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Abstract
The priority of an area for conservation is determined by three primary factors: its bio-

diversity value, the level of threat it is facing, and its cost. Although much attention

has been paid to the spatial relationship between biodiversity value and threats, and

between biodiversity value and costs, little is known about how costs and threats are

spatially correlated. The orthodox assumption in conservation science is that costs and

threats are positively correlated. Here, we adapt a classic economic theory of land use

to explain how conservation scientists came to expect a positive correlation between

costs and threats. We then use high-resolution, ground-truthed datasets of land sales

and habitat clearance to show that this assumption is false in the state of Queensland,

Australia. Our results provide an empirical counterargument to a widespread assump-

tion in conservation science, and illustrate why spatial prioritization needs to include

independent measures of costs and threats.
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1 INTRODUCTION

In systematic conservation planning, three primary factors

combine to determine the relative priority of a particular

location: its biodiversity value, the degree of threats to

biodiversity, and the costs of conservation action. To date,

much of the conservation literature has focused on under-

standing the spatial relationship between biodiversity value

and conservation costs (Armsworth, 2014; Bode et al. 2008;

Naidoo et al., 2006). With increased understanding of this

relationship has come a large body of conservation research

that seeks maximize biodiversity benefits using limited con-

servation funds by securing areas that offer the greatest return

on investment (Bode et al., 2008; Carwardine et al. 2008;

Murdoch et al. 2007; Naidoo & Iwamura, 2007; Strange,
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Rahbek, Jepsen, & Lund, 2006). Similarly, the spatial rela-

tionship between biodiversity value and threats has received

considerable empirical attention (the irreplaceability-

vulnerability framework; Margules & Pressey, 2000; Pressey

& Taffs, 2001). However, relatively little attention has been

paid to how threats might be spatially co-distributed with con-

servation costs, and how this might affect spatial conservation

priorities.

It is frequently assumed that conservation costs are pos-

itively correlated with threats (Table S1). This assumption

is often explicitly stated (e.g., Boyd, Epanchin-Niell, &

Siikamäki, 2015; Butsic, Lewis, & Radeloff, 2013; Costello

& Polasky, 2004; Devillers et al. 2015; Merenlender, New-

burn, Reed, & Rissman, 2009; Moore, Balmford, Allnutt, &

Burgess, 2004; Newburn, Reed, Berck, & Merenlender, 2005;

Conservation Letters. 2019;12:e12663. wileyonlinelibrary.com/journal/conl 1 of 9
https://doi.org/10.1111/conl.12663

https://orcid.org/0000-0002-2218-431X
https://orcid.org/0000-0002-5886-4421
http://creativecommons.org/licenses/by/4.0/


2 of 9 SACRE ET AL.

Visconti, Pressey, Segan, & Wintle, 2010) based on the argu-

ment that anthropogenic habitat transformation is most rapid

and intense in economically profitable areas, such as those

containing valuable natural resources (Costello & Polasky,

2004; Newburn et al., 2005; Visconti et al., 2010). Based

on this assumption, many conservation planning exercises

use metrics of threat as surrogates for conservation costs,

thereby assuming that costs and threats have the same spa-

tial distribution (Klein et al. 2008; Murdoch, Ranganathan,

Polasky, & Regetz, 2010; Sala et al. 2002; Venegas-Li, Levin,

Possingham, & Kark, 2018). The assumption that costs are

positively correlated with threats also influences important

debates in conservation theory. For example, it is often

claimed that attempts to minimize conservation costs will

lead to “residual reserves” (Arponen, Cabeza, & Eklund,

Kujala & Lehtomäki, 2010; Boyd et al., 2015; Devillers

et al., 2015), because the cheapest locations are also the least

threatened.

The intuition that conservation costs and threats are posi-

tively correlated relies on the assumption that the economic

value of land and threats to biodiversity are driven by the

same underlying processes. However, the profitability of a

given economic activity at a particular location is likely to

be affected by a range of factors that might be unrelated to

threats, such as agricultural labor costs, political regulations

and incentives (e.g., subsidies), and noneconomic land use

decisions (e.g., tradition or social perception; Vanclay &

Lawrence, 1994). These same factors might have minimal

influence on the degree of habitat modification required to

utilize land for a given economic activity. Instead, threats to

biodiversity posed by habitat modification at each respective

location might depend on a range of independent factors,

such as the degree of modification required to utilize land,

and technological advancements in the modification of

particular habitats. Furthermore, each of these factors are

likely to form complex interactions through space and

time, and across spatial scales (Cattarino, McAlpine, &

Rhodes, 2014; Seabrook, McAlpine, & Fensham, 2006). If

these potentially separate drivers of costs and threats are

sufficiently influential, then it is expected that the spatial

co-distribution of cost and threats might exhibit a more com-

plex relationship than is widely assumed in the conservation

literature.

Here, we explore the spatial co-distribution of costs and

threats in conservation landscapes. To do so, we first use a

classic economic model to examine the expected relation-

ship. We then use data on historical land acquisition costs

and rates of vegetation clearing in the state of Queensland,

Australia, to offer empirical insights into this same relation-

ship. In doing so, we hope to highlight the importance of ver-

ifying the theoretical assumptions we make in conservation

prioritization.

2 METHODS

2.1 Definitions of cost and threat
In our analysis, we focused particularly on the costs incurred

by conservation organizations when acquiring land for the

establishment of protected areas, and the threats to biodiver-

sity caused by habitat clearance. We chose to focus on the

acquisition costs of purchasing land for protection because it

is one of the most widespread methods of conservation action,

and because it is typically the focus of spatial conservation

prioritization. We note, however, that (1) acquisition costs are

not the sole cost incurred when establishing protected areas,

which also involve management costs, and opportunity costs

to stakeholders (Naidoo et al., 2006); and (2) biodiversity is

threatened by processes other than habitat clearance, such as

climate change, invasive species, and pollution (Allek et al.

2018).

2.2 Theoretical analysis
To explore the theoretical relationship between acquisition

costs and rates of habitat loss, we adapted von Thünen’s

(1826) classic “isolated state” model, which describes how

different economic activities arrange themselves in space, and

how these patterns affect the cost of land. In the von Thü-

nen model, land quality is homogeneous, distributed radially

around a central marketplace. Each location is amenable to the

same economic activities (in the original model, these were

types of agriculture). Each activity 𝑖 generates commodities

that can be sold at constant price 𝑝𝑖 net their production cost 𝑐𝑖.

Commodities have different transport costs 𝜏𝑖, which accrue

at a constant rate with distance. The profit generated by an

activity at a distance 𝑟 from the market is therefore a declin-

ing linear function of distance:

𝜋𝑖 (𝑟) = 𝑝𝑖 − 𝑐𝑖 − 𝜏𝑖𝑟. (1)

To maximize their net profits, all parties compete to secure

the land that is closest to the market, as this minimizes trans-

portation costs. The rent 𝑃 (𝑟) generated by an area of land is

defined by the most profitable land use at that distance:

𝑃 (𝑟) = max
𝑖

[
𝑝𝑖 − 𝑐𝑖 − 𝜏𝑖𝑟

]
. (2)

These rents can be considered proportional to acquisition

costs. Note that all economic activity—and in our model, all

threat—will cease at distances 𝑟 > (𝑝𝑖 − 𝑐𝑖)∕ 𝜏𝑖 (for all val-

ues of 𝑖). Beyond this distance high transport costs make all

activities unprofitable.

We incorporated threats to biodiversity into von Thünen’s

model using a simple model of habitat degradation. We

assumed that each activity 𝑖 threatens a particular proportion
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𝜆𝑖 of the habitat at that location with degradation or loss. The

most profitable land use in each location therefore determines

both the local acquisition cost and the magnitude of the threat

to biodiversity.

We analyzed both a deterministic and a stochastic version

of the extended von Thünen model to explore the relation-

ship between acquisition costs and threats. For the determin-

istic model, we chose values for 𝜏𝑖, 𝜆𝑖, 𝑝𝑖 and 𝑐𝑖 at random

from uniform distributions 𝑈 (0, 1) for four different land use

types, and assumed these parameters were constant in space.

For the stochastic model, we included economic heterogene-

ity by adding normally distributed random noise to produc-

tion costs at each discrete radial distance from the market. We

added ecological heterogeneity by adding similar noise to the

degradation caused by each activity. Specifically, we defined

𝑐𝑖 (𝑟𝑥) = 𝑐𝑖 + 𝜖𝑥, and 𝜆𝑖 (𝑟𝑥) = 𝜆𝑖 + 𝛿𝑥, where 𝜖𝑥, 𝛿𝑥 ∼
𝑁(0, 𝜎) and 𝑐𝑖 and 𝜆𝑖 are the mean values for each activity.

2.3 Empirical analysis
For our empirical analysis, we examined the spatial co-

distribution of surrogates for conservation acquisition costs,

and rates of habitat loss, on land parcels in Queensland, Aus-

tralia (Figure 1). Queensland is a large state, covering 185

million hectares and containing a broad range of ecosys-

tems, ranging from tropical and subtropical ecosystems along

the east coast, to arid assemblages west of the Great Divid-

ing Range. Queensland is divided into private and state land

parcels, each of which represents a legal property. Because

these parcels are the resolution at which most conservation

action takes place, they were used as replicates in our analysis.

For our primary analysis, we used a dataset of property

sales that occurred between 2000 and 2008 (Adams, Segan,

& Pressey, 2011b). Because these record real market trans-

actions, they are likely to accurately reflect acquisition costs.

However, we note that actual acquisition costs for conserva-

tion might vary from standard land transactions, because of

differing objectives and negotiation dynamics (Armsworth,

2014). All sale prices were adjusted to 2008 Australian dol-

lars (AUD) based on annual inflation rates (Australian Bureau

of Statistics 2017). Our primary analyses assumed that it

would be necessary for a conservation organization to pur-

chase entire parcels. Thus, the mean cost per hectare of veg-

etation on each parcel was calculated as the total price of the

parcel divided by the number of hectares of vegetation on the

parcel. In the Supporting Information, we also provide analy-

ses assuming that vegetated subsections of each parcel can be

purchased, which might affect the relative cost-effectiveness

of purchases depending on what proportion of each parcel is

vegetated (Adams et al., 2011b).

To estimate threats to biodiversity, we measured the

amount of anthropogenic vegetation clearing that occurred on

each parcel between 2009 and 2018. This measure of threat,

therefore, reflects the amount of vegetation clearing that could

have been prevented by purchasing and protecting vegetation

in 2008. We chose to measure clearing between 2009 and

2018 because (1) measuring clearing after the land was sold

avoids the possibility that clearing affected the sale price; (2)

cost data were available immediately before this period; (3)

threat data were available up until the year 2018; and (4) this

period spans different phases of land clearing policy (dis-

cussed in Section 2.4). For each parcel, we divided the area

of vegetation cleared by the area of remnant vegetation in

2008 to give the mean proportion of remnant vegetation that

was cleared. In the Supporting Information, we also provide

results when vegetation clearing was standardized by total

parcel size.

Land clearing was estimated from the Statewide Landcover

and Trees Study (SLATS; Queensland Department of Sci-

ence, Information Technology and Innovation 2017), which

uses Landsat satellite imagery to measure woody vegetation

clearing in Queensland, and is verified by extensive field sur-

veys. All clearing is classified according to the economic or

natural process responsible (e.g., mining, pasture, and natural

disaster). We included only direct, anthropogenic clearing in

our analysis. We excluded all parcels within 1 km of present-

day protected areas to avoid the possibility that clearance rates

were affected by protection. We also restricted our analyses to

rural land parcels with remnant vegetation in 2008 under the

assumption that urban areas and parcels without vegetation

are unlikely candidates for conservation acquisition. Finally,

because the SLATS dataset detects only woody vegetation

clearing, we removed parcels that contained any non-woody

vegetation types. The amount of remnant vegetation on each

parcel at the time of purchase was calculated by combining the

SLATS dataset with data from the National Vegetation Infor-

mation System (NVIS Technical Working Group 2017).

To explore how the relationship between our estimates of

conservation acquisition cost and threat might vary according

to ecological and economic variation, we intersected parcels

with layers of bioregions and land use types (see Support-

ing Information for further details). For all analyses, we used

Kendall’s rank correlation coefficient to measure associations

between cost and threat. Kendall’s coefficient is useful when

datasets contain many zero values, such as parcels that expe-

rienced no vegetation clearing.

2.4 Supporting analyses
We performed several supporting analyses to test the robust-

ness of our results. We repeated our analyses using two alter-

native surrogates for conservation acquisition costs. The first

was unimproved land values as estimated by the Queens-

land Valuer-General between 2002 and 2006 (Carwardine

et al. 2010), converted to 2006 AUD (Australian Bureau of

Statistics 2017). For the analysis using land valuations, we
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F I G U R E 1 The spatial distribution of land valuation and threats from land clearing in Queensland, Australia. Panel (a) shows anthropogenic

land clearing (red) that has occurred in Queensland from mid-2007 to mid-2018 derived from the Statewide Landcover and Trees Study (SLATS).

Panels (b) shows unimproved land valuation in log 2006 AUD per hectare of vegetation derived from valuations collected by the Queensland

Valuer-General. Gray areas represent parcels where land valuations were not performed (e.g., on public land), or parcels where no remnant

vegetation was present in the year 2006. Only land valuations, and not sales prices, were used for production of the above map due the low number of

property sales in the dataset

measured land clearing between 2007 and 2018. Our second

surrogate was the agricultural profitability of land in 2006,

modeled by Marinoni et al. (2012). Agricultural profitability

is a useful alternative measure because it might better reflect

the opportunity costs of conservation (forgone economic prof-

its) as well as acquisition costs.

We repeated our correlation test for two separate phases

of land clearing policy in Queensland to test whether our

results varied across regulatory regimes. We also stratified our

analyses across each of Queensland’s 13 bioregions, to see

if our results were sensitive to changes in geographic loca-

tion, extent, or government jurisdiction. Finally, because land

prices can exhibit efficiencies of scale, with larger parcels

having lower per-hectare costs, we stratified our analysis

according to parcel size (0-1 ha, 1–10 ha, 10–100 ha, and

over 100 ha). Outputs from these analyses are available in the

Supporting Information.

3 RESULTS

3.1 Theoretical analysis
If only a single economic activity occurs in a region, the

von Thünen model predicts that land cost will decline

linearly with distance to market, as net profitability is reduced

by transport costs (Figure 2a). Land cost declines to zero at

distances 𝑟 > (𝑝1 − 𝑐1)∕𝜏1, once the single activity becomes

unprofitable. This simple, single-activity case supports the

intuition that cost and threat are correlated (Figure 2b): with

low cost (unprofitable) land experiencing low degradation

(wilderness), and high cost (profitable) land experiencing

greater degradation (𝜆1).

With multiple economic activities, a positive correlation

between costs and threats can no longer be assumed. Land

cost still declines with distance to market, although follow-

ing a piecewise linear relationship as a sequence of different

economic activities maximize net profits (Figure 2c). Habi-

tat degradation remains lowest in land with the lowest cost

(wilderness), but is otherwise unrelated to net profitability

(Figure 2d). Unless the most profitable activities are also the

most ecologically degrading, high-cost land will not face the

greatest threats. The result is an uncertain correlation between

land costs and threats.

Figure 2e shows how the optimal land use changes through

space as a consequence of varying production costs, and

Figure 2f shows the consequences for the relationship between

costs and threats when ecological heterogeneity adds further

noise. The resulting relationship is complex, and unlikely
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F I G U R E 2 The relationship between land costs (net profits) and threat from of land clearing as predicted by the von Thünen model. Panels

(a), (c), and (e) show the relationship between distance from market, optimal economic activity, and net profits on land. Different colors denote

different economic activities, with black denoting wilderness areas where no economic activity is profitable. Each activity produces commodities

that can be sold at market for a net profit indicated by the y-intercept. As distance to market increases, transport costs make each activity less

profitable at a rate described by the slope of each line. Panels (b), (d), and (f) show scatter plots of the relationship between cost and threat according

to the same model. Each point represents a discrete distance from the market. Panels (a) and (b) show a positive correlation between cost and threat

according to the predictions of a deterministic, single-sector version of the model. Panels (c) and (d) show that the presence of multiple economic

sectors can invalidate this assumption. Panels (e) and (f) show that the presence of ecological and economic variation further complicates the

relationship. See the Supporting Information for further details of parameter values
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to produce a simple positive correlation between costs and

threats.

3.2 Empirical analysis
We observed no apparent structure in the co-distribution

of acquisition costs and land clearance rates in Queens-

land (Figure 3). Both sales price and land valuation were

weakly negatively correlated with clearance rates (sales

price, Figure 3a, Kendall’s rank correlation 𝜏 = –0.14, p
= < .01, n = 7,620; land valuation; Figure 1b, 𝜏 = –0.02,

p = < .01, n = 104,273). There was also no correlation

between agricultural profitability and the rate of land

clearing (Figure S1, 𝜏 = ∼0.00, p = .16, n = 62,402).

These results were consistent regardless of whether it

was necessary to purchase entire parcels or if vegetated

subsections could be purchased, and whether clearance

rates were standardized by vegetation area or parcel area

(Table S2). The relationship was unaffected by changes in

land clearing policy (Figure S2, Table S2). These results

were also generally consistent across all of Queensland’s

bioregions, with the exception of the Mulga Lands (𝜏 = 0.20,

p = < .01, n = 2,142) and South East Queensland (𝜏 = 0.04,

p = < .01, n = 46,181), which were weakly positively corre-

lated. Among parcels of similar size, the relationship became

slightly positive (up to 𝜏 = 0.18; Table S2). However, the

relationship was still weak and highly variable (Figure S3).

Some portion of the observed variation appears to be

driven by economic and ecological variation among parcels

(Figure 3c and d). For example, we found that particular

bioregions cluster at different locations along the cost axis

(Figure 3c). As a consequence, parcels in two different biore-

gions that face the same level of threat can have very different

acquisition costs. There appeared to be similar clustering

with economic land use (Figure 3d), but to a lesser extent.

4 DISCUSSION

Our results offer a counterpoint to the widespread assump-

tion that costs and threats have a simple positive relationship

in conservation landscapes. Instead, the relationship appears

to be complex and highly variable. Both our theoretical and

empirical results show how at least some of this variation

appears to occur according to economic and ecological spatial

heterogeneity. It is beyond the scope of this study to empiri-

cally determine whether economic and ecological variation

itself is driving some of this variation, or whether processes

that underlie or co-vary with this heterogeneity are responsi-

ble. However, it is clear that in Queensland, spatial variation

in acquisition costs is being driven to a large extent by fac-

tors that are at least partially independent of the factors driv-

ing spatial patterns of vegetation clearing. These observations

are consistent with those from the land economics literature,

in which it is well understood that the profitability of land is

typically only one of many drivers of spatial patterns in land-

use change, which can form complex interactions across spa-

tial extents and scales (Cattarino et al., 2014; Ellis, Baeren-

klau, Marcos-Martínez, & Chávez, 2010). In Queensland, for

example, farmers’ decisions to clear vegetation are motivated

not only by potential profits, but also a variety of other factors,

such as the perceived attractiveness of native vegetation types

(Seabrook, McAlpine, & Fensham, 2008).

There are several caveats to our analyses that require

consideration. First, in some cases, the relationship became

weakly positive among parcels of similar size (Table S2). One

possible explanation for this is that parcels of similar size are

likely to have similar land use types and ecological charac-

teristics. For example, in Queensland, very large parcels are

likely to be used predominantly for cattle grazing in semiarid

regions. Nonetheless, even among parcels of similar size, the

relationship was weak (up to 𝜏 = 0.18) and highly variable

(Figure S3). Furthermore, there is no reason to suspect that

conservation organizations would be restricted to purchasing

parcels of similar size. Second, Queensland is only a single

case study; empirical findings might differ for other conser-

vation regions. However, our empirical observations are con-

sistent with our theoretical analysis, indicating that that these

patterns are likely to apply to any conservation landscape con-

taining economic and ecological variability. These results are

of particular relevance to conservation planning, because the

spatial extent of planning regions are often deliberately cho-

sen to encompass ecologically diverse areas, both because

the goal is to represent a comprehensive range of ecological

features (Kukkala & Moilanen, 2013; Margules & Pressey,

2000), and because larger planning regions offer efficiencies

of scale (McDonald, 2009). Third, we considered only one

aspect of threats to biodiversity, that is, habitat clearance.

Queensland’s biodiversity is also threatened by a variety of

other processes, such as pollution, climate change, and inva-

sive species (Allek et al., 2018). However, these other mea-

sures of threat are less likely to be linked to land costs than

land clearing. Finally, our analyses do not consider all types

of conservation costs. Management costs, in particular, can

dominate conservation expenditures in other contexts, such as

in marine conservation, where acquisition costs are less rele-

vant (Adams, Mills, Jupiter, & Pressey, 2011a; Hunt, 2013).

Our findings have several important implications for con-

servation prioritization and practice. The belief that costs and

threats are strongly and positively correlated in conservation

landscapes is still broadly held and stated in conservation sci-

ence (Table S1). However, our results show that threats can-

not be assumed to be a good proxy for conservation acqui-

sition costs. Rather than simply using threats as a proxy for

costs (e.g., Klein et al., 2008; Murdoch et al., 2010; Sala

et al., 2002; Venegas-Li et al., 2018), future conservation

planning exercises should measure costs independently, or
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F I G U R E 3 Scatter plots of the relationship between land sales and valuations, and rates of land clearing in Queensland. Panel (a) shows the

log sale price of parcels per hectare of vegetation in relation to the mean proportion of each hectare of vegetation that was cleared between mid-2009

and mid-2018 on each parcel. Panel (b) shows the log unimproved land value of parcels per hectare of vegetation in relation to the mean proportion

of each hectare of vegetation that was cleared between mid-2007 and mid-2018 on each parcel. Panel (c) shows log unimproved land values of

parcels and rates of land clearing in three different bioregions: the Brigalow Belt (red), Mulga Lands (green), and Southeast Queensland (blue)

bioregions. For this panel, a random subset of parcels within each bioregion was taken for visual clarity. Panel (d) shows log unimproved land values

of parcels and rates of land clearing on land used predominantly for three different economic activities: cropping (red), grazing on native vegetation

(blue), and plantation forests (green)

devise more sophisticated statistical models that explain the

factors driving the spatial distribution of both costs and

threats. Our results also show that most parcels experienced

relatively low rates of land clearing, regardless of acquisition

cost (Figure S4). As a result, any conservation plan that does

not explicitly consider threat levels when prioritizing loca-

tions could be inadvertently biased toward low-threat, residual

protected areas (Devillers et al., 2015; Joppa & Pfaff, 2009).

Finally, our results show that landscapes are likely to con-

tain a substantial number of highly cost-effective conserva-

tion opportunities. In Queensland in 2008, there was a large

amount of vegetation that faced large, imminent threats, but

which could have been acquired at relatively low cost. Thus,

conservation prioritizations that consider the actual relation-

ship between threats and costs are likely to find a landscape

full of relative bargains: locations facing serious threat from

relatively unprofitable activities.
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