
D
3 

S
5
D
4 

S
6
D
1 

S
6
D
2 

S
6
D
3 

S
6
D
4 

S
7
D
1 

S
7
D
2 

S
7
D
3 

S
7
D
4 

S
8
D
1 

S
8
D
2 

S
8
D
3 

S
8
D
4 

S
9
D
1 

S
9
D
2 

S
9
D
3 

S
9
D
4 

Capt
ures 

12723 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 2 
12747 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 2 
12751 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 
12757 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 
25410 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 
38103 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 
07051 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 
07440 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 
12761 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2 
38094 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 
24118 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 
38112 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
12744 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 
38104 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
25594 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
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Appendix C. Validating the model assumptions of Pollock’s robust design. 

 

The Pollock’s robust design model has two assumptions: (1) the trapped population represents the 

target population, and (2) there is an equal probability of capturing individuals (Chapter 3). To test 

these assumptions, a preliminary robust design model was constructed in RStudio.  

 

Testing assumption one: assessing for large residuals and calculating model goodness of fit 

Large residuals indicate the population does not accurately represent the population, with large 

residuals needing to be removed. To assess the model residuals, Pearson’s residuals were plotted 

against the frequency of capture of B. tropica individuals. To assess the model fit, a goodness of fit of 

the robust design models was undertake (Baillargeon & Rivest 2007). A fit of ≥0.80 was deemed 

suitable (Lettink & Armstrong 2003). 

 

Pearson’s residuals ≥3 were considered outliers (Huffman & Szafron 2017) and removed. At Davies 

Creek and Tinaroo Creek, there was one outlier, with Emu Creek having two outliers (Figure C.1). 

Once outliers were removed, the model fit at all sites improved (Table C.1) and residuals were more 

evenly distributed (Figure C.1aii, bii and cii). 

 

Table C.1. Goodness of fit with and without outliers (Pearson’s residuals ≥3) included in the robust 

design models. 

 Outliers included Outliers removed 

Davies Creek 0.665 0.998 

Emu Creek 0.923 0.990 

Tinaroo Creek 0.328 0.961 
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Figure C.1. Model diagnostics for population abundance at (a) Davies Creek, (b) Emu Creek and (c) 

Tinaroo Creek, showing Pearson’s residuals in relation to frequency of capture (i) prior to large 

residuals being removed and (ii) after residuals ≥3 were removed, with no outliers present.  

 

Testing assumption two: assessing for trap effect 

To assess for trap effect, robust design models (without outliers) were created (1) without trap effect 

(null model), (2) with trap effect and (3) with homogeneous trap effect (Baillargeon & Rivest 2007). 

Models with the lowest Akaike’s Information Criterion (AIC) values were deemed to be the best fit 

and models within two AIC values were assumed to be of equal fit (Burnham & Anderson 2004; 

i) 
 

ii) 

 

i) 

 

i) 
 

ii) 

b) 
 

ii) 

c) 

a) 
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Symonds & Moussalli 2011). AIC is a measure of the relative quality of the model (Burnham & 

Anderson 2004; Symonds & Moussalli 2011).  

 

Models without trap effect were better fitting at Davies Creek and Tinaroo Creek (lower AIC values), 

although models with trap effect were within 2 AIC values of the null model (C2). At Emu Creek, best 

fitting models incorporated trap effect (Table C2). However, since large residuals were removed and 

all null models had a high goodness of fit, population abundance models were considered valid and 

accurate (Baillargeon & Rivest 2007).  

 

Table C.2. Robust design models of Bettongia tropica sub-populations at Davies Creek, Emu Creek 

and Tinaroo Creek, comparing models with no trap effect (null model), trap effect and homogeneous 

trap effect. Models with the lowest Akaike Information Criterion (AIC) value (highlighted in bold), or 

within 2 AIC values of the lowest value (indicated by an asterisk), were considered to be the best fit. 

Degrees of freedom (df) and standard error (deviance) for each model are shown. 

 AIC df  Deviance 

Davies Creek:    

     null model 245.45 488 126.74 

     trap effect 247.44* 487 126.73 

     homogeneous trap effect 253.82 482 123.11 

Emu Creek:    

     null model 231.56 487 93.02 

     trap effect 230.12 486 89.57 

     homogeneous trap effect 219.09 481 68.54 

Tinaroo Creek:    

     null model 281.28 487 143.65 

     trap effect 283.06* 486 143.42 

     homogeneous trap effect 289.02 481 139.34 
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Appendix D. Calculating effective trapping area of each site. 

 

The effective trapping area was calculated by adding the mean home range radius of a male bettong 

(431 m) to all sides of each cage trap location. By measuring from each cage trap location means the 

cage trap locations are assumed to be the centre of the individuals’ home range. This is unlikely to be 

the case for all individuals and it is noted that the effective trapping area is an estimate of the true area 

used by individuals. 

 

As detailed in Chapter 4, Global Positioning System (GPS) collars were fitted to 51 B. tropica 

between February 2015 and 2016. The area of each collared individual’s home range was plotted on 

Google Earth®. The diameter of each home range was measured in Google Earth® using the line tool. 

Home ranges were not symmetrical and the longest diameter for each home range was measured. The 

radius was calculated by halving the diameter. The mean radius of males and females was calculated 

separately, with the average radius of home ranges utilised by males being 431 m ± 19.77 m (mean ± 

standard error) whilst females averaged 245 m ± 16.09 m.  

 

I used the home range diameter of males to calculate the effective trapping area. Using the home range 

of males may result in the effective trapping area being overestimated, especially since the home range 

radius was measured using the longest straight line of the home range. This may result in the 

population density being underestimated. This is because the density is calculated as 

abundance/effective trapping area and using the maximum effective area produces a lower density 

than if the effective trapping area was smaller. This approach was chosen so that the population 

density was a conservative estimate. Additionally, choosing 431 m also enabled population density 

estimates to be compared with results from Vernes and Pope (2006), who calculated the effective 

trapping area using a home range radius of 430 m based on their radio-tracking data.  

 

At Tinaroo Creek, a river that is 10 m to 50 m wide borders the study site. Seventeen B. tropica 

individuals were GPS collared at Tinaroo (Chapter 4). By plotting their home ranges on Google 

Earth®, it was determined that no individual crossed the river, despite eight travelling to ≤10 m of the 

river edge and another within 40 m. The river thus appears to impose a movement barrier to B. 

tropica. When calculating the effective trapping area at Tinaroo Creek, I therefore only measured up 

to the river (Figure 3.2). It was assumed that individuals that were trapped in cages near the river were 

likely to be on the periphery of their home range and may travel further inland than the radius 

measurement (431 m). To determine the distance individuals may have travelled inland, the distance 

between the river and each cage trap was measured and this distance subtracted from the 431 m radius. 

The resulting number was then added to the radius (431 m) (i.e. if a cage trap was only 200 m from the 
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river, 662 m was used (431 m + (431-200)), rather than 431 m). This new measurement was then used 

to delineate the boundary for the effective trapping area.   
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Appendix E. Influence of site and gender on the number of Bettongia tropica individuals 

and trap success during each cage trapping session. 

 

Repeated measures ANOVAs with Tukey honest significance difference (HSD) post-hoc tests 

(adjusted with Bonferroni correction) were undertaken to assess the influence of site and gender on (1) 

the number of individuals captured, and (2) the number of captures of B. tropica. Captures refers to 

the total number of times B. tropica were cage trapped.  

 

The number of B. tropica individuals and total captures of B. tropica differed between sites 

(individuals: F2,48 = 6.621, p<0.001; captures: F2,48 = 6.621, p = 0.00289), with significantly more 

individuals and captures recorded at Tinaroo Creek than at Emu Creek (individuals: p<0.001; 

captures: p = 0.00190). The number of individuals and captures were similar between Tinaroo Creek 

and Davies Creek (individuals: p = 0.117; captures: p = 0.212) and Davies Creek and Emu Creek 

(individuals: p = 0.0730; captures: p = 0.174). 

 

Overall, the individuals and captures of males and females were similar (individuals: F1,48 = 0.008, p = 

0.927; captures: F1,48 = 0.036, p = 0.849). There was an overall interaction between site and gender 

(individuals: F2,48 = 2.205, p = 0.121; captures: F2,48 = 1.601, p = 0.212). However, the number of 

female individuals differed between Davies Creek and Tinaroo Creek (p = 0.00158), as did the number 

of captures of females (p = 0.00893). 

 

Table E.1. Number of individuals and captures of Bettongia tropica at Davies Creek, Emu Creek and 

Tinaroo Creek during each of the nine trapping sessions between November 2014 and 2016.  

Site Trapping 

session 

Season Male 

individuals 

Male 

captures 

Female 

individuals 

Female 

captures 

Total 

individuals  

Number of 

captures 

Davies 

Creek 

Nov. 2014 Wet 6 8 4 7 10 15 

Feb. 2015 Wet 5 7 4 5 11 12 

May 2015 Dry 10 13 6 8 16 21 

Aug. 2015 Dry 11 24 10 18 21 42 

Nov. 2015 Dry 12 21 11 15 22 37 

Feb. 2016 Wet 8 11 4 4 12 15 

May 2016 Wet 6 12 7 10 13 22 

Aug. 2016 Dry 12 26 11 28 23 54 

Nov. 2016 Dry 8 19 10 15 18 34 

Total  Nov. 2014- 

2016 

     46 251 

Nov. 2014 Wet 6 9 3 3 8 12 
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Emu 

Creek 

Feb. 2015 Wet 7 12 6 7 8 19 

May 2015 Dry 10 18 10 15 20 33 

Aug. 2015 Dry 12 17 11 19 23 46 

Nov. 2015 Dry 16 32 9 18 25 50 

Feb. 2016 Wet 10 14 6 7 16 21 

May 2016 Wet 16 29 14 22 30 51 

Aug. 2016 Dry 19 38 15 34 34 72 

Nov. 2016 Dry 16 31 19 35 35 66 

Total  Nov. 2014-

Nov. 2016 

     65 370 

Tinaroo 

Creek 

Nov. 2014 Wet 5 8 7 9 12 17 

Feb. 2015 Wet 9 15 10 16 19 31 

May 2015 Dry 13 21 13 21 26 42 

Aug. 2015 Dry 15 28 17 33 32 61 

Nov. 2015 Dry 12 27 20 37 32 64 

Feb. 2016 Wet 8 14 15 30 23 45 

May 2016 Wet 13 21 17 26 30 47 

Aug. 2016 Dry 21 36 23 44 44 83 

Nov. 2016 Dry 17 36 24 47 41 83 

Total  Nov. 2014-

Nov. 2016 

     84 473 
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Appendix F. Number of individuals and density estimates of Bettongia tropica obtained 

using the Jolly-Seber methodology based on mark-recapture data. 

 

The number of individuals at each study site was calculated using the Jolly-Seber method for all 

trapping sessions, except the first and last session. Population density estimates were subsequently 

estimated. Davies Creek recorded the lowest density, with on average of 7.76 ± 0.63 bettongs/km2 

(Table F.1). The highest population density of B. tropica was recorded at Tinaroo Creek, with 15.05 ± 

1.25 bettongs/km2, which was around double that attained at Davies Creek (Table E.1). At Emu Creek, 

an estimated 8.74 ± 0.29 bettongs/km2 occurred (Table F.1). 

 

Table F.1. Population abundance and density estimates of Bettongia tropica populations at Davies 

Creek, Emu Creek and Tinaroo Creek. Population estimates were calculated using the Jolly-Seber 

methodology and include the associated standard error. Abundance and density estimates are unable to 

be computed for the first and last trapping sessions. 

 Season Population abundance Density estimates (individuals/km2) 

Davies Creek    

November 2014 Wet (not computable) (not computable) 

February 2015 Wet 22.37 േ 2.63 6.90 േ 0.82 

May 2015 Dry 20.97 േ 0.06 6.47 േ	0.02 

August 2015 Dry 24.58 േ 1.04 7.58 േ	0.33 

November 2015 Dry 25.00 േ 0.20 7.72 േ	0.06 

February 2016 Wet 27.43 േ 2.01 8.47 േ	0.62 

May 2016 Wet 28.05 േ 4.58 8.66 േ	1.41 

August 2016 Dry 27.67	േ	3.72 8.54 േ	1.15 

November 2016 Dry (not computable) (not computable) 

Mean estimates   25.15 േ 2.03 7.76 േ	0.63 

Emu Creek    

November 2014 Dry (not computable) (not computable) 

February 2015 Wet 19.00 േ	0.00 5.74 േ	0.00 

May 2015 Wet 24.00 േ 0.00 7.25േ	0.00 

August 2015 Dry 27.00 േ 0.09 8.16 േ	0.02 

November 2015 Dry 32.13 േ 1.61 9.71 േ	0.48 

February 2016 Wet 30.80 േ 8.87 9.30 േ	1.17 

May 2016 Wet 33.66 േ 1.09 10.17 േ	0.33 

August 2016 Dry 36.00 േ 0.09 10.88 േ	0.02 

November 2016 Dry (not computable) (not computable) 

Mean estimates  28.94 േ 0.96  8.74 േ	0.29 
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Tinaroo Creek    

November 2014 Dry (not computable) (not computable) 

February 2015 Wet 39.40 േ 12.66 15.10 േ	4.84 

May 2015 Wet 36.67 േ 2.57 14.05 േ	0.98 

August 2015 Dry 38.74 േ 0.39 14.84 േ	0.15 

November 2015 Dry 33.00 േ 0.70 12.64 േ	0.27 

February 2016 Wet 41.58 േ 3.94 15.93 േ	1.51 

May 2016 Wet 38.83 േ 2.27 14.87 േ	0.87 

August 2016 Dry 46.74 േ 0.39 17.91 േ	0.15 

November 2016 Dry (not computable) (not computable) 

Mean estimates  39.28 േ 3.27 15.05 ± 1.25 
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Appendix G. Methodology for re-trapping Bettongia tropica to remove collars. 

 

Removing collars 

To re-trap collared bettongs, cages were placed where the collared B. tropica was previously caught, 

with 10 to 20 cages placed 50 m to 200 m apart in a grid configuration (example Figure G.1). 

 

  

Figure G.1. Example of where cage traps were positioned at Tinaroo Creek to re-trap a collared 

Bettongia tropica. Cages were placed where the collared bettong had previously been trapped (red 

circles) and at additional locations (yellow circles) along the ridgeline (delineated by the dotted line) 

and in two rows either side of the ridgeline. 

 

Bettongia tropica were also radio-tracked on foot to their nest and 10 cage traps were deployed 50 m 

to 100 m apart in a grid configuration around the nesting site (Figure G.2). The deployment of cages 

around a nesting site increased the chance of trapping B. tropica when they emerged from their nest to 

forage. Bettongia tropica have multiple nests (section 4.4.2) and after the first night of follow-up 

trapping, if B. tropica were not re-trapped, B. tropica would be again tracked to their nest. If the nest 

was in an area where cages were not already deployed, a further 10 cages would be placed in the area. 

This was continued until each collared B. tropica was re-trapped and collars removed. A maximum of 

50 cages were deployed at each site during each follow-up session. 

 

VHF signals could be obtained up to 700 m away, but local topography and obstructions, such as 

boulders, frequently reduced this distance considerably. Once a signal was obtained, the bettong’s 

location could generally be determined within 20 minutes. Redeployment of the collars gradually 

weakened the VHF antenna, which became prone to breaking. If the antenna had broken, VHF signals 

could generally only be obtained within about 50 m of the collared bettong. Trapping to remove 

collars was ceased if individuals were not trapped after eight nights of cage trapping, which occurred 

only twice. 

 

    1st row 

   2nd row 

    100 m 

       
            N 

 

ridge 

 

2nd row 

  

   1st row 
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Figure G.2. An example of a grid configuration of cage traps at Davies Creek, with cage traps (yellow 

circles) positioned around a nest site (red circle) of the collared Bettongia tropica. 

	

	
	

      N 

    100 m 
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Appendix H. Methodology and results of home range estimated using all GPS fixes and 

for 12, 15, 20, 25 and 30 days of data. 

 

Methodology 

I calculated the 95% and 99% utilisation distribution (UD) home range of collared B. tropica for six 

time periods: 12, 15, 20, 25, 30 days and for all days of data. For each analysis, collars that recorded 

fewer days than the time period were excluded. Using 12 days of data meant two female individuals 

from each site were included in the analysis. The other time periods were selected so there was 5 days 

between each time period (excluding between 12 and 15 days). To ensure even comparisons between 

individuals, the first day (24 hour period) started at 6 pm on the night following when B. tropica was 

collared. Starting at 6 pm removed any bias associated with B. tropica being collared at different 

times. I selected 6 pm because all B. tropica emerged from their nesting area just before 7 pm. A 

programming error meant that the GPS collar on one B. tropica (943094320424120) only recorded 

data between 4 pm and midnight. Therefore, this individual could not be included in analysis. 

 

I used a one-way ANOVAs and Kruskal-Wallis analysis to compare the home range calculated for 

each time period with the home range calculated using all data (which is considered the most 

accurate). All sites were analysed separately. To ensure a balanced comparison, the individuals with 

less data than the specified time period were also removed from the all data (e.g. if comparing 12 days 

of data and there were 10 individuals with 12 days of data, only the 10 individuals were included in 

the all days of data analysis). I also plotted the mean and standard error at all sites and for males and 

females for both the 95% UD and 99% UD for all the time periods (Figure H.1, H.2 and H.3).  

 

Results 

There was no difference between home ranges calculated using 12, 15, 20, 25 or 30 days of data 

compared to using all days of data (Table H.1). The UD 99% home ranges were considered the most 

suitable for analyses, as this range is the most inclusive for management purposes. The 99% UD home 

ranges also contained no disjunct sections (all sections of an animal’s home range were connected). 

The 99% UD was therefore selected to be used.  
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Table H.1. Results from ANOVA and Kruskal-Wallis tests comparing 99% and 95% home range of 

Bettongia tropica calculated using all days of GPS data and 12, 15, 20, 25 and 30 days of data. All 

Kruskal-Wallis tests used one degree of freedom.  

 Davies Creek Emu Creek Tinaroo Creek 

95% home range    

    All vs. 12 days 2 = 0.40, p = 0.529 F1,18 = 1.087, p = 0.311 2 = 0.158, p = 0.691 

    All vs. 15 days 2 = 0.923, p = 0.337 F1,18 = 0.009, p = 0.926 2 = 0.0215, p = 0.884 

    All vs. 20 days 2 = 0.103, p = 0.749 F1,16 = 0.069, p = 0.796 2 = 0.00591, p = 0.939 

    All vs. 25 days F1,8 = 0.036, p = 0.855 F1,10 = 0.025, p = 0.887 2 = 0.00591, p = 0.939 

    All vs. 30 days F1,6 = 0.062, p = 0.811 F1,6 = 0.366, p = 0.567 2 = 0.000834, p = 0.977 

99% home range    

    All vs. 12 days F1,14 = 1.55, p = 0.233 F1,18 = 1.428, p = 0.248 2 = 0.304, p = 0.581 

    All vs. 15 days F1,10 = 1.305, p = 0.28 F1,18 = 0.173, p = 0.682 2 = 0.00592, p = 0.939 

    All vs. 20 days F1,10 = 0.125, p = 0.731 F1,16 = 0.003, p = 0.955 2 = 0.000657, p = 0.980 

    All vs. 25 days F1,8 = 0.27, p = 0.617 F1,10 = 0.328, p = 0.579 2 = 0.000657, p = 0.980 

    All vs. 30 days F1,6 = 0.236, p = 0.645 F1,6 = 0.395, p = 0.553 2 = 0.0473, p = 0.828 

 

By comparing the error bars (Figure H.1) and home range estimates across all sites and genders (Table 

H.2, H.3 and H.4), 15 days of data appeared to produce the most reliable results. Using 15 days of data 

were considered most suitable to enable even comparison between sites and genders. Analysis using 

15 days of data had relatively small error bars, generally overlapped with the error bars of the home 

ranges calculated using all data and were similar to home ranges using all data (Figure H.1; Table H.2, 

H.3 and H.4). Additionally, selecting 15 days meant that at least one female at each site was included 

in the analysis. This enabled comparisons of females between sites and genders. Home ranges 

calculated using 12 days of data tended to be smaller than those estimated from all data (Table H.2, 

H.3 and H.4). Home ranges estimated using 20, 25 and 30 days of data at Davies Creek were 

substantially larger than those calculated using all data (Figure H.1; Table H.2, H.3 and H.4). Male 

home ranges were calculated from the first 25 and 30 days of data were substantially smaller than 

estimates obtained using all data (Figure H.1; Table H.2, H.3 and H.4). The sample sizes for the 20, 25 

and 30 day estimates were much reduced (for 25 and 30 days less than half the original sample size 

was retained).  
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Figure H.1. Comparison of (a) all, (b) male and (c) female Bettongia tropica home ranges (mean and 

standard error bars) at Davies Creek (red), Emu Creek (blue) and Tinaroo Creek (green) calculated 

from all GPS data and data from the first 12, 15, 20, 25 and 30 days, using (i) 95% and (ii) 99% 

utilisation distributions. 
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                All data    12 days    15 days     20 days    25 days    30 days 
Davies Ck: n = 11          n = 10          n = 7            n = 6          n = 5            n = 4 
Emu Ck:     n = 11          n = 10         n = 10          n = 9           n = 6            n = 4 
Tinaroo Ck: n = 16         n = 13         n = 12         n = 12         n = 12          n = 11 

                All data    12 days    15 days     20 days    25 days    30 days 
Davies Ck: n = 8            n = 8            n = 7             n = 6          n = 5            n = 4 
Emu Ck:    n = 9             n = 7            n = 7             n = 6           n = 5           n = 4 
Tinaroo Ck: n = 7          n = 7            n = 6             n = 6            n = 6           n = 5 

                All data      12 days    15 days     20 days    25 days    30 days 
Davies Ck: n = 8              n = 8            n = 7             n = 6          n = 5            n = 4 
Emu Ck:    n = 9               n = 7            n = 7             n = 6           n = 5           n = 4 
Tinaroo Ck: n = 7            n = 7            n = 6             n = 6            n = 6           n = 5 

                All data      12 days    15 days     20 days    25 days    30 days 
Davies Ck: n = 8              n = 8            n = 7             n = 6          n = 5            n = 4 
Emu Ck:    n = 9               n = 7            n = 7             n = 6           n = 5           n = 4 
Tinaroo Ck: n = 7            n = 7            n = 6             n = 6            n = 6           n = 5 

ii)	

                All data      12 days    15 days     20 days    25 days    30 days 
Davies Ck: n = 8              n = 8            n = 7             n = 6          n = 5            n = 4 
Emu Ck:    n = 9               n = 7            n = 7             n = 6           n = 5           n = 4 
Tinaroo Ck: n = 7            n = 7            n = 6             n = 6            n = 6           n = 5 

i)	 ii)	

i)	

a) 

b) 

c) 
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Table H.2. Comparison of home range sizes of Bettongia tropica at Davies Creek, with home ranges calculated using 95% and 99% utilisation distribution 

(UD). Home ranges were estimated from all GPS fixes and for the first 12, 15, 20, 25 and 30 days of data. All estimates are in hectares. Means, with standard 

errors, are shown in bold. Microchip numbers of individuals are shown under ID. A dash (-) indicates there were insufficient days of data to compute the home 

range. 

 All GPS fixes First 12 days First 15 days First 20 days First 25 days First 30 days 

ID Sex Month 

collared 

Season Days 95% 

UD 

99% 

UD 

95% 

UD 

99% 

UD 

95% 

UD 

99% 

UD 

95% 

UD 

99% 

UD 

95% 

UD 

99% 

UD 

95% 

UD 

99% 

UD 

25229 M Feb. 2015 Wet 25 10.27 23.41 11.73 23.29 9.85 19.34 9.88 20.87 10.27 23.41 - - 

E4720 M Feb. 2015 Wet 23 12.88 26.11 12.51 20.67 11.26 21.35 14.51 28.64 - - - - 

24139 M May 2015 Dry 13 8.76 15.96 9.28 14.35 - - - - - - - - 

24651 M May 2005 Dry 13 21.96 36.30 16.21 27.50 - - - - - - - - 

23973 M Aug. 2015 Dry 41 10.98 16.93 8.53 13.40 6.92 14.00 10.19 15.13 10.04 14.69 10.41 14.80 

24213 M Aug. 2015 Dry 36 17.69 34.68 11.97 18.45 10.32 17.66 13.87 23.43 8.00 18.09 8.08 19.67 

24386 M Aug. 2015 Dry 38 26.96 39.26 29.74 38.41 29.28 39.45 33.27 43.72 31.77 42.14 30.06 40.99 

135187 M Nov. 2015 Dry 32 20.36 31.13 13.24 25.58 13.33 25.89 17.81 28.74 21.02 30.67 21.38 31.72 

Mean    27.63  

3.99 

16.23  

2.30 

27.97  

3.11 

14.15  

2.38 

22.71  

2.86 

13.49  

3.27 

22.95  

3.67 

16.59  

3.55 

26.76  

3.98 

16.85  

4.34 

26.59  

4.86 

17.49  

5.10  

26.80  

5.92 

24982 F May 2015 Dry 13 8.32 11.47 5.80 10.21 - - - -     

24646 F Nov. 2015 Dry 8 10.35 15.29 - - - - - -     

25096 F Nov. 2015 Dry 16 2.78 6.16 2.05 5.46 5.26 7.03 - -     

Mean    12.33  

2.33 

7.15  

2.26 

10.97  

2.65 

3.92  

1.88 

7.83  

2.38 

5.26 7.03 - - - - - - 
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Table H.3. Comparison of home range sizes of Bettongia tropica at Emu Creek, with home ranges calculated using 95% and 99% utilisation distribution 

(UD). Home ranges were estimated from all GPS fixes and for the first 12, 15, 20, 25 and 30 days of data. All estimates are in hectares. Means, with standard 

errors, are shown in bold. Microchip numbers of individuals is shown under ID. A dash (-) indicates there were insufficient days of data to compute the home 

range. 

 All GPS fixes First 12 days First 15 days First 20 days First 25 days First 30 days 

ID Sex Month 

collared 

Season Days  95% 

UD 

99% 

UD 

95% 

UD 

99% 

UD 

95% 

UD 

99% 

UD 

95% 

UD 

99% 

UD 

95% 

UD 

99% 

UD 

95% 

UD 

99% 

UD 

24892 M Feb. 2015 Wet 28 8.46 20.50 7.28 19.70 6.83 19.11 10.62 22.76 4.90 14.84 - - 

24395 M May 2015 Dry 10 30.56 41.31 - - - - - - - - - - 

25393 M May 2015 Dry 22 15.26 28.88 13.24 26.60 19.39 30.80 19.79 32.43 - - - - 

24183 M Aug. 2015 Dry 32 14.74 23.96 7.97 13.98 10.53 18.15 11.14 19.91 14.26 21.45 11.21 19.83 

24753 M Nov. 2015 Dry 36 15.99 21.14 14.06 21.88 17.48 22.11 13.38 20.87 15.20 20.51 15.93 20.16 

431905 M Nov. 2015 Dry 39 6.52 12.82 7.86 13.40 8.22 13.40 6.97 12.09 3.87 8.20 4.61 9.98 

25008 M Nov. 2015 Dry 32 13.81 24.59 17.93 25.60 18.98 27.03 16.43 24.86 18.47 26.59 11.66 22.73 

24261 M Feb. 2016 Wet 19 11.92 23.93 4.37 14.39 5.43 14.85 - - - - - - 

25061 M Feb. 2016 Wet 11 19.06 30.42 - - - - - - - - - - 

Mean    25.44  

3.51 

15.15  

2.31  

25.28  

2.62 

10.39  

1.80 

19.36  

2.11 

12.41  

2.28 

20.78  

2.39 

13.05  

1.86 

22.15  

2.72 

11.34  

2.93 

18.32  

3.14 

10.85  

2.34 

18.17  

2.81 

25149 F May-15 Dry 25 7.94 14.36 9.11 16.28 9.57 14.92 10.22 16.10 7.94 14.36 - - 

25015 F Aug. 2015 Dry 23 13.49 21.06 12.26 19.86 12.74 21.37 8.85 17.91 - - - - 

25379 F Feb. 2016 Wet 7 16.51 24.00 - - - - - - - - - - 

24626 F Feb. 2016 Wet 24 8.60 18.80 3.99 11.42 9.39 18.66 11.65 17.85 - - - - 

Mean      19.75  

4.27 

11.64  

2.04  

19.55  

2.03  

8.45  

2.41 

15.86  

2.45 

10.57  

1.09 

18.31  

1.87 

10.24  

0.84 

17.29  

0.59  

7.94 14.36 - - 
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Table H.4. Comparison of home range sizes of Bettongia tropica at Tinaroo Creek, with home ranges calculated using 95% and 99% utilisation distribution 

(UD). Home ranges were estimated from all GPS fixes and for the first 12, 15, 20, 25 and 30 days of data. All estimates are in hectares. Means, with standard 

errors, are shown in bold. Microchip numbers of individuals are shown under ID. A dash (-) indicates there were insufficient days of data to compute the home 

range. Bettongia tropica 24210 was excluded from analyses as GPS data only recorded between 4 pm and midnight. Bettongia tropica 24954/10780* was 

collared twice, with only the first collaring data (February 2015) included in the averages. 

 All GPS fixes First 12 days First 15 days First 20 days First 25 days First 30 days 

ID Sex Month 

collared 

Season Days  95% UD 99% UD 95% UD 99% UD 95% UD 99% UD 95% UD 99% UD 95% UD 99% UD 95% UD 99% UD 

24354 M Feb. 2015 Wet 30 8.00 12.28 7.74 11.89 8.28 12.71 8.44 12.91 9.07 13.50 8.54 13.02 

24446 M Feb. 2015 Wet 14 15.54 24.05 12.58 22.56 - - - - - - - - 

25294 M Aug. 2015 Dry 31 19.30 29.31 16.90 28.57 16.05 27.03 16.76 27.97 17.55 28.95 23.36 33.38 

24897 M Aug. 2015 Dry 26 13.82 24.37 16.35 25.97 18.85 27.47 19.19 29.05 18.47 28.12 - - 

25146 M Aug. 2015 Dry 31 19.20 25.56 18.10 22.54 16.60 21.91 17.01 22.60 18.29 23.47 14.97 23.30 

24619 M Aug. 2015 Dry 31 21.63 31.04 13.44 23.09 14.58 24.49 16.12 27.26 17.74 27.58 18.16 27.28 

24188 M Nov. 2015 Dry 38 12.46 20.35 14.76 21.79 17.16 24.05 17.04 23.50 17.86 23.30 17.49 23.56 

Mean    28.71  

2.79 

15.71  

1.78 

23.85  

2.34 

14.27  

1.31  

22.34  

1.96 

15.25  

1.51 

22.94  

2.21 

15.76  

1.52 

23.88  

2.43 

16.50  

1.49 

24.15  

2.35 

16.50  

2.41 

24.11  

3.32 

24954/10780* F Feb. 2015* Wet 32 3.25 6.09 1.96 4.49 2.65 5.38 2.73 5.67 3.32 5.97 4.68 7.22 

24531 F May 2015 Dry 30 3.61 6.36 3.50 5.51 4.32 6.77 4.81 7.22 4.70 6.97 4.49 7.08 

24954/10780* F Nov. 2015 Dry 37 5.47 10.56 3.93 9.53 5.7 10.82 5.78 10.91 5.35 10.57 5.51 9.87 

24834 F Nov. 2015 Dry 38 12.57 17.50 7.05 13.53 7.70 13.93 7.37 14.07 7.25 13.88 10.30 14.42 

24120 F Nov. 2015 Dry 3 2.90 6.08 - - - - - - - - - - 

24941 F Feb. 2016 Wet 34 2.33 4.85 3.50 6.15 4.38 7.81 4.29 7.35 4.11 6.68 3.58 5.93 

24827 F Feb. 2016 Wet 36 5.91 8.26 3.40 5.87 5.48 7.24 5.17 7.44 5.06 7.30 3.56 6.20 

24210 F Feb. 2016 Wet 19 21.03 34.53 - - - - - - - - - - 

23980 F Feb. 2016 Wet 11 7.08 11.50 - - - - - - - - - - 

24866 F Feb. 2016 Wet 36 6.00 11.37 7.24 11.16 6.26 10.23 7.50 11.07 6.90 10.71 6.00 10.98 

Mean    27.60  

4.18 

7.02  

1.02 

11.71  

3.13 

4.37  

0.89 

8.04  

1.49 

7.28  

2.13 

12.18  

3.43 

5.38  

0.64 

9.10  

1.12 

5.24  

0.54 

8.87  

1.10 

5.45  

0.88 

8.81  

1.17 
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Appendix I. Verification for using 50% utilisation distribution to calculate nesting areas 

of Bettongia tropica. 

 

Nesting areas calculated using the 50% UD were a more accurate representation of the region 

Bettongia tropica used for nesting. Estimates obtained using 95% and 99% UD were substantially 

larger (often larger than home range estimates) and are thus not representative of where bettongs 

nested (Figures I.1, I.2 and I.3; Table I.1). 

 

           

Figure I.1. Nesting areas of collared Bettongia tropica individuals at Davies Creek, with areas 

calculated using (a) 50% utilisation distribution (UD), (b) 95% UD and (c) 99% UD. 

 

         

Figure I.2. Nesting areas of collared Bettongia tropica individuals at Emu Creek, with areas 

calculated using (a) 50% utilisation distribution (UD), (b) 95% UD and (c) 99% UD. 

 

           

Figure I.3. Nesting areas of collared Bettongia tropica individuals at Tinaroo Creek, with areas 

calculated using (a) 50% utilisation distribution (UD), (b) 95% UD and (c) 99% UD.

a)  b)  c) 

a)  b)  c) 

a)  b)  c) 
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Table I.1. Nesting areas of Bettongia tropica at Davies Creek, Emu Creek and Tinaroo Creek. Nesting areas were calculated using 50%, 95% and 99% utilisation distribution 

(UD) from 15 days and all days of data. Mean sizes  standard error are shown in bold. Bettongia tropica 24954/10780* was collared twice, with only the first collaring data 

(February 2015) included in the means. 

 15 days of data All days of data 

Site Bettong ID Sex Month 

collared 

Season Days 50% UD 

(ha) 

95% UD 

(ha) 

99% UD 

(ha) 

50% UD 

(ha) 

95% UD 

(ha) 

99% UD 

(ha) 

Davies Creek 25229 M Feb. 2015 Wet 25 0.90 14.50 25.03 1.57 6.42 8.87 

Davies Creek E4720 M Feb. 2015 Wet 23 1.80 17.68 29.98 3.93 19.77 30.39 

Davies Creek 24139 M May 2015 Dry 13 2.02 22.72 36.38 1.28 8.11 12.46 

Davies Creek 24651 M May 2005 Dry 13 4.37 23.32 39.01 5.77 29.31 41.58 

Davies Creek 23973 M Aug. 2015 Dry 41 0.36 15.59 25.93 0.26 2.64 4.85 

Davies Creek 24213 M Aug. 2015 Dry 36 1.27 14.32 25.03 0.92 4.79 6.81 

Davies Creek 24386 M Aug. 2015 Dry 38 0.78 13.15 23.74 0.88 8.30 12.77 

Davies Creek 135187 M Nov. 2015 Dry 32 3.25 29.18 45.78 7.44 34.54 47.08 

Davies Creek 24982 F May 2015 Dry 13 1.47 19.20 31.13 1.47 7.79 12.00 

Davies Creek 24646 F Nov. 2015 Dry 8 0.66 10.35 20.34 0.66 3.76 5.49 

Davies Creek 25096 F Nov. 2015 Dry 16 0.60 11.61 22.18 0.60 2.87 4.38 

     Mean  SE 1.59  0.37 17.4  1.74 29.50  2.39 2.25  0.72 11.66  3.35 16.97  4.63 

Emu Creek 24892 M Feb. 2015 Wet 28 0.11 11.58 21.47 0.19 1.89 3.39 

Emu Creek 24395 M May 2015 Dry 10 0.71 17.85 29.59 0.71 4.15 6.64 

Emu Creek 25393 M May 2015 Dry 22 3.38 23.97 39.05 2.08 12.01 18.14 

Emu Creek 24183 M Aug. 2015 Dry 32 0.36 13.12 23.62 0.33 2.40 3.83 

Emu Creek 24753 M Nov. 2015 Dry 36 1.62 15.10 27.64 1.33 6.14 8.92 

Emu Creek 431905 M Nov. 2015 Dry 39 0.22 13.84 23.63 0.40 3.27 5.60 

Emu Creek 25008 M Nov. 2015 Dry 32 3.24 28.97 43.30 1.93 12.97 18.97 

Emu Creek 24261 M Feb. 2016 Wet 19 0.72 9.05 19.87 0.92 4.52 6.39 
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Site Bettong ID Sex Month 

collared 

Season Days 50% UD 

(ha) 

95% UD 

(ha) 

99% UD 

(ha) 

50% UD 

(ha) 

95% UD 

(ha) 

99% UD 

(ha) 

Emu Creek 25061 M Feb. 2016 Wet 11 0.46 16.42 28.38 0.46 2.72 5.06 

Emu Creek 25149 F May-15 Dry 25 0.14 13.97 24.87 0.17 1.23 2.37 

Emu Creek 25015 F Aug. 2015 Dry 23 0.38 14.45 25.42 0.43 2.77 4.91 

Emu Creek 25379 F Feb. 2016 Wet 7 3.33 24.15 37.64 3.33 15.82 24.11 

Emu Creek 24626 F Feb. 2016 Wet 24 0.80 18.98 30.89 0.91 3.82 5.75 

     Mean  SE 1.19  0.35 17.03  1.57 28.87  1.98 1.01  0.26 5.67  1.32 8.77  1.93 

Tinaroo Creek 24354 M Feb. 2015 Wet 30 1.03 13.04 24.11 0.89 4.90 7.41 

Tinaroo Creek 24446 M Feb. 2015 Wet 14 3.92 25.50 40.45 3.92 18.77 29.27 

Tinaroo Creek 25294 M Aug. 2015 Dry 31 2.50 20.94 34.90 2.35 9.89 14.63 

Tinaroo Creek 24897 M Aug. 2015 Dry 26 0.52 11.62 22.02 0.84 4.30 6.49 

Tinaroo Creek 25146 M Aug. 2015 Dry 31 1.30 18.84 32.07 1.37 7.12 11.38 

Tinaroo Creek 24619 M Aug. 2015 Dry 31 2.10 23.30 36.31 2.10 11.25 16.91 

Tinaroo Creek 24188 M Nov. 2015 Dry 38 0.22 15.22 26.29 0.38 2.44 4.30 

Tinaroo Creek 24954/10780* F Feb. 2015 Wet 32 0.24 7.97 17.19 0.32 2.40 3.83 

Tinaroo Creek 24531 F May 2015 Dry 30 0.30 14.68 24.93 0.27 1.57 2.61 

Tinaroo Creek 24954/10780* F Nov. 2015 Dry 37 5 0.36 10.9 21.10 0.35 1.91 

Tinaroo Creek 24834 F Nov. 2015 Dry 38 8 1.05 16.60 27.34 0.91 5.08 

Tinaroo Creek 24120 F Nov. 2015 Dry 3 2 1.16 14.97 24.18 1.16 5.35 

Tinaroo Creek 24941 F Feb. 2016 Wet 34 5 0.63 11.32 21.86 0.43 2.69 

Tinaroo Creek 24827 F Feb. 2016 Wet 36 7 0.38 9.65 19.10 0.43 2.58 

Tinaroo Creek 24210 F Feb. 2016 Wet 19 6 1.67 28.08 45.60 1.67 7.72 

Tinaroo Creek 23980 F Feb. 2016 Wet 11 6 0.66 13.78 24.16 0.66 3.09 

Tinaroo Creek 24866 F Feb. 2016 Wet 36 5 0.32 8.74 18.55 0.78 3.84 

     Mean  SE 1.12  0.25 15.89  1.50 27.44  2.05 1.15  0.24 5.81  1.11 8.88  1.71 
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Appendix J. Cage trapping details from when collars were deployed and retrieved from Bettongia tropica. 

 

Table J.1. Cage trapping details of collared Bettongia tropica at Davies Creek. Trap number is the trap where the bettong was caught on the day it was 

collared. Days of data refers to the number of days that the GPS collar recorded data. 

Bettong microchip Sex Month 

collared 

Season Weight when 

collared (g) 

Radio-tracking 

frequency  

Trap number Date 

deployed 

Time 

released 

Date retrieved Days of 

data 

943094320425229 M Feb-15 Wet 1270 150.750 A5 7/02/15 1:15 4/03/15 25 

FXDA4A683E4720 M Feb-15 Wet 1325 150.931 B6 5/02/15 1:42 6/03/15 23 

943094320425433 M Feb-15 Wet 1310 150.970 I1 7/02/15 3:10 21/02/15 0 

943094320424139 M May-15 Dry 1330 150.970 F4 31/05/15 1:56 19/07/15 12 

943094320424651 M May-15 Dry 1240 150.831 I5 31/05/15 3:10 20/07/15 12 

943094320424982 F May-15 Dry 1170 150.871 B5 31/05/15 4:07 21/07/15 12 

943094320424386 M Aug-15 Dry 1330 150.790 G5 31/07/15 3:20 6/09/15 38 

943094320424213 M Aug-15 Dry 1130 150.750 F6 2/08/15 2:50 6/09/15 36 

943094320423973 M Aug-15 Dry 1100 150.991 B7 31/07/15 4:25 9/09/15 41 

985170000135187 M Nov-15 Dry 1240 150.871 A1 13/11/15 0:25 16/12/15 32 

943094320424646 F Nov-15 Dry 1285 150.710 A6 12/11/15 2:03 18/12/15 16 

943094320425096 F Nov-15 Dry 1280 150.750 F7 13/11/15 2:15 16/12/15 8 

943094320424879 M Feb-16 Wet 1280 150.750 F4 6/02/16 2:50 Not found 0 

943094320424454 F Feb-16 Wet 1260 150.931 F2 5/02/16 0:22 16/03/16 1.5 
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Table J.2. Cage trapping details of collared Bettongia tropica at Emu Creek. Trap number is the trap where the bettong was caught on the day it was collared. 

Days of data refers to the number of days that the GPS collar recorded data. 

Bettong microchip Sex Month 

collared 

Season Weight when 

collared (g) 

Radio-tracking 

frequency  

Trap number  Date 

deployed 

Time 

released 

Date retrieved Days of 

data 

943094320424892 M Feb-15 Wet 1380 150.991 A3 21/02/15 1:35 20/03/15 28 

943094320423900 M Feb-15 Wet 1380 150.871 A1 21/02/15 0:10 26/02/15 0 

943094320425393 M May-15 Dry 1290 150.910 H2 21/05/15 2:10 3/07/15 22 

943094320424395 M May-15 Dry 1360 150.670 B6 20/05/15 0:35 30/06/15 10 

943094320425149 F May-15 Dry 1360 150.710 A6 21/05/15 1:47 3/07/15 25 

943094320424183 M Aug-15 Dry 1260 151.141 H7 19/08/15 4:50 20/09/15 32 

943094320423900 M Aug-15 Wet 1380 150.871 A1 20/08/15 1:19 25/08/15 0 

943094320425015 F Aug-15 Wet 1400 150.710 F7 19/08/15 0:40 18/09/15 23 

943094320424232 F Feb-15 Wet 1400 150.710 F7 19/02/15 3:04 25/03/15 0 

943094320424753 M Nov-15 Dry 1240 150.991 C1 2/11/15 0:20 11/12/15 36 

943094320425061 M Nov-15 Dry 1280 150.931 C7 2/11/15 1:10 10/12/15 0 

943094320431905 M Nov-15 Dry 1120 150.831 D2 2/11/15 1:55 8/12/05 39 

943094320425008 M Nov-15 Dry 1220 150.97 E2 2/11/15 2:15 8/12/05 32 

943094320424261 M Feb-16 Wet 1280 150.831 E4 13/02/16 0:26 17/03/16 19 

943094320425061 M Feb-16 Wet 1260 150.710 C7 13/02/16 1:36 18/03/16 11 

943094320424626 F Feb-16 Wet 1300 150.790 C6 13/02/16 1:56 18/03/16 24 

943094320425379 F Feb-16 Wet 1380 150.670 A1 14/02/16 0:14 20/03/16 7 

943094320707195 M Feb-16 Wet 1300 150.871 A2 13/02/16 3:15 Not found 0 

 

  



	 193	

Table J.3. Cage trapping details of collared Bettongia tropica at Tinaroo Creek. Trap number is the trap where the bettong was caught on the day it was 

collared. Days of data refers to the number of days that the GPS collar recorded data. 

Bettong microchip Sex Month 

collared 

Season Weight when 

collared (g) 

Radio-tracking 

frequency  

Trap number Date 

deployed 

Time 

released 

Date 

retrieved 

Days of 

data 

943094320424446 M Feb-15 Wet 1290 150.670 F3 1/03/15 2:47 1/04/15 14 

943094320424354 M Feb-15 Wet 1280 150.910 D2 2/03/15 3:10 1/04/15 30 

24954/10780* F Feb-15 Wet 1170 150.790 H2 1/03/15 0:30 4/04/15 32 

943094320424531 F May-15 Dry 1280 150.991 F4 10/05/15 3:05 9/06/15 30 

943094320424993 M May-15 Dry 960 150.750 H3 10/05/15 2:00 12/05/15 0 

943094320424834 F May-15 Dry 1270 150.931 E2 10/05/15 0:10 9/06/15 0 

943094320424897 M Aug-15 Dry 1340 151.180 D1 31/08/15 1:50 2/10/15 26 

943094320424619 M Aug-15 Dry 1370 150.670 C3 1/09/15 1:30 2/10/15 31 

943094320425146 M Aug-15 Dry 1245 151.221 H6 1/09/15 1:22 2/10/15 31 

943094320425294 M Aug-15 Dry 1255 150.970 H1 1/09/15 2:20 2/10/15 31 

943094320424188 M Nov-15 Dry 1190 151.221 H7 23/10/15 1:27 19/11/15 38 

943094320424834 F Nov-15 Dry 1290 150.670 E2 23/10/15 0:25 18/11/15 38 

943094320424120 F Nov-15 Dry 1400 150.790 E7 23/10/15 1:05 20/11/15 3 

24954/10780* F Nov-15 Dry 1300 151.141 H3 23/10/15 2:08 18/11/15 37 

943094320424941 F Feb-16 Wet 1315 151.141 E3 26/02/16 0:31 4/04/16 34 

943094320424827 F Feb-16 Wet 1300 150.970 E4 26/02/16 0:50 4/04/16 36 

943094320424120 F Feb-16 Wet 1515 150.910 H7 26/02/16 1:33 7/04/16 19 

943094320423980 F Feb-16 Wet 1440 150.991 B5 26/02/16 3:19 5/04/16 11 

943094320424866 F Feb-16 Wet 1160 151.221 C2 26/02/16 3:41 4/04/16 36 

*Bettong number 24954/10780 was microchipped twice. 
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Appendix K. Home range size, core nesting and foraging areas and number of nesting areas used by Bettongia tropica at each site. 

 

Table K.1. Home range size, core nesting and foraging areas and number of nesting areas used by Bettongia tropica at Davies Creek for all GPS fixes 

recorded and for the first 15 days. Means, with standard errors, are shown in bold. 

 All GPS fixes First 15 days of data 

Bettong 

ID 

Sex Month 

collared 

Season Days GPS 

fixes 

Nesting 

areas 

(count) 

50% UD 

nesting 

(ha) 

50% UD 

foraging 

(ha) 

95% UD 

(ha) 

99% 

UD (ha) 

Nesting 

areas 

(count) 

50% UD 

nesting 

(ha) 

50% UD 

foraging 

(ha) 

95% UD 

(ha) 

99% UD 

(ha) 

25229 M Feb. 2015 Wet 25 3002 9 0.97 5.77 10.27 23.41 4 0.90 4.06 9.85 19.34 

E4720 M Feb. 2015 Wet 23 2139 6 0.37 6.36 12.88 26.11 4 1.80 6.08 11.26 21.35 

24139 M May 2015 Dry 13 2110 4 0.37 4.55 8.76 15.96 <15 

days 

<15 

days 

<15 days <15 

days 

<15 

days 

24651 M May 2005 Dry 13 1979 7 0.29 11.05 21.96 36.30 <15 

days  

<15 

days 

<15 days <15 

days 

<15 

days 

23973 M Aug. 2015 Dry 41 5002 5 0.57 5.08 10.98 16.93 3 0.36 4.08 6.92 14.00 

24213 M Aug. 2015 Dry 36 4493 9 0.10 6.92 17.69 34.68 5 1.27 4.91 10.32 17.66 

24386 M Aug. 2015 Dry 38 4335 6 0.28 10.18 26.96 39.26 3 0.78 16.36 29.28 39.45 

135187 M Nov. 2015 Dry 32 3825 13 3.00 11.20 20.36 31.13 4 3.25 10.15 13.33 25.89 

Mean    27.63 

 3.99 

3361  

428  

7.38  

1.02 

0.74  

0.30 

7.64  

0.96 

16.23  

2.30 

27.97  

3.11 

3.88  

0.31 

1.39  

0.42 

7.61  

1.98 

13.49  

3.27 

22.95  

3.67 

24982 F May 2015 Dry 13 1445 5 

 

1.76 5.59 8.32 11.47 <15 

days 

<15 

days 

<15 days <15 

days 

<15 

days 

24646 F Nov. 2015 Dry 8 991 7 

 

0.45 4.06 10.35 15.29 <15 

days 

<15 

days 

<15 days <15 

days 

<15 

days 

25096 F Nov. 2015 Dry 16 2157 4 0.01 3.00 2.78 6.16 3 0.60 1.06 5.26 7.03 

Mean    12.33 

 2.33 

1513  

339 

5.33  

0.88 

0.74  

0.52 

4.22  

0.75 

7.15  

2.26 

10.97  

2.65 

3 0.60 1.06 5.26 7.03 



	 195	

Table K.2. Home range size, core nesting and foraging areas and number of nesting areas used by Bettongia tropica at Emu Creek for all GPS fixes recorded 

and for the first 15 days. Means, with standard errors, are shown in bold. 

 All GPS fixes First 15 days of data 

Bettong 

ID 

Sex Month 

collared 

Season Days  GPS 

fixes 

Nesting 

areas 

(count) 

50% UD 

nesting 

(ha) 

50% UD 

foraging 

(ha) 

95% UD 

(ha) 

99% 

UD (ha) 

Nesting 

areas 

(count) 

50% UD 

nesting 

(ha) 

50% UD 

foraging 

(ha) 

95% UD 

(ha) 

99% UD 

(ha) 

24892 M Feb. 2015 Wet 28 3102 5 0.09 2.54 8.46 20.50 4 0.11 3.32 6.83 19.11 

24395 M May 2015 Dry 10 1250 3 0.37 7.92 30.56 41.31 <15 

days 

<15 

days 

<15 days <15 

days 

<15 

days 

25393 M May 2015 Dry 22 2601 5 0.61 3.39 15.26 28.88 5 3.38 9.13 19.39 30.80 

24183 M Aug. 2015 Dry 32 3885 7 0.08 5.37 14.74 23.96 4 0.36 4.12 10.53 18.15 

24753 M Nov. 2015 Dry 36 4350 8 0.38 6.18 15.99 21.14 4 1.62 5.47 17.48 22.11 

431905 M Nov. 2015 Dry 39 5069 6 0.74 3.21 6.52 12.82 4 0.22 2.51 8.22 13.40 

25008 M Nov. 2015 Dry 32 4768 8 0.46 7.54 13.81 24.59 5 3.24 6.35 18.98 27.03 

24261 M Feb. 2016 Wet 19 1710 5 0.46 4.39 11.92 23.93 4 0.72 4.97 5.43 14.85 

25061 M Feb. 2016 Wet 11 1412 4 0.73 7.52 19.06 30.42 <15 

days 

<15 

days 

<15 days <15 

days 

<15 

days 

Mean    25.44 

 3.51 

3127  

490 

5.67  

0.58 

0.44  

0.08 

5.34  

0.69 

15.15  

2.31  

25.28  

2.62 

4.28  

0.18 

1.38  

0.53 

5.12  

0.83 

12.41  

2.28 

20.78  

2.39 

25149 F May-15 Dry 25 2537 3 0.54 2.27 7.94 14.36 3 0.14 2.29 9.57 14.92 

25015 F Aug. 2015 Dry 23 2536 2 0.78 4.70 13.49 21.06 3 0.38 4.90 12.74 21.37 

25379 F Feb. 2016 Wet 7 1412 3 0.13 4.91 16.51 24.00 <15 

days 

<15 

days 

<15 days <15 

days 

<15 

days 

24626 F Feb. 2016 Wet 24 2710 6 0.94 3.52 8.60 18.80 4 0.80 2.34 9.39 18.66 

Mean      19.75 

 4.27 

2299  

299 

3.50  

0.87 

0.60  

0.18 

3.85  

0.61 

11.64  

2.04  

19.55  

2.03  

3.33  

0.33 

0.44  

0.19 

3.18  

0.86 

10.57  

1.09 

18.31  

1.87 
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Table K.3. Home range size, core nesting and foraging areas and number of nesting areas used by Bettongia tropica at Tinaroo Creek for all GPS fixes recorded and for the 

first 15 days. Bettongia tropica 24954/10780 was collared twice, with only the first collaring data (February 2015) included in the means. Bettongia tropica 24210 only 

recorded between 12 am and 3 am, with the number of GPS fixes recorded by the collared excluded in the mean calculation. Means, with standard errors, are shown in bold.  

 All GPS fixes First 15 days of data 

Bettong 

ID 

Sex Month 

collared 

Season Days GPS 

fixes 

Nesting 

areas 

(count) 

50% UD 

nesting 

(ha) 

50% UD 

foraging 

(ha) 

95% UD 

(ha) 

99% UD 

(ha) 

Nesting 

areas 

(count) 

50% UD 

nesting 

(ha) 

50% UD 

foraging 

(ha) 

95% UD 

(ha) 

99% UD 

(ha) 

24354 M Feb. 2015 Wet 30 3612 6 1.31 4.59 8.00 12.28 4 1.03 2.55 8.28 12.71 

24446 M Feb. 2015 Wet 14 1328 3 0.39 6.39 15.54 24.05 <15 days <15 days <15 days <15 days <15 days 

25294 M Aug. 2015 Dry 31 4052 6 0.55 11.54 19.30 29.31 4 2.50 12.36 16.05 27.03 

24897 M Aug. 2015 Dry 26 3245 6 1.15 8.16 13.82 24.37 4 0.52 8.58 18.85 27.47 

25146 M Aug. 2015 Dry 31 3900 5 1.06 6.62 19.20 25.56 3 1.30 5.88 16.60 21.91 

24619 M Aug. 2015 Dry 31 3946 10 0.69 9.36 21.63 31.04 5 2.10 7.98 14.58 24.49 

24188 M Nov. 2015 Dry 38 4516 6 0.16 6.75 12.46 20.35 4 0.22 7.75 17.16 24.05 

Mean    28.7  

2.79 

3514  

393 

6.00  

0.79 

0.76  

0.16 

7.63  

0.86 

15.71  

1.78 

23.85  

2.34 

4.0  

0.26 

1.28  

0.36 

7.52  

1.32 

15.25  

1.51 

22.94  

2.21 

24954/ 

10780 

F Feb. 2015 Wet 32 3348 7 0.29 2.33 3.25 6.09 4 0.24 

 

1.32 

 

2.65 

 

5.38 

 

24531 F May 2015 Dry 30 3648 4 0.17 2.47 3.61 6.36 4 0.30 0.90 4.32 6.77 

24954/ 

10780 

F Nov. 2015 Dry 37 4460 5 0.21 3.21 5.47 10.56 6 0.36 1.88 

5.72 10.82 

24834 F Nov. 2015 Dry 38 4682 8 0.48 5.29 12.57 17.50 4 1.05 4.50 7.70 13.93 

24120 F Nov. 2015 Dry 3 296 2 0.72 1.12 2.90 6.08 <15 days <15 days <15 days <15 days <15 days 

24941 F Feb. 2016 Wet 34 4382 5 0.81 2.00 2.33 4.85 4 0.63 1.20 4.38 7.81 

24827 F Feb. 2016 Wet 36 4588 7 0.63 3.60 5.91 8.26 4 0.38 1.65 5.48 7.24 

24210 F Feb. 2016 Wet 19 739* 6 2.92 6.41 21.03 34.53 Date recorded incorrectly 

23980 F Feb. 2016 Wet 11 1161 6 0.54 3.72 7.08 11.50 <15 days <15 days <15 days <15 days <15 days 

24866 F Feb. 2016 Wet 36 4227 5 0.51 3.74 6.00 11.37 5 0.32 2.82 6.26 10.23 

Mean    27.60  

4.18 

3421  

534 

5.50  

0.54 

0.78  

0.27 

3.39  

0.55 

7.02  

1.02 

11.71  

3.13 

4.43  

0.30 

0.49  

0.13 

2.06  

0.56 

7.28  

2.13 

12.18  

3.43 
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Appendix L. Permanova post-hoc tests comparing habitat at nesting and foraging areas with habitat at random areas. 
 

Table L.1. Post-hoc results from permanova comparing nesting and random areas between Davies Creek (DC), Emu Creek (EC) and Tinaroo Creek (TC). 

Habitat data from all sites was combined into one analysis. Significant values (using Bonferroni correction) are highlighted in bold. 

 Grass trees 
(/20 m2) 

Grass cover 
(%) 

Cockatoo 
grass (/m2) 

Rock cover 
(%) 

Tree height 
(m) 

Slope (º) 
 

CWD cover^ 
(%) 

Soil resistance 
(mPa) 

Tree basal 
area (m2) 

Bare soil 
cover (%) 

Soil 
moisture (%) 

Kruskal-
Wallis result 

2 = 45.47 
p<0.001 

2 = 63.57, 
p<0.001 

2 = 21.09 
p<0.001 

2 = 5.49,  
p = 0.359 

2 = 14.44,  
p = 0.0125 

2 = 42.41, 
p<0.001 

2 = 19.53, 
p<0.01 

2 = 50.45, 
p<0.001 

2 = 43.41, 
p<0.01 

2 = 7.84, p 
= 0.165 

2 = 26.68, 
p<0.001 

DC nesting vs. 
DC random 

0.587	 <0.001	 1.00	 1.00	 1.00	 <0.001	 1.00	 <0.001	 <0.001	 1.00	 1.00	

DC nesting vs. 
EC nesting 

1.00	 1.00	 1.00	 1.00	 0.486	 1.00	 1.00	 <0.001	 0.523	 1.00	 <0.01	

DC nesting vs. 
EC random 

1.00	 <0.001	 0.0674*	 1.00	 0.015	 0.994	 1.00	 <0.001	 1.00	 1.00	 1.00	

DC nesting vs. 
TC nesting 

<0.001	 <0.001	 1.00	 1.00	 0.475	 1.00	 1.00	 0.0436	 1.00	 1.00	 0.022	

DC nesting vs. 
TC random 

1.00	 <0.001	 1.00	 1.00	 0.020	 1.00	 0.297	 1.00	 <0.001	 1.00	 0.0179	

DC random 
vs. EC nesting 

1.00	 0.0280	 1.00	 1.00	 1.00	 <0.001	 0.931	 1.00	 0.0140	 1.00	 <0.01	

DC random 
vs. EC random 

0.833	 1.00	 0.565	 1.00	 1.00	 0.0112	 1.00	 1.00	 <0.01	 1.00	 1.00	

DC random 
vs. TC nesting 

<0.001	 1.00	 0.244	 1.00	 1.00	 <0.001	 1.00	 0.510	 <0.01	 0.59	 0.122	

DC random 
vs. TC random 

0.735	 0.103	 1.00	 1.00	 1.00	 <0.01	 1.00	 <0.01	 1.00	 1.00	 0.100	

EC nesting vs. 
EC random 

1.00	 0.0784*	 0.175	 1.00	 1.00	 0.700	 0.0632*	 1.00	 1.00	 1.00	 0.154	

EC nesting vs. 
TC nesting  

<0.001	 0.0671*	 0.675	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	

EC nesting vs. 
TC random 

1.00	 <0.001	 1.00	 1.00	 1.00	 1.00	 <0.01	 0.0544*	 0.123	 1.00	 1.00	

EC random vs. 
TC nesting 

<0.001	 1.00	 <0.001	 0.43	 1.00	 0.699	 0.111	 0.0861	 1.00	 1.00	 1.00	

EC random vs. 
TC random 

1.00	 0.0331	 0.807	 1.00	 1.00	 1.00	 1.00	 <0.001	 0.0209	 1.00	 0.904	

TC nesting vs. 
TC random 

<0.001	 0.0534*	 0.202	 1.00	 1.00	 1.00	 0.0179	 1.00	 0.0154	 0.73	 1.00	

^CWD = coarse woody debris 
*Result approaches significance	
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Table L.2. Habitat variables Bettongia tropica selected at foraging and random areas. Foraging and random habitat were compared between Davies Creek 

(DC), Emu Creek (EC) and Tinaroo Creek (TC). Significant values (using Bonferroni correction) are highlighted in bold. 

 Grass trees  
(/20 m2) 
 

Grass 
height 
(cm) 

Cockatoo 
grass 
(/m2) 

Rock 
cover (%) 
 

Tree 
height (m 
) 

Slope (º) 
 
 

CWD 
cover^ 
(%) 

Soil 
resistance 
(mPa) 

Tree basal 
area (m2) 
 

Bare soil 
cover (%) 
 

Soil 
moisture 
(%) 

Canopy 
cover (%) 

No. of 
bettong 
diggings 

Kruskal-Wallis 
result 

2 = 25.52 
p<0.001 

2 = 
41.23, 
p<0.001 

2 = 58.86 
p<0.001 

2 = 5.86,  
p = 0.330 

2 = 
24.94,  
p<0.001 

2 = 
64.50, 
p<0.001 

2 = 
26.58, 
p<0.001 

2 = 50.98, 
p<0.001 

2 = 
53.22, 
p<0.001 

2 = 
21.05, 
p<0.001 

2 = 16.29 
p<0.01 

2 = 
60.21, 
p<0.001

2 = 
49.03, 
p<0.001

DC foraging vs. 
DC random 

0.673 1.00 <0.01 1.00 0.081 <0.001 1.00 <0.01 <0.01 1.00 1.00 1.00 <0.001 

DC foraging vs. 
EC foraging 

1.00 1.00 0.872 1.00 1.00 1.00 0.224 <0.001 1.00 1.00 0.059 1.00 0.0172 

DC foraging vs. 
EC random 

<0.01 0.0765 <0.001 1.00 0.056 <0.001 1.00 <0.001 0.776 1.00 1.00 1.00 <0.001 

DC foraging vs. 
TC foraging 

1.00 0.0181 1.00 0.80 1.00 0.0684 1.00 1.00 1.00 1.00 0.338 <0.001 0.0381 

DC foraging vs. 
TC random 

0.329 1.00 0.282 1.00 0.147 <0.001 0.419 1.00 0.0764 0.054 0.010 <0.001 <0.001 

DC random vs. 
EC foraging 

0.103 1.00 <0.001 1.00 0.068 <0.001 <0.01 1.00 <0.001 1.00 0.586 1.00 0.236 

DC random vs. 
EC random 

1.00 <0.01 1.00 1.00 1.00 1.00 1.00 1.00 <0.001 1.00 1.00 1.00 1.00 

DC random vs. 
TC foraging 

1.00 <0.001 0.0168 1.00 0.0310 0.147 1.00 0.204 0.228 0.890 1.00 <0.001 0.191 

DC random vs. 
TC random 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 <0.01 1.00 0.0120 0.157 <0.001 1.00 

EC foraging vs. 
EC random 

<0.001 0.0167 <0.001 1.00 0.047 <0.01 0.0148 1.00 1.00 1.00 1.00 1.00 0.0537 

EC foraging vs. 
TC foraging 

0.442 <0.01 0.666 0.71 1.00 1.00 <0.01 <0.01 0.0800* 1.00 1.00 <0.01 1.00 

EC foraging vs. 
TC random 

0.0403 1.00 <0.001 1.00 0.123 <0.001 <0.001 <0.001 <0.001 0.065 1.00 <0.01 1.00 

EC random vs. 
TC foraging 

0.576 1.00 <0.001 0.97 0.021 0.494 1.00 0.0140 0.0357 0.205 1.00 <0.001 0.0439 

EC random vs. 
TC random 

1.00 <0.001 0.412 1.00 1.00 1.00 1.00 <0.001 <0.001 <0.001 1.00 <0.001 0.888 

TC foraging vs. 
TC random 

1.00 <0.001 0.517 1.00 0.058 0.0120 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

^CWD = coarse woody debris 
*Result approaches significance 
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